organic compounds
5-Hydroxyindan-1-one
aDepartment of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
*Correspondence e-mail: kyuchen@fcu.edu.tw
In the title compound (5HIN), C9H8O2, is perfectly planar as all atoms, except the H atoms of both CH2 groups, lie on a crystallographic mirror plane. In the crystal, molecules are linked by strong intermolecular O—H⋯O hydrogen bonds, forming an infinite chain along [100], generating a C(8) motif.
Related literature
For the spectroscopy of the title compound, see: Magnusson et al. (1964). For the synthetic and biological applications on indanones, see: Cai et al. (2005); De Paulis et al. (1981); Howbert & Crowell (1990); Kwiecien et al. (1991). For the preparation, see: Danishefsky et al. (1979). For related structures, see: Chen et al. (2011); Li et al. (2007); Saeed & Bolte (2007). For graph-set theory, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).
Supporting information
10.1107/S1600536811010956/si2345sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811010956/si2345Isup2.hkl
5-Hydroxyindan-1-one was purchased from Sigma-Aldrich (>95% purity) and used as received without further purification. Yellow needle-shaped crystals suitable for the crystallographic studies reported here were isolated over a period of three weeks by slow evaporation from a ethyl acetate solution.
H atoms bonded to O and C atoms were located in a difference
The hydroxy H atom and the Csp3 H atoms were freely refined, and the Csp2 H atoms repositioned geometrically and refined using a riding model, [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)].Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).C9H8O2 | F(000) = 312 |
Mr = 148.15 | Dx = 1.394 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 962 reflections |
a = 13.9126 (7) Å | θ = 2.9–29.1° |
b = 6.7332 (4) Å | µ = 0.10 mm−1 |
c = 7.5368 (3) Å | T = 297 K |
V = 706.02 (6) Å3 | Parallelepiped, yellow |
Z = 4 | 0.39 × 0.30 × 0.25 mm |
Bruker SMART CCD detector diffractometer | 920 independent reflections |
Radiation source: fine-focus sealed tube | 605 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
ω scans | θmax = 29.2°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −19→19 |
Tmin = 0.991, Tmax = 1.000 | k = −9→9 |
2023 measured reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.081 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.040P)2] where P = (Fo2 + 2Fc2)/3 |
920 reflections | (Δ/σ)max = 0.001 |
78 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
C9H8O2 | V = 706.02 (6) Å3 |
Mr = 148.15 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 13.9126 (7) Å | µ = 0.10 mm−1 |
b = 6.7332 (4) Å | T = 297 K |
c = 7.5368 (3) Å | 0.39 × 0.30 × 0.25 mm |
Bruker SMART CCD detector diffractometer | 920 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 605 reflections with I > 2σ(I) |
Tmin = 0.991, Tmax = 1.000 | Rint = 0.020 |
2023 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.081 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.21 e Å−3 |
920 reflections | Δρmin = −0.21 e Å−3 |
78 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.80931 (8) | 0.2500 | 0.98929 (18) | 0.0531 (4) | |
O2 | 0.34842 (9) | 0.2500 | 0.85642 (18) | 0.0454 (4) | |
H2A | 0.3393 (16) | 0.2500 | 0.728 (3) | 0.078 (8)* | |
C1 | 0.73075 (12) | 0.2500 | 1.0631 (2) | 0.0342 (4) | |
C2 | 0.71859 (13) | 0.2500 | 1.2617 (2) | 0.0380 (5) | |
H2B | 0.7500 (10) | 0.1348 (15) | 1.3102 (18) | 0.058 (4)* | |
C3 | 0.61036 (12) | 0.2500 | 1.2963 (2) | 0.0354 (4) | |
H3A | 0.5894 (8) | 0.1337 (17) | 1.3668 (17) | 0.050 (4)* | |
C4 | 0.56635 (11) | 0.2500 | 1.1138 (2) | 0.0283 (4) | |
C5 | 0.63619 (10) | 0.2500 | 0.9813 (2) | 0.0284 (4) | |
C6 | 0.60937 (11) | 0.2500 | 0.8033 (2) | 0.0336 (4) | |
H6A | 0.6558 | 0.2500 | 0.7146 | 0.040* | |
C7 | 0.51359 (12) | 0.2500 | 0.7604 (2) | 0.0343 (4) | |
H7A | 0.4949 | 0.2500 | 0.6419 | 0.041* | |
C8 | 0.44362 (12) | 0.2500 | 0.8945 (2) | 0.0311 (4) | |
C9 | 0.47000 (12) | 0.2500 | 1.0715 (2) | 0.0320 (4) | |
H9A | 0.4236 | 0.2500 | 1.1603 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0222 (7) | 0.0992 (10) | 0.0379 (7) | 0.000 | 0.0057 (7) | 0.000 |
O2 | 0.0228 (7) | 0.0766 (9) | 0.0369 (8) | 0.000 | −0.0037 (6) | 0.000 |
C1 | 0.0255 (10) | 0.0456 (10) | 0.0315 (10) | 0.000 | 0.0013 (8) | 0.000 |
C2 | 0.0293 (11) | 0.0537 (12) | 0.0311 (9) | 0.000 | −0.0035 (8) | 0.000 |
C3 | 0.0277 (10) | 0.0528 (11) | 0.0256 (9) | 0.000 | 0.0005 (8) | 0.000 |
C4 | 0.0254 (9) | 0.0337 (9) | 0.0256 (8) | 0.000 | 0.0004 (7) | 0.000 |
C5 | 0.0201 (9) | 0.0386 (9) | 0.0264 (9) | 0.000 | 0.0012 (7) | 0.000 |
C6 | 0.0240 (10) | 0.0502 (10) | 0.0264 (8) | 0.000 | 0.0069 (8) | 0.000 |
C7 | 0.0300 (10) | 0.0482 (10) | 0.0247 (8) | 0.000 | −0.0014 (8) | 0.000 |
C8 | 0.0203 (9) | 0.0391 (9) | 0.0338 (9) | 0.000 | −0.0009 (8) | 0.000 |
C9 | 0.0239 (10) | 0.0443 (9) | 0.0278 (9) | 0.000 | 0.0054 (7) | 0.000 |
O1—C1 | 1.2264 (19) | C4—C5 | 1.393 (2) |
O2—C8 | 1.355 (2) | C4—C9 | 1.378 (2) |
O2—H2A | 0.97 (3) | C5—C6 | 1.393 (2) |
C1—C5 | 1.453 (2) | C6—C7 | 1.371 (2) |
C1—C2 | 1.506 (2) | C6—H6A | 0.9300 |
C2—C3 | 1.528 (3) | C7—C8 | 1.403 (2) |
C2—H2B | 0.963 (11) | C7—H7A | 0.9300 |
C3—C4 | 1.506 (2) | C8—C9 | 1.384 (2) |
C3—H3A | 0.990 (11) | C9—H9A | 0.9300 |
C8—O2—H2A | 109.8 (14) | C4—C5—C1 | 109.13 (14) |
O1—C1—C5 | 127.92 (15) | C6—C5—C1 | 130.64 (15) |
O1—C1—C2 | 123.42 (16) | C7—C6—C5 | 119.18 (15) |
C5—C1—C2 | 108.65 (15) | C7—C6—H6A | 120.4 |
C1—C2—C3 | 106.29 (15) | C5—C6—H6A | 120.4 |
C1—C2—H2B | 109.1 (8) | C6—C7—C8 | 120.28 (16) |
C3—C2—H2B | 112.5 (8) | C6—C7—H7A | 119.9 |
C4—C3—C2 | 104.15 (14) | C8—C7—H7A | 119.9 |
C4—C3—H3A | 111.7 (7) | O2—C8—C9 | 117.62 (16) |
C2—C3—H3A | 112.4 (7) | O2—C8—C7 | 121.68 (15) |
C5—C4—C9 | 120.87 (15) | C9—C8—C7 | 120.70 (16) |
C5—C4—C3 | 111.78 (14) | C8—C9—C4 | 118.74 (16) |
C9—C4—C3 | 127.35 (15) | C8—C9—H9A | 120.6 |
C4—C5—C6 | 120.23 (14) | C4—C9—H9A | 120.6 |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O1i | 0.98 (2) | 1.69 (2) | 2.6618 (19) | 173 (2) |
Symmetry code: (i) x−1/2, y, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C9H8O2 |
Mr | 148.15 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 297 |
a, b, c (Å) | 13.9126 (7), 6.7332 (4), 7.5368 (3) |
V (Å3) | 706.02 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.39 × 0.30 × 0.25 |
Data collection | |
Diffractometer | Bruker SMART CCD detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.991, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2023, 920, 605 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.685 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.081, 1.03 |
No. of reflections | 920 |
No. of parameters | 78 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.21, −0.21 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O1i | 0.98 (2) | 1.69 (2) | 2.6618 (19) | 173 (2) |
Symmetry code: (i) x−1/2, y, −z+3/2. |
Acknowledgements
Financial support from the National Science Council of the Republic of China is gratefully acknowledged.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cai, X., Wu, K. & Dolbier, W. R. Jr (2005). J. Fluor. Chem. 126, 479–482. Web of Science CrossRef CAS Google Scholar
Chen, K.-Y., Wen, Y.-S., Fang, T.-C., Chang, Y.-J. & Chang, M.-J. (2011). Acta Cryst. E67, o927. Web of Science CSD CrossRef IUCr Journals Google Scholar
Danishefsky, S., Harayama, T. & Singh, R. K. (1979). J. Am. Chem. Soc. 101, 7008–7012. CrossRef CAS Google Scholar
De Paulis, T., Betts, C. R., Smith, H. E., Mobley, P. L., Marnier, D. H. & Sulser, F. (1981). J. Med. Chem. 24, 1021–1024. CrossRef CAS PubMed Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Howbert, J. J. & Crowell, T. A. (1990). Synth. Commun. 20, 3193–3200. CrossRef CAS Google Scholar
Kwiecien, H., Jalowiczor, R., Bogdal, M., Krzywosinski, L. & Przemyk, B. (1991). Pol. J. Chem. 65, 2057–2160. CAS Google Scholar
Li, Z., Xu, J.-H., Rosli, M. M. & Fun, H.-K. (2007). Acta Cryst. E63, o3435. Web of Science CSD CrossRef IUCr Journals Google Scholar
Magnusson, L. B., Craig, C. A. & Postmus, C. Jr (1964). J. Am. Chem. Soc. 86, 3958–3961. CrossRef CAS Google Scholar
Saeed, A. & Bolte, M. (2007). Acta Cryst. E63, o2757. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Acid strengths of 5- and 7-hydroxyindan-1-one have been investigated by UV-vis and 1H NMR measurements (Magnusson et al., 1964). In addition, 1-indanones were important precursors in the regiospecific synthesis of 2-fluoro-1-naphthols (Cai et al., 2005). 5-Chloro-1-indanone was used to synthesize important biomedical compounds as anticonvulsants (Kwiecien et al., 1991), and anticholinergics (De Paulis et al., 1981), showing great activity against solid tumours (Howbert et al., 1990).
The ORTEP diagram of the title compound (5HIN) is shown in Figure 1. The complete molecule (exceptions: H2B and H3A) is perfectly planar, which is slightly different from those of previous studies on other 1-indanone derivatives. (Chen, et al., 2011; Li, et al., 2007; Saeed et al., 2007). In the crystal (Figure 2), the molecules are linked by strong intermolecular O—H···O hydrogen bonds (1.69 (2)Å of O2—H2A···O1 distance and 173 (2)° of O2—H2A—O1, Table 1) to form an infinite one-dimensional chain along [1 0 0], generating a C(8) motif (Bernstein et al., 1995).