metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1,10-phenanthroline-κ2N,N′)(sulfato-κ2O,O′)cobalt(II) butane-2,3-diol monosolvate

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: zklong@tom.com

(Received 27 February 2011; accepted 10 March 2011; online 15 March 2011)

In the title compound, [Co(SO4)(C12H8N2)2]·C4H10O2, the Co2+ ion has a distorted octa­hedral coordination environment composed of four N atoms from two chelating 1,10-phenanthroline ligands and two O atoms from an O,O′-bidentate sulfate anion. The dihedral angle between the two chelating N2C2 groups is 83.48 (1)°. The Co2+ ion, the S atom and the mid-point of the central C—C bond of the butane-2,3-diol solvent mol­ecule are situated on twofold rotation axes. The mol­ecules of the complex and the solvent mol­ecules are held together by pairs of symmetry-related O—H⋯O hydrogen bonds with the uncoordinated O atoms of the sulfate ions as acceptors. The solvent mol­ecule is disordered over two sets of sites with site occupancies of 0.40 and 0.60.

Related literature

For the ethane-1,2-diol solvate of the title complex, see: Zhong et al. (2006[Zhong, K.-L., Zhu, Y.-M. & Lu, W.-J. (2006). Acta Cryst. E62, m631-m633.]). For the propane-1,3-diol solvate of the title complex, see: Zhong (2010[Zhong, K.-L. (2010). Acta Cryst. E66, m247.]). For background to coordination polymers, see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Chem. Commun. pp. 1067-1068.]); Lu et al. (2006[Lu, W.-J., Zhu, Y.-M. & Zhong, K.-L. (2006). Acta Cryst. C62, m448-m450.]); Zhang et al. (2010[Zhang, L.-P., Ma, J.-F., Yang, J., Pang, Y.-Y. & Ma, J.-C. (2010). Inorg. Chem. 49, 1535-1550.]); Zhong et al. (2011[Zhong, K.-L., Chen, L. & Chen, L. (2011). Acta Cryst. C67, m62-m64.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(SO4)(C12H8N2)2]·C4H10O2

  • Mr = 605.52

  • Monoclinic, C 2/c

  • a = 18.184 (4) Å

  • b = 13.009 (3) Å

  • c = 13.112 (3) Å

  • β = 122.13 (3)°

  • V = 2626.6 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 223 K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.763, Tmax = 1.000

  • 7651 measured reflections

  • 2316 independent reflections

  • 2079 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.109

  • S = 1.12

  • 2316 reflections

  • 209 parameters

  • 50 restraints

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 2.124 (2)
Co1—N1 2.128 (3)
Co1—N2 2.146 (2)
S1—O2 1.455 (2)
S1—O1 1.492 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.82 2.07 2.779 (8) 145
O3′—H3′⋯O2 0.82 1.94 2.709 (7) 155

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The self-assembly of coordination polymers and the crystal engineering of metal-organic coordination frameworks have recently attracted great interest, owing to their interesting structural topologies and their potential applications as functional materials (Batten & Robson, 1998; Lu et al., 2006; Zhang et al., 2010; Zhong et al., 2011). 1,10-phenanthroline (phen) has been widely used as an auxiliary ligands in constructing interesting coordination polymers. During attempts to synthesize mixed-ligand coordination polymers of transition metals with phen as second ligand via solvothermal reactions, we obtained compounds with a structure composed of a bidentate-chelating sulfate ligand, e.g. [CoSO4(C12H8N2)2].C2H6O2 (Zhong et al., 2006), (II) and [CoSO4(C12H8N2)2].C3H8O2 (Zhong, 2010), (III).

We here report the new title compound, [CoSO4(C12H8N2)2].C4H10O2, (I), as part of our systematic investigation of transition metal complexes with bidentate bridging sulfate ligands. The crystal structure of the title compound consist of a neutral [CoSO4(C10H8N2)2] complex and a solvent butane-2,3-diol molecule. Twofold rotation axes pass through the Co and S atoms and the mid-point of the central C—C bond of the butane-2,3-diol solvent molecule. In the complex molecule, the CoII ion is sixfold coordinated by four N atoms from two phen ligands and two O atoms from an O,O'-bidentate sulfate ion, giving rise to a distorted CoN4O2 octahedral environment (Fig. 1). The dihedral angle between the two chelating N2C2 groups is 83.48 (1)°, which is much larger that found in the structure of (II) and (III) (70.16 (6)° and 80.06 (8)°, respectively). The Co—O bond length [2.124 (2) Å], the O—Co—O bite angle [66.83 (12)°], the Co—N bond lenghts [2.128 (3)–2.146 (2) Å], and the N—Co—N bite angle [77.82 (10)°] are in good agreement with those observed in (II) [2.131 (1) Å, 66.32 (7)°, 2.126 (2)–2.137 (2) Å, 78.10 (6)°] and (III) [2.132 (2) Å, 66.54 (8)°, 2.123 (2)–2.134 (2) Å, and 77.99 (6)°].

The neutral metal complex and the solvent molecule are held together by pairs of symmetry-related O—H···O hydrogen bonds (Fig.1).

Related literature top

For the ethane-1,2-diol solvate of the title complex, see: Zhong et al. (2006). For the propane-1,3-diol solvate of the title complex, see: Zhong (2010). For background to coordination polymers, see: Batten & Robson (1998); Lu et al. (2006); Zhang et al. (2010); Zhong et al. (2011).

For related literature, see: Ni et al. (2010).

Experimental top

0.2 mmol 1,10-phenanthroline (phen), 0.1 mmol melamine, 0.1 mmol CoSO4.7H2O, 2.0 ml butane-2,3-diol and 1.0 ml water were mixed and placed in a thick Pyrex tube, which was sealed and heated to 423 K for 96 h. The tube was cooled to ambient temperature spontaneously and orange prism-shaped single crystals of the title compound were obtained.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their attached atoms, with C—H(Ar) = 0.93 Å, C—H(CH) = 0.98 Å, C—H(CH3) = 0.96 Å and O—H = 0.82 Å; Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O). The solvent molecule butane-2,3-diol is disordered over two sets of sites and was refined with fixed site occupancies of 0.40 and 0.60.

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular entities of the title compound, showing the atom-numbering scheme and with displacement ellipsoids drawn at the 35% probability level. The light broken lines depict O—H···O interactions. Unlabelled atoms are related to the labelled atoms by the symmetry operator (-x + 1, y, -z + 1/2). Note that only one orientation of the disordered solvent molecule is shown.
Bis(1,10-phenanthroline-κ2N,N')(sulfato- κ2O,O')cobalt(II) butane-2,3-diol monosolvate top
Crystal data top
[Co(SO4)(C12H8N2)2]·C4H10O2F(000) = 1252
Mr = 605.52Dx = 1.531 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4290 reflections
a = 18.184 (4) Åθ = 3.1–27.5°
b = 13.009 (3) ŵ = 0.79 mm1
c = 13.112 (3) ÅT = 223 K
β = 122.13 (3)°Prism, orange
V = 2626.6 (13) Å30.40 × 0.20 × 0.10 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
2316 independent reflections
Radiation source: fine-focus sealed tube2079 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 3.2°
ω scansh = 1921
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1513
Tmin = 0.763, Tmax = 1.000l = 1514
7651 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.049P)2 + 4.2601P]
where P = (Fo2 + 2Fc2)/3
2316 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.49 e Å3
50 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Co(SO4)(C12H8N2)2]·C4H10O2V = 2626.6 (13) Å3
Mr = 605.52Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.184 (4) ŵ = 0.79 mm1
b = 13.009 (3) ÅT = 223 K
c = 13.112 (3) Å0.40 × 0.20 × 0.10 mm
β = 122.13 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
2316 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2079 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 1.000Rint = 0.033
7651 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04650 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.12Δρmax = 0.49 e Å3
2316 reflectionsΔρmin = 0.39 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.50000.67718 (4)0.25000.0274 (2)
S10.50000.46963 (8)0.25000.0289 (3)
O10.44423 (14)0.54091 (16)0.14832 (19)0.0389 (6)
N20.40247 (16)0.78032 (18)0.1216 (2)0.0284 (6)
C100.3905 (2)0.8150 (2)0.0182 (3)0.0356 (7)
H10A0.42920.79420.00370.043*
O20.55262 (15)0.40620 (18)0.2215 (2)0.0461 (6)
C110.34456 (19)0.8101 (2)0.1512 (3)0.0280 (7)
C70.27533 (19)0.8780 (2)0.0798 (3)0.0324 (7)
C90.3233 (2)0.8808 (3)0.0584 (3)0.0401 (8)
H9A0.31730.90270.12990.048*
C80.2657 (2)0.9131 (2)0.0276 (3)0.0391 (8)
H8A0.22090.95780.07750.047*
C60.2174 (2)0.9049 (3)0.1186 (3)0.0400 (8)
H6A0.17230.95060.07260.048*
C120.35381 (18)0.7670 (2)0.2586 (3)0.0288 (7)
C40.2945 (2)0.7931 (3)0.2918 (3)0.0348 (8)
C50.2268 (2)0.8654 (3)0.2200 (3)0.0422 (9)
H5A0.18890.88530.24360.051*
N10.41924 (16)0.69769 (19)0.3205 (2)0.0303 (6)
C20.3687 (2)0.6731 (3)0.4543 (3)0.0462 (9)
H2A0.37470.63910.52070.055*
C10.4256 (2)0.6524 (3)0.4161 (3)0.0385 (8)
H1A0.46980.60500.45920.046*
C30.3041 (2)0.7438 (3)0.3930 (3)0.0458 (9)
H3A0.26650.75920.41860.055*
C130.5467 (3)0.1136 (6)0.2621 (9)0.042 (2)0.40
H130.58190.05620.31320.050*0.40
O30.5935 (6)0.2007 (6)0.2842 (8)0.066 (2)0.40
H30.56050.24920.25000.098*0.40
C140.4923 (11)0.0849 (17)0.1279 (9)0.107 (6)0.40
H14A0.46010.02320.11800.161*0.40
H14B0.53000.07370.09860.161*0.40
H14C0.45270.13980.08340.161*0.40
C13'0.5031 (6)0.1256 (6)0.1915 (8)0.081 (3)0.60
H13'0.44570.13950.12000.098*0.60
O3'0.5627 (6)0.2002 (5)0.2013 (8)0.108 (3)0.60
H3'0.54540.25760.20460.161*0.60
C14'0.5388 (6)0.0259 (6)0.1741 (8)0.073 (2)0.60
H14D0.50660.03110.17710.110*0.60
H14E0.59890.01900.23680.110*0.60
H14F0.53360.02700.09720.110*0.60
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0229 (3)0.0270 (3)0.0300 (3)0.0000.0127 (3)0.000
S10.0217 (5)0.0260 (5)0.0365 (6)0.0000.0137 (5)0.000
O10.0324 (12)0.0314 (12)0.0327 (12)0.0003 (9)0.0036 (10)0.0013 (9)
N20.0268 (13)0.0261 (13)0.0323 (14)0.0019 (10)0.0156 (11)0.0016 (10)
C100.0346 (17)0.0382 (18)0.0388 (18)0.0013 (14)0.0228 (15)0.0036 (14)
O20.0431 (13)0.0377 (13)0.0724 (17)0.0066 (11)0.0407 (13)0.0007 (12)
C110.0243 (15)0.0262 (15)0.0305 (15)0.0025 (12)0.0125 (13)0.0010 (12)
C70.0262 (15)0.0294 (16)0.0320 (16)0.0001 (13)0.0090 (13)0.0022 (13)
C90.0383 (18)0.045 (2)0.0320 (17)0.0023 (15)0.0150 (15)0.0097 (15)
C80.0316 (17)0.0344 (18)0.0360 (18)0.0010 (14)0.0077 (15)0.0082 (14)
C60.0263 (16)0.0421 (19)0.0406 (19)0.0105 (14)0.0103 (15)0.0000 (15)
C120.0258 (15)0.0287 (16)0.0282 (15)0.0033 (12)0.0119 (13)0.0027 (12)
C40.0297 (16)0.0431 (19)0.0307 (17)0.0015 (14)0.0155 (14)0.0028 (13)
C50.0289 (17)0.056 (2)0.0408 (19)0.0083 (16)0.0176 (15)0.0063 (16)
N10.0277 (13)0.0300 (14)0.0307 (13)0.0016 (11)0.0138 (11)0.0022 (11)
C20.049 (2)0.055 (2)0.0374 (19)0.0005 (18)0.0252 (17)0.0071 (16)
C10.0388 (18)0.0420 (19)0.0346 (17)0.0031 (15)0.0195 (15)0.0077 (14)
C30.0413 (19)0.065 (2)0.0401 (19)0.0044 (18)0.0276 (17)0.0001 (18)
C130.035 (5)0.028 (4)0.060 (6)0.004 (4)0.024 (4)0.000 (4)
O30.069 (5)0.045 (4)0.084 (5)0.006 (3)0.042 (4)0.012 (4)
C140.116 (10)0.148 (11)0.090 (8)0.006 (8)0.077 (8)0.007 (8)
C13'0.095 (6)0.065 (5)0.100 (7)0.003 (5)0.062 (6)0.015 (5)
O3'0.148 (6)0.052 (3)0.178 (7)0.009 (4)0.123 (6)0.015 (5)
C14'0.089 (5)0.068 (5)0.081 (5)0.011 (4)0.057 (4)0.007 (4)
Geometric parameters (Å, º) top
Co1—O12.124 (2)C4—C31.399 (5)
Co1—O1i2.124 (2)C4—C51.434 (5)
Co1—N12.128 (3)C5—H5A0.9300
Co1—N1i2.128 (3)N1—C11.334 (4)
Co1—N2i2.146 (2)C2—C31.367 (5)
Co1—N22.146 (2)C2—C11.392 (5)
S1—O2i1.455 (2)C2—H2A0.9300
S1—O21.455 (2)C1—H1A0.9300
S1—O1i1.492 (2)C3—H3A0.9300
S1—O11.492 (2)C13—O31.353 (8)
N2—C101.332 (4)C13—C141.537 (4)
N2—C111.359 (4)C13—C13i1.553 (5)
C10—C91.389 (5)C13—H130.9800
C10—H10A0.9300O3—H30.8200
C11—C71.410 (4)C14—H14A0.9600
C11—C121.440 (4)C14—H14B0.9600
C7—C81.400 (5)C14—H14C0.9600
C7—C61.435 (5)C13'—O3'1.410 (4)
C9—C81.373 (5)C13'—C14'1.522 (8)
C9—H9A0.9300C13'—C13'i1.596 (13)
C8—H8A0.9300C13'—H13'0.9800
C6—C51.349 (5)O3'—H3'0.8200
C6—H6A0.9300C14'—H14D0.9600
C12—N11.364 (4)C14'—H14E0.9600
C12—C41.402 (5)C14'—H14F0.9600
O1—Co1—O1i66.83 (12)C5—C6—C7121.7 (3)
O1—Co1—N199.67 (10)C5—C6—H6A119.2
O1i—Co1—N192.38 (10)C7—C6—H6A119.2
O1—Co1—N1i92.38 (10)N1—C12—C4123.2 (3)
O1i—Co1—N1i99.67 (10)N1—C12—C11116.8 (3)
N1—Co1—N1i165.59 (14)C4—C12—C11120.0 (3)
O1—Co1—N2i159.07 (9)C3—C4—C12117.0 (3)
O1i—Co1—N2i96.31 (9)C3—C4—C5123.6 (3)
N1—Co1—N2i93.10 (10)C12—C4—C5119.4 (3)
N1i—Co1—N2i77.82 (10)C6—C5—C4120.7 (3)
O1—Co1—N296.31 (9)C6—C5—H5A119.7
O1i—Co1—N2159.07 (9)C4—C5—H5A119.7
N1—Co1—N277.82 (10)C1—N1—C12117.6 (3)
N1i—Co1—N293.10 (10)C1—N1—Co1128.2 (2)
N2i—Co1—N2102.59 (13)C12—N1—Co1114.2 (2)
O1—Co1—S133.41 (6)C3—C2—C1119.3 (3)
O1i—Co1—S133.41 (6)C3—C2—H2A120.4
N1—Co1—S197.21 (7)C1—C2—H2A120.4
N1i—Co1—S197.21 (7)N1—C1—C2122.9 (3)
N2i—Co1—S1128.71 (7)N1—C1—H1A118.6
N2—Co1—S1128.71 (7)C2—C1—H1A118.6
O2i—S1—O2110.9 (2)C2—C3—C4120.0 (3)
O2i—S1—O1i110.50 (14)C2—C3—H3A120.0
O2—S1—O1i110.77 (14)C4—C3—H3A120.0
O2i—S1—O1110.77 (14)O3—C13—C14113.4 (11)
O2—S1—O1110.50 (14)O3—C13—C13i122.6 (5)
O1i—S1—O1103.17 (17)C14—C13—C13i78.3 (9)
O2i—S1—Co1124.56 (10)O3—C13—H13112.7
O2—S1—Co1124.56 (10)C14—C13—H13112.7
O1i—S1—Co151.59 (9)C13i—C13—H13112.7
O1—S1—Co151.59 (9)C13—O3—H3109.5
S1—O1—Co195.00 (11)C13—C14—H14A109.5
C10—N2—C11117.6 (3)C13—C14—H14B109.5
C10—N2—Co1129.0 (2)H14A—C14—H14B109.5
C11—N2—Co1113.38 (19)C13—C14—H14C109.5
N2—C10—C9123.3 (3)H14A—C14—H14C109.5
N2—C10—H10A118.4H14B—C14—H14C109.5
C9—C10—H10A118.4O3'—C13'—C14'103.3 (7)
N2—C11—C7122.9 (3)O3'—C13'—C13'i110.9 (8)
N2—C11—C12117.6 (3)C14'—C13'—C13'i113.5 (6)
C7—C11—C12119.5 (3)O3'—C13'—H13'109.7
C8—C7—C11117.5 (3)C14'—C13'—H13'109.7
C8—C7—C6123.7 (3)C13'i—C13'—H13'109.7
C11—C7—C6118.8 (3)C13'—O3'—H3'109.5
C8—C9—C10119.4 (3)C13'—C14'—H14D109.5
C8—C9—H9A120.3C13'—C14'—H14E109.5
C10—C9—H9A120.3H14D—C14'—H14E109.5
C9—C8—C7119.3 (3)C13'—C14'—H14F109.5
C9—C8—H8A120.3H14D—C14'—H14F109.5
C7—C8—H8A120.3H14E—C14'—H14F109.5
O1—Co1—S1—O2i90.19 (18)C10—N2—C11—C12175.8 (3)
O1i—Co1—S1—O2i89.81 (18)Co1—N2—C11—C122.3 (3)
N1—Co1—S1—O2i6.45 (14)N2—C11—C7—C81.8 (4)
N1i—Co1—S1—O2i173.55 (14)C12—C11—C7—C8176.2 (3)
N2i—Co1—S1—O2i106.30 (16)N2—C11—C7—C6179.9 (3)
N2—Co1—S1—O2i73.70 (16)C12—C11—C7—C62.0 (4)
O1—Co1—S1—O289.81 (18)N2—C10—C9—C80.4 (5)
O1i—Co1—S1—O290.19 (18)C10—C9—C8—C70.8 (5)
N1—Co1—S1—O2173.55 (14)C11—C7—C8—C90.2 (5)
N1i—Co1—S1—O26.45 (14)C6—C7—C8—C9178.2 (3)
N2i—Co1—S1—O273.70 (16)C8—C7—C6—C5176.8 (3)
N2—Co1—S1—O2106.30 (16)C11—C7—C6—C51.2 (5)
O1—Co1—S1—O1i180.0N2—C11—C12—N11.4 (4)
N1—Co1—S1—O1i83.36 (14)C7—C11—C12—N1176.7 (3)
N1i—Co1—S1—O1i96.64 (14)N2—C11—C12—C4178.4 (3)
N2i—Co1—S1—O1i16.50 (15)C7—C11—C12—C40.4 (4)
N2—Co1—S1—O1i163.50 (15)N1—C12—C4—C30.6 (5)
O1i—Co1—S1—O1180.0C11—C12—C4—C3176.3 (3)
N1—Co1—S1—O196.64 (14)N1—C12—C4—C5178.8 (3)
N1i—Co1—S1—O183.36 (14)C11—C12—C4—C52.0 (4)
N2i—Co1—S1—O1163.50 (15)C7—C6—C5—C41.2 (5)
N2—Co1—S1—O116.50 (15)C3—C4—C5—C6175.3 (3)
O2i—S1—O1—Co1118.26 (13)C12—C4—C5—C62.8 (5)
O2—S1—O1—Co1118.45 (13)C4—C12—N1—C10.8 (4)
O1i—S1—O1—Co10.0C11—C12—N1—C1176.1 (3)
O1i—Co1—O1—S10.0C4—C12—N1—Co1178.7 (2)
N1—Co1—O1—S188.45 (12)C11—C12—N1—Co14.4 (3)
N1i—Co1—O1—S199.50 (12)O1—Co1—N1—C181.9 (3)
N2i—Co1—O1—S138.3 (3)O1i—Co1—N1—C115.0 (3)
N2—Co1—O1—S1167.12 (12)N1i—Co1—N1—C1131.8 (3)
O1—Co1—N2—C1075.8 (3)N2i—Co1—N1—C181.4 (3)
O1i—Co1—N2—C10110.8 (3)N2—Co1—N1—C1176.4 (3)
N1—Co1—N2—C10174.3 (3)S1—Co1—N1—C148.2 (3)
N1i—Co1—N2—C1017.0 (3)O1—Co1—N1—C1298.7 (2)
N2i—Co1—N2—C1095.2 (3)O1i—Co1—N1—C12165.5 (2)
S1—Co1—N2—C1084.8 (3)N1i—Co1—N1—C1247.65 (19)
O1—Co1—N2—C11102.0 (2)N2i—Co1—N1—C1298.0 (2)
O1i—Co1—N2—C1167.0 (3)N2—Co1—N1—C124.2 (2)
N1—Co1—N2—C113.46 (19)S1—Co1—N1—C12132.35 (19)
N1i—Co1—N2—C11165.2 (2)C12—N1—C1—C20.0 (5)
N2i—Co1—N2—C1187.0 (2)Co1—N1—C1—C2179.4 (3)
S1—Co1—N2—C1193.0 (2)C3—C2—C1—N11.0 (6)
C11—N2—C10—C91.1 (5)C1—C2—C3—C41.3 (6)
Co1—N2—C10—C9178.8 (2)C12—C4—C3—C20.5 (5)
C10—N2—C11—C72.2 (4)C5—C4—C3—C2177.7 (3)
Co1—N2—C11—C7179.7 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.822.072.779 (8)145
O3—H3···O20.821.942.709 (7)155

Experimental details

Crystal data
Chemical formula[Co(SO4)(C12H8N2)2]·C4H10O2
Mr605.52
Crystal system, space groupMonoclinic, C2/c
Temperature (K)223
a, b, c (Å)18.184 (4), 13.009 (3), 13.112 (3)
β (°) 122.13 (3)
V3)2626.6 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.763, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7651, 2316, 2079
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.109, 1.12
No. of reflections2316
No. of parameters209
No. of restraints50
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.39

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O12.124 (2)S1—O21.455 (2)
Co1—N12.128 (3)S1—O11.492 (2)
Co1—N22.146 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.822.072.779 (8)145.0
O3'—H3'···O20.821.942.709 (7)155.2
 

Acknowledgements

This work was partially supported by the Scientific Research Foundation of Nanjing College of Chemical Technology (grant No. NHKY-2010-17).

References

First citationBatten, S. R. & Robson, R. (1998). Chem. Commun. pp. 1067–1068.  Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationLu, W.-J., Zhu, Y.-M. & Zhong, K.-L. (2006). Acta Cryst. C62, m448–m450.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L.-P., Ma, J.-F., Yang, J., Pang, Y.-Y. & Ma, J.-C. (2010). Inorg. Chem. 49, 1535–1550.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhong, K.-L. (2010). Acta Cryst. E66, m247.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, K.-L., Chen, L. & Chen, L. (2011). Acta Cryst. C67, m62–m64.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhong, K.-L., Zhu, Y.-M. & Lu, W.-J. (2006). Acta Cryst. E62, m631–m633.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds