organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Hy­dr­oxy­indan-1-one

aDepartment of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
*Correspondence e-mail: kyuchen@fcu.edu.tw

(Received 16 March 2011; accepted 24 March 2011; online 31 March 2011)

In the title compound (5HIN), C9H8O2, is perfectly planar as all atoms, except the H atoms of both CH2 groups, lie on a crystallographic mirror plane. In the crystal, mol­ecules are linked by strong inter­molecular O—H⋯O hydrogen bonds, forming an infinite chain along [100], generating a C(8) motif.

Related literature

For the spectroscopy of the title compound, see: Magnusson et al. (1964[Magnusson, L. B., Craig, C. A. & Postmus, C. Jr (1964). J. Am. Chem. Soc. 86, 3958-3961.]). For the synthetic and biological applications on indanones, see: Cai et al. (2005[Cai, X., Wu, K. & Dolbier, W. R. Jr (2005). J. Fluor. Chem. 126, 479-482.]); De Paulis et al. (1981[De Paulis, T., Betts, C. R., Smith, H. E., Mobley, P. L., Marnier, D. H. & Sulser, F. (1981). J. Med. Chem. 24, 1021-1024.]); Howbert & Crowell (1990[Howbert, J. J. & Crowell, T. A. (1990). Synth. Commun. 20, 3193-3200.]); Kwiecien et al. (1991[Kwiecien, H., Jalowiczor, R., Bogdal, M., Krzywosinski, L. & Przemyk, B. (1991). Pol. J. Chem. 65, 2057-2160.]). For the preparation, see: Danishefsky et al. (1979[Danishefsky, S., Harayama, T. & Singh, R. K. (1979). J. Am. Chem. Soc. 101, 7008-7012.]). For related structures, see: Chen et al. (2011[Chen, K.-Y., Wen, Y.-S., Fang, T.-C., Chang, Y.-J. & Chang, M.-J. (2011). Acta Cryst. E67, o927.]); Li et al. (2007[Li, Z., Xu, J.-H., Rosli, M. M. & Fun, H.-K. (2007). Acta Cryst. E63, o3435.]); Saeed & Bolte (2007[Saeed, A. & Bolte, M. (2007). Acta Cryst. E63, o2757.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8O2

  • Mr = 148.15

  • Orthorhombic, P n m a

  • a = 13.9126 (7) Å

  • b = 6.7332 (4) Å

  • c = 7.5368 (3) Å

  • V = 706.02 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 297 K

  • 0.39 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.991, Tmax = 1.000

  • 2023 measured reflections

  • 920 independent reflections

  • 605 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.081

  • S = 1.03

  • 920 reflections

  • 78 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.98 (2) 1.69 (2) 2.6618 (19) 173 (2)
Symmetry code: (i) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Acid strengths of 5- and 7-hydroxyindan-1-one have been investigated by UV-vis and 1H NMR measurements (Magnusson et al., 1964). In addition, 1-indanones were important precursors in the regiospecific synthesis of 2-fluoro-1-naphthols (Cai et al., 2005). 5-Chloro-1-indanone was used to synthesize important biomedical compounds as anticonvulsants (Kwiecien et al., 1991), and anticholinergics (De Paulis et al., 1981), showing great activity against solid tumours (Howbert et al., 1990).

The ORTEP diagram of the title compound (5HIN) is shown in Figure 1. The complete molecule (exceptions: H2B and H3A) is perfectly planar, which is slightly different from those of previous studies on other 1-indanone derivatives. (Chen, et al., 2011; Li, et al., 2007; Saeed et al., 2007). In the crystal (Figure 2), the molecules are linked by strong intermolecular O—H···O hydrogen bonds (1.69 (2)Å of O2—H2A···O1 distance and 173 (2)° of O2—H2A—O1, Table 1) to form an infinite one-dimensional chain along [1 0 0], generating a C(8) motif (Bernstein et al., 1995).

Related literature top

For the spectroscopy of the title compound, see: Magnusson et al. (1964). For the synthetic and biological applications on indanones, see: Cai et al. (2005); De Paulis et al. (1981); Howbert & Crowell (1990); Kwiecien et al. (1991). For the preparation, see: Danishefsky et al. (1979). For related structures, see: Chen et al. (2011); Li et al. (2007); Saeed et al. (2007). For graph-set theory, see: Bernstein et al. (1995).

Experimental top

5-Hydroxyindan-1-one was purchased from Sigma-Aldrich (>95% purity) and used as received without further purification. Yellow needle-shaped crystals suitable for the crystallographic studies reported here were isolated over a period of three weeks by slow evaporation from a ethyl acetate solution.

Refinement top

H atoms bonded to O and C atoms were located in a difference electron density map. The hydroxy H atom and the Csp3 H atoms were freely refined, and the Csp2 H atoms repositioned geometrically and refined using a riding model, [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A section of the crystal packing of the title compound, viewed along the b axis. For clarity, hydrogen atoms not involved in hydrogen bonding have been omitted.
5-Hydroxyindan-1-one top
Crystal data top
C9H8O2F(000) = 312
Mr = 148.15Dx = 1.394 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 962 reflections
a = 13.9126 (7) Åθ = 2.9–29.1°
b = 6.7332 (4) ŵ = 0.10 mm1
c = 7.5368 (3) ÅT = 297 K
V = 706.02 (6) Å3Parallelepiped, yellow
Z = 40.39 × 0.30 × 0.25 mm
Data collection top
Bruker SMART CCD detector
diffractometer
920 independent reflections
Radiation source: fine-focus sealed tube605 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 29.2°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1919
Tmin = 0.991, Tmax = 1.000k = 99
2023 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.040P)2]
where P = (Fo2 + 2Fc2)/3
920 reflections(Δ/σ)max = 0.001
78 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C9H8O2V = 706.02 (6) Å3
Mr = 148.15Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 13.9126 (7) ŵ = 0.10 mm1
b = 6.7332 (4) ÅT = 297 K
c = 7.5368 (3) Å0.39 × 0.30 × 0.25 mm
Data collection top
Bruker SMART CCD detector
diffractometer
920 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
605 reflections with I > 2σ(I)
Tmin = 0.991, Tmax = 1.000Rint = 0.020
2023 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.21 e Å3
920 reflectionsΔρmin = 0.21 e Å3
78 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.80931 (8)0.25000.98929 (18)0.0531 (4)
O20.34842 (9)0.25000.85642 (18)0.0454 (4)
H2A0.3393 (16)0.25000.728 (3)0.078 (8)*
C10.73075 (12)0.25001.0631 (2)0.0342 (4)
C20.71859 (13)0.25001.2617 (2)0.0380 (5)
H2B0.7500 (10)0.1348 (15)1.3102 (18)0.058 (4)*
C30.61036 (12)0.25001.2963 (2)0.0354 (4)
H3A0.5894 (8)0.1337 (17)1.3668 (17)0.050 (4)*
C40.56635 (11)0.25001.1138 (2)0.0283 (4)
C50.63619 (10)0.25000.9813 (2)0.0284 (4)
C60.60937 (11)0.25000.8033 (2)0.0336 (4)
H6A0.65580.25000.71460.040*
C70.51359 (12)0.25000.7604 (2)0.0343 (4)
H7A0.49490.25000.64190.041*
C80.44362 (12)0.25000.8945 (2)0.0311 (4)
C90.47000 (12)0.25001.0715 (2)0.0320 (4)
H9A0.42360.25001.16030.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0222 (7)0.0992 (10)0.0379 (7)0.0000.0057 (7)0.000
O20.0228 (7)0.0766 (9)0.0369 (8)0.0000.0037 (6)0.000
C10.0255 (10)0.0456 (10)0.0315 (10)0.0000.0013 (8)0.000
C20.0293 (11)0.0537 (12)0.0311 (9)0.0000.0035 (8)0.000
C30.0277 (10)0.0528 (11)0.0256 (9)0.0000.0005 (8)0.000
C40.0254 (9)0.0337 (9)0.0256 (8)0.0000.0004 (7)0.000
C50.0201 (9)0.0386 (9)0.0264 (9)0.0000.0012 (7)0.000
C60.0240 (10)0.0502 (10)0.0264 (8)0.0000.0069 (8)0.000
C70.0300 (10)0.0482 (10)0.0247 (8)0.0000.0014 (8)0.000
C80.0203 (9)0.0391 (9)0.0338 (9)0.0000.0009 (8)0.000
C90.0239 (10)0.0443 (9)0.0278 (9)0.0000.0054 (7)0.000
Geometric parameters (Å, º) top
O1—C11.2264 (19)C4—C51.393 (2)
O2—C81.355 (2)C4—C91.378 (2)
O2—H2A0.97 (3)C5—C61.393 (2)
C1—C51.453 (2)C6—C71.371 (2)
C1—C21.506 (2)C6—H6A0.9300
C2—C31.528 (3)C7—C81.403 (2)
C2—H2B0.963 (11)C7—H7A0.9300
C3—C41.506 (2)C8—C91.384 (2)
C3—H3A0.990 (11)C9—H9A0.9300
C8—O2—H2A109.8 (14)C4—C5—C1109.13 (14)
O1—C1—C5127.92 (15)C6—C5—C1130.64 (15)
O1—C1—C2123.42 (16)C7—C6—C5119.18 (15)
C5—C1—C2108.65 (15)C7—C6—H6A120.4
C1—C2—C3106.29 (15)C5—C6—H6A120.4
C1—C2—H2B109.1 (8)C6—C7—C8120.28 (16)
C3—C2—H2B112.5 (8)C6—C7—H7A119.9
C4—C3—C2104.15 (14)C8—C7—H7A119.9
C4—C3—H3A111.7 (7)O2—C8—C9117.62 (16)
C2—C3—H3A112.4 (7)O2—C8—C7121.68 (15)
C5—C4—C9120.87 (15)C9—C8—C7120.70 (16)
C5—C4—C3111.78 (14)C8—C9—C4118.74 (16)
C9—C4—C3127.35 (15)C8—C9—H9A120.6
C4—C5—C6120.23 (14)C4—C9—H9A120.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.98 (2)1.69 (2)2.6618 (19)173 (2)
Symmetry code: (i) x1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC9H8O2
Mr148.15
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)297
a, b, c (Å)13.9126 (7), 6.7332 (4), 7.5368 (3)
V3)706.02 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.39 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART CCD detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.991, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
2023, 920, 605
Rint0.020
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.081, 1.03
No. of reflections920
No. of parameters78
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.21

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.98 (2)1.69 (2)2.6618 (19)173 (2)
Symmetry code: (i) x1/2, y, z+3/2.
 

Acknowledgements

Financial support from the National Science Council of the Republic of China is gratefully acknowledged.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, X., Wu, K. & Dolbier, W. R. Jr (2005). J. Fluor. Chem. 126, 479–482.  Web of Science CrossRef CAS Google Scholar
First citationChen, K.-Y., Wen, Y.-S., Fang, T.-C., Chang, Y.-J. & Chang, M.-J. (2011). Acta Cryst. E67, o927.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDanishefsky, S., Harayama, T. & Singh, R. K. (1979). J. Am. Chem. Soc. 101, 7008–7012.  CrossRef CAS Google Scholar
First citationDe Paulis, T., Betts, C. R., Smith, H. E., Mobley, P. L., Marnier, D. H. & Sulser, F. (1981). J. Med. Chem. 24, 1021–1024.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHowbert, J. J. & Crowell, T. A. (1990). Synth. Commun. 20, 3193–3200.  CrossRef CAS Google Scholar
First citationKwiecien, H., Jalowiczor, R., Bogdal, M., Krzywosinski, L. & Przemyk, B. (1991). Pol. J. Chem. 65, 2057–2160.  CAS Google Scholar
First citationLi, Z., Xu, J.-H., Rosli, M. M. & Fun, H.-K. (2007). Acta Cryst. E63, o3435.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMagnusson, L. B., Craig, C. A. & Postmus, C. Jr (1964). J. Am. Chem. Soc. 86, 3958–3961.  CrossRef CAS Google Scholar
First citationSaeed, A. & Bolte, M. (2007). Acta Cryst. E63, o2757.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds