organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o806-o807

2-Methyl-5,6-di­nitro­benzimidazolium chloride

aDepartment of Chemistry, Ankara University, 06100 Tandoğan, Ankara, Turkey, bDepartment of Physics, Karabük University, 78050, Karabük, Turkey, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 2 March 2011; accepted 3 March 2011; online 9 March 2011)

In the title compound, C8H7N4O4+·Cl, the cation possesses twofold symmetry, with the twofold axis bis­ecting the 2-methyl-5,6-dinitro­benzimidazolium cation. The methyl H atoms are disordered about this twofold axis and were assigned equal half-occupancies. The chloride anion also lies on a twofold axis. In the crystal, N—H⋯Cl and C—H⋯O hydrogen bonds link the ions to form a three-dimensional network.

Related literature

For literature on the anti­tumour, anthelmintic, anti­bacterial, virucidal and fungicidal properties of benzimidazole derivatives, see: Refaat (2010[Refaat, H. M. (2010). Eur. J. Med. Chem. 45, 2949-2956.]); Laryea et al. (2010[Laryea, D., Gullbo, J., Isakssoon, A., Larsson, R. & Nygren, P. (2010). Anti-Cancer Drugs, 21, 33-42.]); Horton et al. (2003[Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893-930.]); Spasov et al. (1999[Spasov, A. A., Yozhitsa, I. N., Bugaeva, L. I. & Anisimova, V. A. (1999). Pharm. Chem. J. 33, 232-243.]); Soula & Luu-Duc (1986[Soula, C. & Luu-Duc, C. (1986). Lyon Pharm. 37, 297-302.]). For literature on the coordination and corrosion inhibitor abilities of the benzimidazoles, see: Kuznetsov & Kaza­nsky (2008[Kuznetsov, Y. I. & Kazansky, L. P. (2008). Russ. Chem. Rev. 77, 219-232.]); Subramanyam & Mayanna (1985[Subramanyam, N. C. & Mayanna, S. M. (1985). Corros. Sci. 25, 163-169.]). For literature on the use of benzimidazole derivatives as photographic materials and dyes, see: Hoffmann et al. (2011[Hoffmann, H. S., Stefani, V., Benvenutti, E. V., Costa, T. M. H. & Gallas, M. R. (2011). Mater. Chem. Phys. 126, 97-101.]); Alamgir et al. (2007[Alamgir, M., Black, D. S. C. & Kumar, N. (2007). Top. Heterocycl. Chem. 9, 87-118.]). For a related structure, see: Hökelek et al. (2002[Hökelek, T., Dinçer, S. & Kılıç, E. (2002). Cryst. Res. Technol. 37, 1138-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7N4O4+·Cl

  • Mr = 258.63

  • Orthorhombic, C 2221

  • a = 4.9453 (1) Å

  • b = 20.4691 (4) Å

  • c = 10.4543 (3) Å

  • V = 1058.25 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 100 K

  • 0.46 × 0.40 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.848, Tmax = 0.929

  • 3043 measured reflections

  • 1302 independent reflections

  • 1264 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.062

  • S = 1.11

  • 1302 reflections

  • 83 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 517 Friedel pairs

  • Flack parameter: 0.10 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1 0.86 (2) 2.15 (2) 3.008 (1) 172.5 (18)
C2—H2⋯O1i 0.93 2.51 3.339 (2) 150
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Benzimidazole derivatives are privileged structures in pharmaceutical chemistry because of their biological activities and clinical applications. They exhibit antitumor, anthelmintic, antibacterial, virucidal and fungucidal properties (Refaat, 2010; Laryea et al., 2010; Horton et al., 2003; Spasov et al., 1999; Soula & Luu-Duc, 1986). In addition to their biological activities, a review of the literature reveals that there are numerous studies including the coordination and corrosion inhibitor abilities of benzimidazoles (Kuznetsov & Kazansky, 2008; Subramanyam & Mayanna, 1985). Some of these derivatives, particularly nitro derivatives, are used as photographic materials in photography and on the other hand, the development of the chemistry of the benzimidazole dyes has been remarkable (Hoffmann et al., 2011; Alamgir et al., 2007). As a part of our ongoing investigations of benzimidazole derivatives, the title compound was synthesized and its crystal structure is reported herein.

The asymmetric unit of the title compound, (Fig. 1), contains one half of each component. It consists of an imidazole ring with the one CH3 and two NO2 groups bonded at positions 2, 5 and 6, respectively, and one chloride anion. Both the 2-methyl-5,6-dinitrobenzimidazolium moiety and the chloride anion lie on twofold axes. The methyl H atoms are disordered about the twofold axis with equal half occupancies.

In the crystal of the title compound N—H···Cl hydrogen bonds link the cations to form zigzag chains propagating in [001]. There are also C—H···O hydrogen bonds linking these chains to form a three-dimensional network (Table 1 and Fig. 2).

The crystal structure of a similar benzimidazole derivative, (C7H4N4O4).H2O, has been reported (Hökelek et al., 2002).

Related literature top

For literature on the antitumour, anthelmintic, antibacterial, virucidal and fungicidal properties of benzimidazole derivatives, see: Refaat (2010); Laryea et al. (2010); Horton et al. (2003); Spasov et al. (1999); Soula & Luu-Duc (1986). For literature on the coordination and corrosion inhibitor abilities of the benzimidazoles, see: Kuznetsov & Kazansky (2008); Subramanyam & Mayanna (1985). For literature on the use of benzimidazole derivatives as photographic materials and dyes, see: Hoffmann et al. (2011); Alamgir et al. (2007). For a related structure, see: Hökelek et al. (2002).

Experimental top

For the preparation of the title compound a solution of 2-methyl-5-nitro- benzimidazole (3.0 g) in sulphuric acid (3.0 ml) was treated with nitric acid (6.0 ml) and refluxed for 3 h, then poured onto ice. The precipitate was filtered off and washed with cold water. Hydrogen chloride was passed into a suspension of the crude dinitro product in warm water. After cooling, the precipitate was filtered and crystallized from ethanol to give yellow block-like crystals of the the title compound (m.p. 507-512 K).

Refinement top

Atom H2A (for the NH group) was located in a difference Fourier map and was freely refined. The C-bound H-atoms were positioned geometrically with C—H = 0.93 and 0.96 Å, for aromatic and methyl H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the displacement ellipsoids drawn at the 50% probability level. The N-H···Cl hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. A view along the a-axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines [H-atoms not involved in hydrogen bonding have been omitted for clarity].
2-Methyl-5,6-dinitrobenzimidazolium chloride top
Crystal data top
C8H7N4O4+·ClF(000) = 528
Mr = 258.63Dx = 1.623 Mg m3
Orthorhombic, C2221Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c 2Cell parameters from 2425 reflections
a = 4.9453 (1) Åθ = 2.8–28.2°
b = 20.4691 (4) ŵ = 0.37 mm1
c = 10.4543 (3) ÅT = 100 K
V = 1058.25 (4) Å3Block, yellow
Z = 40.46 × 0.40 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
1302 independent reflections
Radiation source: fine-focus sealed tube1264 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 66
Tmin = 0.848, Tmax = 0.929k = 2026
3043 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0335P)2 + 0.4282P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1302 reflectionsΔρmax = 0.27 e Å3
83 parametersΔρmin = 0.16 e Å3
0 restraintsAbsolute structure: Flack (1983), 517 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.10 (6)
Crystal data top
C8H7N4O4+·ClV = 1058.25 (4) Å3
Mr = 258.63Z = 4
Orthorhombic, C2221Mo Kα radiation
a = 4.9453 (1) ŵ = 0.37 mm1
b = 20.4691 (4) ÅT = 100 K
c = 10.4543 (3) Å0.46 × 0.40 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
1302 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1264 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 0.929Rint = 0.016
3043 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062Δρmax = 0.27 e Å3
S = 1.11Δρmin = 0.16 e Å3
1302 reflectionsAbsolute structure: Flack (1983), 517 Friedel pairs
83 parametersAbsolute structure parameter: 0.10 (6)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.38240 (8)0.00000.50000.02165 (12)
O10.9799 (2)0.31462 (5)0.62135 (10)0.0235 (2)
O20.5726 (2)0.27552 (5)0.60594 (10)0.0234 (2)
N10.8093 (2)0.27227 (6)0.64031 (11)0.0174 (2)
N20.8329 (2)0.03251 (5)0.68250 (10)0.0133 (2)
H2A0.712 (4)0.0200 (10)0.628 (2)0.035 (6)*
C10.8975 (3)0.21173 (6)0.70323 (11)0.0143 (2)
C20.7865 (3)0.15455 (7)0.65679 (12)0.0146 (3)
H20.64860.15450.59630.018*
C30.8933 (3)0.09724 (6)0.70596 (11)0.0124 (2)
C41.00000.00475 (10)0.75000.0143 (3)
C51.00000.07722 (10)0.75000.0207 (4)
H5A0.86090.09290.69370.031*0.50
H5B0.96660.09290.83510.031*0.50
H5C1.17260.09290.72110.031*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01317 (19)0.0379 (3)0.01385 (18)0.0000.0000.00422 (19)
O10.0284 (5)0.0159 (5)0.0261 (5)0.0007 (4)0.0058 (4)0.0042 (4)
O20.0231 (5)0.0213 (5)0.0259 (5)0.0069 (4)0.0046 (4)0.0017 (4)
N10.0222 (6)0.0145 (5)0.0156 (5)0.0036 (5)0.0015 (4)0.0010 (4)
N20.0137 (5)0.0129 (5)0.0133 (5)0.0011 (4)0.0006 (4)0.0010 (4)
C10.0145 (6)0.0127 (6)0.0157 (5)0.0026 (5)0.0030 (5)0.0019 (4)
C20.0133 (5)0.0169 (6)0.0137 (5)0.0015 (5)0.0000 (4)0.0009 (5)
C30.0129 (5)0.0125 (6)0.0117 (5)0.0009 (5)0.0026 (5)0.0007 (4)
C40.0145 (7)0.0154 (9)0.0131 (7)0.0000.0035 (6)0.000
C50.0250 (10)0.0110 (9)0.0261 (10)0.0000.0025 (8)0.000
Geometric parameters (Å, º) top
N1—O11.2259 (16)C2—H20.9300
N1—O21.2260 (16)C3—C3i1.401 (3)
N1—C11.4692 (17)C4—N21.3275 (16)
N2—C31.3801 (16)C4—N2i1.3275 (16)
N2—H2A0.86 (2)C4—C51.483 (3)
C1—C1i1.409 (3)C5—H5A0.9600
C2—C11.3808 (18)C5—H5B0.9600
C2—C31.3855 (18)C5—H5C0.9600
O1—N1—O2124.84 (12)N2—C3—C2131.66 (12)
O1—N1—C1117.67 (11)N2—C3—C3i106.24 (7)
O2—N1—C1117.41 (11)C2—C3—C3i122.08 (8)
C3—N2—H2A123.5 (14)N2i—C4—N2109.87 (17)
C4—N2—C3108.82 (12)N2i—C4—C5125.07 (9)
C4—N2—H2A127.6 (14)N2—C4—C5125.07 (9)
C1i—C1—N1121.63 (7)C4—C5—H5A109.5
C2—C1—N1116.07 (11)C4—C5—H5B109.5
C2—C1—C1i122.02 (8)C4—C5—H5C109.5
C1—C2—C3115.83 (12)H5A—C5—H5B109.5
C1—C2—H2122.1H5A—C5—H5C109.5
C3—C2—H2122.1H5B—C5—H5C109.5
O1—N1—C1—C1i33.8 (2)C3—C2—C1—N1172.73 (11)
O1—N1—C1—C2140.30 (13)C3—C2—C1—C1i1.3 (2)
O2—N1—C1—C1i149.18 (15)C1—C2—C3—N2179.82 (13)
O2—N1—C1—C236.76 (17)C1—C2—C3—C3i2.1 (2)
C4—N2—C3—C2177.52 (13)N2i—C4—N2—C30.32 (6)
C4—N2—C3—C3i0.81 (16)C5—C4—N2—C3179.68 (6)
Symmetry code: (i) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl10.86 (2)2.15 (2)3.008 (1)172.5 (18)
C2—H2···O1ii0.932.513.339 (2)150
Symmetry code: (ii) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC8H7N4O4+·Cl
Mr258.63
Crystal system, space groupOrthorhombic, C2221
Temperature (K)100
a, b, c (Å)4.9453 (1), 20.4691 (4), 10.4543 (3)
V3)1058.25 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.46 × 0.40 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.848, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
3043, 1302, 1264
Rint0.016
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.062, 1.11
No. of reflections1302
No. of parameters83
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.16
Absolute structureFlack (1983), 517 Friedel pairs
Absolute structure parameter0.10 (6)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl10.86 (2)2.15 (2)3.008 (1)172.5 (18)
C2—H2···O1i0.932.513.339 (2)149.5
Symmetry code: (i) x1/2, y+1/2, z+1.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the X-ray diffractometer.

References

First citationAlamgir, M., Black, D. S. C. & Kumar, N. (2007). Top. Heterocycl. Chem. 9, 87–118.  CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHoffmann, H. S., Stefani, V., Benvenutti, E. V., Costa, T. M. H. & Gallas, M. R. (2011). Mater. Chem. Phys. 126, 97–101.  Web of Science CrossRef CAS Google Scholar
First citationHökelek, T., Dinçer, S. & Kılıç, E. (2002). Cryst. Res. Technol. 37, 1138–1142.  CSD CrossRef CAS Google Scholar
First citationHorton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKuznetsov, Y. I. & Kazansky, L. P. (2008). Russ. Chem. Rev. 77, 219–232.  CrossRef CAS Google Scholar
First citationLaryea, D., Gullbo, J., Isakssoon, A., Larsson, R. & Nygren, P. (2010). Anti-Cancer Drugs, 21, 33–42.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRefaat, H. M. (2010). Eur. J. Med. Chem. 45, 2949–2956.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoula, C. & Luu-Duc, C. (1986). Lyon Pharm. 37, 297–302.  CAS Google Scholar
First citationSpasov, A. A., Yozhitsa, I. N., Bugaeva, L. I. & Anisimova, V. A. (1999). Pharm. Chem. J. 33, 232–243.  CrossRef CAS Google Scholar
First citationSubramanyam, N. C. & Mayanna, S. M. (1985). Corros. Sci. 25, 163–169.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o806-o807
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds