organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Di-tert-butyl-4-(3-chloro-2-hy­dr­oxy­prop­yl)phenol

aDepartment of Organic Chemistry, Baku State University, Baku, Azerbaijan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 25 February 2011; accepted 7 March 2011; online 12 March 2011)

In the title 2-propanol derivative, C17H27ClO2, the two tert-butyl groups both have one methyl C atom lying in the plane of the aromatic ring. In the crystal, the phenol group forms a hydrogen bond to the hy­droxy O atom belonging to the alkyl substituent of an adjacent mol­ecule, forming a chain along the ac diagonal. The Cl atom is disordered over two positions in a 0.73 (4):0.27 (4) ratio.

Related literature

For the synthesis: see: Krysin et al. (2010[Krysin, A. P., Tolstikova, T. G., Bryzgalov, A. O., Shul'ts, E. E. & Shakirov, M. M. (2010). Russ. Patent RU 2396248 C1.]).

[Scheme 1]

Experimental

Crystal data
  • C17H27ClO2

  • Mr = 298.84

  • Monoclinic, P 21 /c

  • a = 5.9536 (3) Å

  • b = 19.4819 (9) Å

  • c = 14.4310 (7) Å

  • β = 96.798 (1)°

  • V = 1662.05 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.30 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.934, Tmax = 0.934

  • 17600 measured reflections

  • 3819 independent reflections

  • 3374 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.131

  • S = 1.12

  • 3819 reflections

  • 193 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.84 2.31 2.956 (2) 134
Symmetry code: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The chlorohydrin unit (i.e., an alkyl chain having a chlorine atom and a hydroxy group on adjacent carbons) is an important unit in compounds used for the treatment of protozoal and bacterial infections; and chlorohydrin-based compounds are important intermediates in the synthesis of some HIV protease inhibitors. The di-tert-butyl phenol unit is also an important component of medicinal compounds. The two units are assembled in the title compound (Scheme I).

The compound can be further transformed; in fact, replacing the chlorine atom by a diisopropylamino group furnishes a 2:1 co-crystal with succinic acid that has been patented for its antiarrhythmic and antihypertensive activities (Krysin et al., 2010).

The two tert-butyl groups of C17H27ClO2 both have one methyl C lying in the plane of the aromatic ring (Fig. 1). The phenolic group forms a hydrogen bond to the hydroxy O atom belonging to the alkyl substituent of an adjacent molecule to form a chain along the ac diagonal of the monoclinic unit cell (Fig. 2).

Related literature top

For the synthesis: see: Krysin et al. (2010).

Experimental top

The compound was prepared by using a procedure reported in the patent literature (Krysin et al., 2010), and colorless crystals was obtained upon recrystallization from ethanol.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.93 to 0.97 Å; U(H) 1.2 to 1.5U(C)] and were included in the refinement in the riding model approximation. The hydroxy H-atoms were similarly treated (O–H 0.84 Å) and their temperature factors tied by a factor of 1.5.

The chlorine atom is disordered over two positions; the C–Cl pair of distances were restrained to within Å of each other. The disordered refined to a 73 (4): 27 ratio. The thermal ellipsoid of the minor component is somewhat elongated; however, no restraints were imposed to render it to be less elongated.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C17H27ClO2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in the chlorine atom is not shown.
[Figure 2] Fig. 2. Hydrogen-bonded chain motif.
2,6-Di-tert-butyl-4-(3-chloro-2-hydroxypropyl)phenol top
Crystal data top
C17H27ClO2F(000) = 648
Mr = 298.84Dx = 1.194 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6280 reflections
a = 5.9536 (3) Åθ = 2.5–28.3°
b = 19.4819 (9) ŵ = 0.23 mm1
c = 14.4310 (7) ÅT = 100 K
β = 96.798 (1)°Prism, colorless
V = 1662.05 (14) Å30.30 × 0.30 × 0.30 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
3819 independent reflections
Radiation source: fine-focus sealed tube3374 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.934, Tmax = 0.934k = 2525
17600 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.057P)2 + 1.2061P]
where P = (Fo2 + 2Fc2)/3
3819 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.59 e Å3
1 restraintΔρmin = 0.36 e Å3
Crystal data top
C17H27ClO2V = 1662.05 (14) Å3
Mr = 298.84Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.9536 (3) ŵ = 0.23 mm1
b = 19.4819 (9) ÅT = 100 K
c = 14.4310 (7) Å0.30 × 0.30 × 0.30 mm
β = 96.798 (1)°
Data collection top
Bruker APEXII
diffractometer
3819 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3374 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.934Rint = 0.035
17600 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.131H-atom parameters constrained
S = 1.12Δρmax = 0.59 e Å3
3819 reflectionsΔρmin = 0.36 e Å3
193 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl11.2917 (5)0.47575 (14)0.5791 (3)0.0266 (6)0.73 (4)
Cl1'1.311 (2)0.4728 (6)0.5926 (16)0.048 (2)0.27 (4)
O11.1454 (2)0.31683 (6)0.56395 (9)0.0212 (3)
H11.24200.31950.52610.032*
O20.3696 (2)0.18279 (6)0.25797 (9)0.0199 (3)
H20.31380.20710.21300.030*
C11.0528 (3)0.43104 (10)0.61378 (14)0.0235 (4)
H1A1.09030.41300.67790.028*0.73 (4)
H1B0.92400.46310.61390.028*0.73 (4)
H1'A1.07010.41340.67860.028*0.27 (4)
H1'B0.92920.46530.60820.028*0.27 (4)
C20.9867 (3)0.37230 (9)0.54759 (13)0.0202 (4)
H2A0.98340.38860.48170.024*
C30.7524 (3)0.34483 (9)0.56317 (12)0.0190 (4)
H3A0.76640.31690.62090.023*
H3B0.65140.38400.57210.023*
C40.6473 (3)0.30175 (9)0.48281 (12)0.0159 (3)
C50.5064 (3)0.33223 (9)0.41043 (12)0.0159 (3)
H50.47760.38010.41340.019*
C60.4059 (3)0.29514 (8)0.33367 (11)0.0144 (3)
C70.4559 (3)0.22451 (9)0.33061 (11)0.0146 (3)
C80.5969 (3)0.19141 (8)0.40264 (11)0.0145 (3)
C90.6889 (3)0.23165 (9)0.47749 (12)0.0155 (3)
H90.78370.21040.52680.019*
C100.2464 (3)0.33124 (9)0.25678 (12)0.0169 (3)
C110.2100 (3)0.40719 (9)0.27950 (14)0.0244 (4)
H11A0.35580.43110.28620.037*
H11B0.14200.41070.33790.037*
H11C0.10890.42820.22890.037*
C120.3501 (3)0.33046 (10)0.16400 (13)0.0225 (4)
H12A0.49960.35220.17290.034*
H12B0.25160.35580.11660.034*
H12C0.36530.28290.14340.034*
C130.0101 (3)0.29757 (10)0.24768 (13)0.0211 (4)
H13A0.04940.29910.30810.032*
H13B0.02180.24970.22790.032*
H13C0.09220.32260.20130.032*
C140.6512 (3)0.11431 (8)0.39914 (12)0.0158 (3)
C150.8079 (3)0.09121 (9)0.48583 (13)0.0215 (4)
H15A0.94830.11790.49070.032*
H15B0.84300.04230.48030.032*
H15C0.73240.09860.54170.032*
C160.4356 (3)0.07064 (9)0.39586 (14)0.0234 (4)
H16A0.33070.08350.34110.035*
H16B0.36370.07850.45260.035*
H16C0.47490.02200.39170.035*
C170.7752 (3)0.09881 (9)0.31401 (13)0.0216 (4)
H17A0.68040.11280.25700.032*
H17B0.80620.04950.31140.032*
H17C0.91820.12420.31930.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0251 (8)0.0174 (9)0.0380 (11)0.0002 (7)0.0068 (6)0.0062 (11)
Cl1'0.022 (2)0.042 (4)0.078 (5)0.016 (2)0.001 (3)0.034 (3)
O10.0165 (6)0.0191 (6)0.0277 (7)0.0035 (5)0.0020 (5)0.0010 (5)
O20.0264 (7)0.0159 (6)0.0154 (6)0.0009 (5)0.0061 (5)0.0014 (5)
C10.0196 (9)0.0227 (9)0.0280 (10)0.0023 (7)0.0022 (7)0.0025 (7)
C20.0180 (8)0.0182 (8)0.0238 (9)0.0019 (7)0.0002 (7)0.0011 (7)
C30.0171 (8)0.0202 (8)0.0186 (8)0.0021 (7)0.0020 (6)0.0044 (7)
C40.0122 (7)0.0189 (8)0.0167 (8)0.0006 (6)0.0022 (6)0.0027 (6)
C50.0154 (8)0.0137 (7)0.0189 (8)0.0005 (6)0.0029 (6)0.0001 (6)
C60.0128 (7)0.0158 (8)0.0145 (8)0.0002 (6)0.0017 (6)0.0022 (6)
C70.0139 (7)0.0165 (8)0.0133 (8)0.0011 (6)0.0015 (6)0.0016 (6)
C80.0132 (7)0.0146 (8)0.0160 (8)0.0012 (6)0.0030 (6)0.0009 (6)
C90.0132 (7)0.0189 (8)0.0141 (8)0.0013 (6)0.0008 (6)0.0012 (6)
C100.0157 (8)0.0163 (8)0.0180 (8)0.0003 (6)0.0011 (6)0.0022 (6)
C110.0277 (10)0.0159 (8)0.0276 (10)0.0041 (7)0.0051 (8)0.0024 (7)
C120.0237 (9)0.0257 (9)0.0176 (9)0.0010 (7)0.0007 (7)0.0059 (7)
C130.0142 (8)0.0238 (9)0.0242 (9)0.0003 (7)0.0018 (7)0.0020 (7)
C140.0171 (8)0.0138 (8)0.0162 (8)0.0014 (6)0.0006 (6)0.0013 (6)
C150.0228 (9)0.0182 (8)0.0222 (9)0.0051 (7)0.0023 (7)0.0027 (7)
C160.0205 (9)0.0191 (9)0.0298 (10)0.0025 (7)0.0001 (7)0.0053 (7)
C170.0256 (9)0.0173 (8)0.0226 (9)0.0044 (7)0.0058 (7)0.0006 (7)
Geometric parameters (Å, º) top
Cl1—C11.788 (3)C9—H90.9500
Cl1'—C11.795 (6)C10—C111.537 (2)
O1—C21.437 (2)C10—C121.539 (3)
O1—H10.8400C10—C131.544 (2)
O2—C71.377 (2)C11—H11A0.9800
O2—H20.8400C11—H11B0.9800
C1—C21.513 (3)C11—H11C0.9800
C1—H1A0.9900C12—H12A0.9800
C1—H1B0.9900C12—H12B0.9800
C1—H1'A0.9900C12—H12C0.9800
C1—H1'B0.9900C13—H13A0.9800
C2—C31.535 (2)C13—H13B0.9800
C2—H2A1.0000C13—H13C0.9800
C3—C41.506 (2)C14—C171.536 (2)
C3—H3A0.9900C14—C161.536 (2)
C3—H3B0.9900C14—C151.537 (2)
C4—C91.392 (2)C15—H15A0.9800
C4—C51.393 (2)C15—H15B0.9800
C5—C61.396 (2)C15—H15C0.9800
C5—H50.9500C16—H16A0.9800
C6—C71.410 (2)C16—H16B0.9800
C6—C101.542 (2)C16—H16C0.9800
C7—C81.412 (2)C17—H17A0.9800
C8—C91.393 (2)C17—H17B0.9800
C8—C141.539 (2)C17—H17C0.9800
C2—O1—H1109.5C11—C10—C6112.10 (14)
C7—O2—H2109.5C12—C10—C6110.19 (14)
C2—C1—Cl1110.38 (18)C11—C10—C13106.08 (14)
C2—C1—Cl1'113.5 (5)C12—C10—C13112.16 (15)
C2—C1—H1A109.6C6—C10—C13110.17 (14)
Cl1—C1—H1A109.6C10—C11—H11A109.5
Cl1'—C1—H1A102.5C10—C11—H11B109.5
C2—C1—H1B109.6H11A—C11—H11B109.5
Cl1—C1—H1B109.6C10—C11—H11C109.5
Cl1'—C1—H1B113.1H11A—C11—H11C109.5
H1A—C1—H1B108.1H11B—C11—H11C109.5
C2—C1—H1'A108.9C10—C12—H12A109.5
Cl1—C1—H1'A115.9C10—C12—H12B109.5
Cl1'—C1—H1'A108.9H12A—C12—H12B109.5
C2—C1—H1'B108.9C10—C12—H12C109.5
Cl1'—C1—H1'B108.9H12A—C12—H12C109.5
H1'A—C1—H1'B107.7H12B—C12—H12C109.5
O1—C2—C1110.37 (15)C10—C13—H13A109.5
O1—C2—C3107.78 (14)C10—C13—H13B109.5
C1—C2—C3110.14 (15)H13A—C13—H13B109.5
O1—C2—H2A109.5C10—C13—H13C109.5
C1—C2—H2A109.5H13A—C13—H13C109.5
C3—C2—H2A109.5H13B—C13—H13C109.5
C4—C3—C2112.54 (14)C17—C14—C16110.21 (15)
C4—C3—H3A109.1C17—C14—C8109.93 (13)
C2—C3—H3A109.1C16—C14—C8111.33 (14)
C4—C3—H3B109.1C17—C14—C15106.87 (14)
C2—C3—H3B109.1C16—C14—C15106.72 (14)
H3A—C3—H3B107.8C8—C14—C15111.65 (14)
C9—C4—C5118.18 (15)C14—C15—H15A109.5
C9—C4—C3121.94 (15)C14—C15—H15B109.5
C5—C4—C3119.88 (15)H15A—C15—H15B109.5
C6—C5—C4122.53 (15)C14—C15—H15C109.5
C6—C5—H5118.7H15A—C15—H15C109.5
C4—C5—H5118.7H15B—C15—H15C109.5
C5—C6—C7117.23 (15)C14—C16—H16A109.5
C5—C6—C10120.29 (15)C14—C16—H16B109.5
C7—C6—C10122.48 (15)H16A—C16—H16B109.5
O2—C7—C6122.59 (15)C14—C16—H16C109.5
O2—C7—C8115.26 (14)H16A—C16—H16C109.5
C6—C7—C8122.14 (15)H16B—C16—H16C109.5
C9—C8—C7117.30 (15)C14—C17—H17A109.5
C9—C8—C14120.65 (14)C14—C17—H17B109.5
C7—C8—C14122.04 (15)H17A—C17—H17B109.5
C4—C9—C8122.60 (15)C14—C17—H17C109.5
C4—C9—H9118.7H17A—C17—H17C109.5
C8—C9—H9118.7H17B—C17—H17C109.5
C11—C10—C12106.04 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.842.312.956 (2)134
Symmetry code: (i) x1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H27ClO2
Mr298.84
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)5.9536 (3), 19.4819 (9), 14.4310 (7)
β (°) 96.798 (1)
V3)1662.05 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.30 × 0.30 × 0.30
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.934, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
17600, 3819, 3374
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.131, 1.12
No. of reflections3819
No. of parameters193
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.36

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.842.312.956 (2)134
Symmetry code: (i) x1, y+1/2, z1/2.
 

Acknowledgements

We thank Baku State University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKrysin, A. P., Tolstikova, T. G., Bryzgalov, A. O., Shul'ts, E. E. & Shakirov, M. M. (2010). Russ. Patent RU 2396248 C1.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds