organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o958-o959

(Z)-1-(3-Mesityl-3-methyl­cyclo­but­yl)-2-(morpholin-4-yl)ethanone oxime

aDepartment of Physics, Arts and Sciences Faculty, Ondokuz Mayıs University, 55139 Samsun, Turkey, bDepartment of Chemistry, Sciences Faculty, Fırat University, 23119 Elazığ, Turkey, and cDepartment of Chemistry, Faculty of Science, Karamanoğlu Mehmetbey University, 70200 Karaman, Turkey
*Correspondence e-mail: fatihsen55@gmail.com

(Received 28 February 2011; accepted 11 March 2011; online 23 March 2011)

In the title compound, C20H30N2O2, the cyclo­butane ring is puckered, with a dihedral angle of 19.60 (13)° between the two planes. In the crystal, the mol­ecules are linked by inter­molecular O—H⋯N and weak C—H⋯O hydrogen bonds, as well as a C—H⋯π hydrogen-bonding association.

Related literature

For applications of related compounds, see: Dehmlow & Schmidt (1990[Dehmlow, E. V. & Schmidt, S. (1990). Liebigs Ann. Chem. p. 411.]); Coghi et al. (1976[Coghi, L., Lanfredi, A. M. M. & Tiripicchio, A. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1808-1810.]); Mixich & Thiele (1979[Mixich, G. V. & Thiele, K. (1979). Arzneim. Forsch. (Drug Res.), 29, 1510-1513.]); Migrdichian (1957[Migrdichian, V. (1957). Organic Synthesis, Open-Chain Saturated Compounds, pp. 703-707. New York: Reinhold.]); Mathison et al. (1989[Mathison, I. W., Solomons, W. E., Morgan, P. H. & Tidwell, R. R. (1989). Principals of Medicinal Chemistry. In Structural Features and Pharmacologic Activity, edited by W. O. Foye, pp. 49-77. Philadelphia: Lea and Febiger.]); Polak (1982[Polak, A. (1982). Arzneim. Forsch. (Drug Res.), 32, 17-24.]); Balsamo et al., 1990[Balsamo, A., Macchia, B., Martinelli, A., Orlandini, E., Rossello, A., Macchia, F., Bocelli, G. & Domiano, P. (1990). Eur. J. Med. Chem. 25, 227-233.]; Holan et al. (1984[Holan, G., Johnson, W. M. P., Rihs, K. & Virgona, C. T. (1984). Pestic. Sci. 15, 361-368.]); Marsman et al. (1999[Marsman, A. W., Leussing, E. D., Zwikker, J. W. & Jenneskens, L. W. (1999). Chem. Mater. 11, 1484-1491.]); Forman (1964[Forman, S. E. (1964). J. Org. Chem. 29, 3323-3327.]); Bertolasi et al. (1982[Bertolasi, V., Gilli, G. & Veronese, A. C. (1982). Acta Cryst. B38, 502-511.]); Gilli et al. (1983[Gilli, G., Bertolasi, V. & Veronese, A. C. (1983). Acta Cryst. B39, 450-456.]); Hökelek et al. (2001[Hökelek, T., Zülfikaroğlu, A. & Batı, H. (2001). Acta Cryst. E57, o1247-o1249.]). For related structures, see: Özdemir et al. (2004[Özdemir, N., Dinçer, M., Yılmaz, İ. & Çukurovalı, A. (2004). Acta Cryst. E60, o145-o147.]); Dinçer et al. (2004[Dinçer, M., Özdemir, N., Yılmaz, İ, Çukurovalı, A. & Büyükgüngör, O. (2004). Acta Cryst. C60, o674-o676.]). For the puckering of the cyclobutane ring, see: Swenson et al. (1997[Swenson, D. C., Yamamoto, M. & Burton, D. J. (1997). Acta Cryst. C53, 1445-1447.]).

[Scheme 1]

Experimental

Crystal data
  • C20H30N2O2

  • Mr = 330.46

  • Monoclinic, P 21 /c

  • a = 13.0273 (4) Å

  • b = 10.2337 (2) Å

  • c = 18.1262 (6) Å

  • β = 126.574 (2)°

  • V = 1940.69 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.60 × 0.55 × 0.48 mm

Data collection
  • Stoe IPDS II CCD area-detector diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.964, Tmax = 0.977

  • 28812 measured reflections

  • 4031 independent reflections

  • 3110 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.171

  • S = 1.09

  • 4031 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 2.11 2.7944 (19) 141
C16—H16B⋯O2ii 0.97 2.55 3.494 (2) 165
C19—H19B⋯O1iii 0.97 2.56 3.305 (3) 134
C12—H12BCg1iv 0.97 2.84 3.777 (3) 161
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

It is well known that 3-substituted cyclobutane carboxylic acid derivatives exhibit anti-inflammatory and antidepressant activity (Dehmlow & Schmidt, 1990) and also have liquid crystal properties (Coghi et al., 1976). Oximes show geometric isomerism due to the double bond between the N and C atoms (Mixich & Thiele, 1979; Migrdichian, 1957). As there are significant differences in the physical, chemical and biological properties of these geometric isomers, the determination of the configuration of the isomers is important (Mathison et al., 1989). Oximes and oxime ethers also have a broad pharmacological activity spectrum, encompassing antifungal, antibacterial, antidepressant and insecticidal activities, as well as activity as nerve-gas antidotes, depending on the pharmacophoric group of the molecule (Polak, 1982; Balsamo et al., 1990; Holan et al., 1984; Forman, 1964). The oxime group (CN—OH) possesses stronger hydrogen-bonding capabilities than the alcohol, phenol or carboxylic acid groups (Marsman et al., 1999). Hydrogen bonding plays a key role in molecular recognition in chemical engineering (Bertolasi et al., 1982; Gilli et al., 1983; Hökelek et al., 2001).

As part of our ongoing study of the relationship between the structures of cyclobutane and oxime derivatives, a crystal structure determination of the title compound C20H30N2O2 (I), has been undertaken and the results are presented here. Previously we have reported the crystal structures of similar compounds,viz. 2-[2-hydroxyimino-2-(3-methyl-3-phenylcyclobutyl)ethyl]isoindole-1,3-dione, (II) (Özdemir et al., 2004) and 3-[1-hydroxyimino-2-(succinimido)ethyl]-1-methyl-1-phenylcyclobutane, (III) (Dinçer et al., 2004). The main aim of the present investigation was to study the differences among the structures of (I), (II) and (III), and also to determine the strength of the hydrogen-bonding capabilities of the oxime group.

The structure of (I) (Fig. 1) contains a mesityl group (C1–C9), an oxime group (C15,N1,O1), a cyclobutane ring (C11–C14), and a morpholine ring (C17–C20/O2/N2). The mesityl ring comprises an aromatic hydrocarbon with three methyl substituents attached to the benzene ring. The morpholine and cyclobutane rings adopt chair and butterfly conformations respectively. The plane of the morpholine ring forms a dihedral angle of 7.56 (12)° with the plane of the mesityl group and an angle of 47.62 (7)° with the plane of the mesityl ring bonded to atom C11 of the cyclobutane ring. The plane of the cyclobutane ring forms a dihedral angle of 47.86 (8)° with the plane of the morpholine ring.

The C11—C12, C12—C13, C13—C14 and C14—C11 bond lengths are 1.554 (2), 1.533 (2), 1.544 (2) and 1.564 (2) Å respectively and the C11—C12—C13, C11—C14—C13, C12—C11—C14 and C12—C13—C14 bond angles are 91.05 (12), 90.32 (11), 86.85 (11) and 88.33 (11)° respectively within the cyclobutane ring. Although the value for the puckering of the cyclobutane ring found in the literature is 23.5° (Swenson et al., 1997), there is a negligible puckering in the cyclobutane ring in (I): the C11—C12—C13 plane forms a dihedral angle of 20.13 (16)° with the C11—C14—C13 plane while the C14—C13—C12 plane forms a dihedral angle of 19.60 (13)° with the C14—C11—C12 plane of the cyclobutane ring.

In the structure the molecules are linked by an intermolecular oxime O—H···N hydrogen bonds and two weak C—H···O interactions, as well as a C—H···π hydrogen-bonding association (Table 1). These hydrogen bonds link the molecules into infinite chains (Figs. 2 and 3).

Related literature top

For applications of related compounds, see: Dehmlow & Schmidt (1990); Coghi et al. (1976); Mixich & Thiele (1979); Migrdichian (1957); Mathison et al. (1989); Polak (1982); Balsamo et al., 1990; Holan et al. (1984); Marsman et al. (1999); Forman (1964); Bertolasi et al. (1982); Gilli et al. (1983); Hökelek et al. (2001); Özdemir et al. (2004); Dinçer et al. (2004); Swenson et al. (1997). [Please split this large group of references into smaller topic sections]

Experimental top

A mixture of 10 mmol of 1-mesityl-1-methyl-3-(2-chloro-1-oxoethyl)cyclobutane, 10 mmol of morpholine and 10 mmol of NaHCO3 in 30 ml of absolute ethanol was refluxed while monitoring the reaction course using IR techniques. After completion of the reaction, a mixture of 10 mmol of hydroxylammine hydrochloride and 10 mmol of NaOH in 20 ml of absolute ethanol was added portion-wise and refluxed for ten minutes. After cooling to room temperature, the mixture was poured into stirred water. The solid substance thus formed was separated by suction, washed with copious water and recrystallized from ethanol giving white crystals (yield: 68%), m.p. 428 K (EtOH). IR (KBr, ν, cm-1): 3287 (–OH), 3089–3024 (aromatics), 2954–2818 (aliphatics), 1612 (CN), 1483 (C—-N), 1118 (C—O), 939 (N—O); 1H NMR (CDCl3, TMS, δ, p.p.m.): 1.58 (s, 3H, p-CH3), 2.32 (s, 6H, o-CH3s), 2.36 (s, 3H, p-CH3), 2.40 (m, 4H, –CH2– in morpholine ring), 2.59 (d, J = 9.6 Hz, 4H, CH2– in cyclobutane ring), 3.03 (s, 2H, CH2—N), 3.58 (m, 4H, in morpholine ring), 3.65 (quint, J1 = 7.4 Hz, J2 = 2.4 Hz, 2H, >CH–, in cyclobutane), 6.77 (s, 2H, aromatics), 8.90 (s, 1H, –OH); 13C NMR (CDCl3, TMS, δ, p.p.m.): 159.31, 144.23, 134.99, 134.60, 130.14, 66.76, 59.08, 53.22, 41.61, 40.98, 28.32, 24.24, 21.36, 20.32.

Refinement top

H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.96, 0.97, 0.98 and 0.93 Å for CH3, CH2, CH and CH (aromatic), respectively. The O—H bond length was fixed at 0.93 Å. The displacement parameters of the H atoms were constrained with Uiso(H) = 1.2Ueq(aromatic, methylene or methine C) or 1.5Ueq (methyl C and oxime O).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) drawing of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing the O—H···N and the two C—H···O interactions. For clarity, only H atoms involved in hydrogen bonding have been included. For symmetry codes, see Table 1.
[Figure 3] Fig. 3. Part of the crystal structure of the title compound, showing the C—H···π interactions. For symmetry codes, see Table 1.
(Z)-1-(3-Mesityl-3-methylcyclobutyl)-2-(morpholin-4-yl)ethanone oxime top
Crystal data top
C20H30N2O2F(000) = 720
Mr = 330.46Dx = 1.131 Mg m3
Monoclinic, P21/cMelting point: 428 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.0273 (4) ÅCell parameters from 29343 reflections
b = 10.2337 (2) Åθ = 1.4–28.0°
c = 18.1262 (6) ŵ = 0.07 mm1
β = 126.574 (2)°T = 296 K
V = 1940.69 (10) Å3Prism, colourless
Z = 40.60 × 0.55 × 0.48 mm
Data collection top
Stoe IPDS II CCD area-detector
diffractometer
4031 independent reflections
Radiation source: fine-focus sealed tube3110 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.0°
rotation method scansh = 1616
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1212
Tmin = 0.964, Tmax = 0.977l = 2222
28812 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.097P)2 + 0.1596P]
where P = (Fo2 + 2Fc2)/3
4031 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C20H30N2O2V = 1940.69 (10) Å3
Mr = 330.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.0273 (4) ŵ = 0.07 mm1
b = 10.2337 (2) ÅT = 296 K
c = 18.1262 (6) Å0.60 × 0.55 × 0.48 mm
β = 126.574 (2)°
Data collection top
Stoe IPDS II CCD area-detector
diffractometer
4031 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3110 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.977Rint = 0.058
28812 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.09Δρmax = 0.24 e Å3
4031 reflectionsΔρmin = 0.21 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.36380 (14)0.05777 (14)0.74190 (10)0.0528 (4)
C20.46281 (15)0.05329 (16)0.83667 (11)0.0601 (4)
C30.46390 (18)0.1424 (2)0.89474 (12)0.0715 (5)
H30.52870.13660.95750.086*
C40.3733 (2)0.2391 (2)0.86371 (15)0.0758 (5)
C50.28345 (19)0.24910 (18)0.77046 (15)0.0752 (5)
H50.22420.31670.74760.090*
C60.27696 (16)0.16278 (16)0.70854 (12)0.0625 (4)
C70.1786 (2)0.1905 (2)0.60720 (14)0.0886 (6)
H7A0.12950.26600.59970.133*
H7B0.22120.20660.57940.133*
H7C0.12290.11660.57820.133*
C80.57461 (17)0.0403 (2)0.87941 (14)0.0814 (6)
H8A0.56320.09680.83280.122*
H8B0.65240.00840.90710.122*
H8C0.57900.09180.92550.122*
C90.3761 (3)0.3317 (3)0.9297 (2)0.1137 (9)
H9A0.44500.30830.99160.171*
H9B0.38850.41940.91750.171*
H9C0.29660.32650.92190.171*
C100.4242 (2)0.0076 (2)0.63806 (16)0.0834 (6)
H10A0.41540.07530.59790.125*
H10B0.38940.07240.60420.125*
H10C0.51310.00450.68740.125*
C110.35215 (14)0.04679 (15)0.67740 (11)0.0556 (4)
C120.38414 (15)0.18873 (15)0.71533 (12)0.0603 (4)
H12A0.38570.20030.76910.072*
H12B0.46170.22270.72630.072*
C130.26170 (15)0.24003 (16)0.62660 (12)0.0612 (4)
H130.28040.27440.58530.073*
C140.21439 (16)0.09740 (16)0.60114 (11)0.0622 (4)
H14A0.18400.07340.53940.075*
H14B0.15200.07460.61190.075*
C150.18063 (15)0.33490 (15)0.63429 (12)0.0597 (4)
C160.18719 (17)0.34202 (17)0.71954 (13)0.0659 (4)
H16A0.27310.36580.77130.079*
H16B0.12910.40900.71230.079*
C170.01643 (17)0.1917 (2)0.67605 (14)0.0768 (5)
H17A0.01360.19870.61270.092*
H17B0.02880.25560.68630.092*
C180.0090 (2)0.0568 (3)0.69414 (19)0.0989 (7)
H18A0.10000.03940.65320.119*
H18B0.03380.00660.68130.119*
C190.1671 (3)0.0674 (3)0.84584 (18)0.1042 (8)
H19A0.21190.00420.83460.125*
H19B0.19680.05740.90890.125*
C200.1967 (2)0.2022 (2)0.83206 (14)0.0853 (6)
H20A0.15440.26580.84510.102*
H20B0.28810.21750.87380.102*
N10.09976 (13)0.41245 (15)0.57100 (11)0.0688 (4)
N20.15302 (12)0.21666 (14)0.73755 (9)0.0607 (4)
O10.09479 (13)0.40408 (15)0.49164 (10)0.0860 (5)
H10.04150.45580.45310.129*
O20.03433 (18)0.0426 (2)0.78590 (14)0.1121 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0502 (7)0.0468 (8)0.0587 (8)0.0063 (6)0.0309 (7)0.0032 (6)
C20.0531 (8)0.0541 (9)0.0625 (9)0.0078 (6)0.0288 (7)0.0039 (7)
C30.0706 (10)0.0733 (11)0.0618 (10)0.0145 (9)0.0347 (8)0.0132 (8)
C40.0818 (12)0.0698 (11)0.0875 (13)0.0176 (9)0.0567 (11)0.0240 (10)
C50.0735 (11)0.0534 (9)0.1002 (14)0.0039 (8)0.0526 (11)0.0056 (9)
C60.0595 (9)0.0489 (8)0.0701 (10)0.0001 (7)0.0337 (8)0.0010 (7)
C70.0829 (13)0.0665 (11)0.0782 (13)0.0119 (9)0.0273 (10)0.0135 (9)
C80.0540 (9)0.0729 (12)0.0757 (12)0.0005 (8)0.0161 (9)0.0020 (9)
C90.132 (2)0.1057 (19)0.130 (2)0.0176 (15)0.0929 (19)0.0460 (16)
C100.0956 (14)0.0795 (12)0.1036 (15)0.0194 (11)0.0748 (13)0.0129 (11)
C110.0547 (8)0.0525 (8)0.0620 (9)0.0068 (6)0.0360 (7)0.0056 (7)
C120.0513 (8)0.0492 (8)0.0768 (10)0.0033 (6)0.0362 (8)0.0077 (7)
C130.0623 (9)0.0582 (9)0.0717 (10)0.0118 (7)0.0447 (8)0.0181 (7)
C140.0623 (9)0.0614 (9)0.0546 (9)0.0093 (7)0.0303 (7)0.0056 (7)
C150.0561 (8)0.0487 (8)0.0770 (10)0.0061 (6)0.0411 (8)0.0153 (7)
C160.0649 (9)0.0578 (9)0.0783 (11)0.0075 (7)0.0443 (9)0.0049 (8)
C170.0589 (10)0.0881 (13)0.0795 (12)0.0028 (9)0.0392 (9)0.0151 (10)
C180.0821 (13)0.1011 (17)0.1184 (19)0.0112 (12)0.0623 (14)0.0161 (14)
C190.1032 (17)0.135 (2)0.0954 (16)0.0212 (15)0.0707 (15)0.0459 (15)
C200.0821 (12)0.1126 (17)0.0656 (11)0.0095 (11)0.0464 (10)0.0115 (11)
N10.0620 (8)0.0629 (8)0.0853 (10)0.0120 (6)0.0460 (8)0.0260 (7)
N20.0563 (7)0.0677 (8)0.0599 (8)0.0052 (6)0.0357 (6)0.0100 (6)
O10.0755 (8)0.1020 (11)0.0870 (9)0.0268 (7)0.0519 (7)0.0429 (8)
O20.1121 (13)0.1290 (15)0.1348 (15)0.0072 (10)0.0949 (12)0.0415 (11)
Geometric parameters (Å, º) top
C1—C21.406 (2)C12—H12A0.9700
C1—C61.409 (2)C12—H12B0.9700
C1—C111.524 (2)C13—C151.501 (2)
C2—C31.386 (3)C13—C141.544 (2)
C2—C81.515 (3)C13—H130.9800
C3—C41.378 (3)C14—H14A0.9700
C3—H30.9300C14—H14B0.9700
C4—C51.371 (3)C15—N11.271 (2)
C4—C91.509 (3)C15—C161.498 (3)
C5—C61.391 (3)C16—N21.457 (2)
C5—H50.9300C16—H16A0.9700
C6—C71.514 (3)C16—H16B0.9700
C7—H7A0.9600C17—N21.453 (2)
C7—H7B0.9600C17—C181.500 (3)
C7—H7C0.9600C17—H17A0.9700
C8—H8A0.9600C17—H17B0.9700
C8—H8B0.9600C18—O21.410 (3)
C8—H8C0.9600C18—H18A0.9700
C9—H9A0.9600C18—H18B0.9700
C9—H9B0.9600C19—O21.414 (3)
C9—H9C0.9600C19—C201.493 (4)
C10—C111.533 (2)C19—H19A0.9700
C10—H10A0.9600C19—H19B0.9700
C10—H10B0.9600C20—N21.456 (2)
C10—H10C0.9600C20—H20A0.9700
C11—C121.554 (2)C20—H20B0.9700
C11—C141.563 (2)N1—O11.404 (2)
C12—C131.533 (2)O1—H10.8200
C2—C1—C6117.83 (14)H12A—C12—H12B110.8
C2—C1—C11120.93 (14)C15—C13—C12118.29 (15)
C6—C1—C11121.24 (14)C15—C13—C14117.48 (14)
C3—C2—C1119.55 (16)C12—C13—C1488.30 (12)
C3—C2—C8117.12 (16)C15—C13—H13110.3
C1—C2—C8123.24 (16)C12—C13—H13110.3
C4—C3—C2122.95 (17)C14—C13—H13110.3
C4—C3—H3118.5C13—C14—C1190.31 (12)
C2—C3—H3118.5C13—C14—H14A113.6
C5—C4—C3116.83 (17)C11—C14—H14A113.6
C5—C4—C9122.0 (2)C13—C14—H14B113.6
C3—C4—C9121.2 (2)C11—C14—H14B113.6
C4—C5—C6122.97 (18)H14A—C14—H14B110.9
C4—C5—H5118.5N1—C15—C16114.07 (15)
C6—C5—H5118.5N1—C15—C13124.80 (17)
C5—C6—C1119.40 (16)C16—C15—C13121.10 (13)
C5—C6—C7117.43 (17)N2—C16—C15110.55 (14)
C1—C6—C7123.12 (16)N2—C16—H16A109.5
C6—C7—H7A109.5C15—C16—H16A109.5
C6—C7—H7B109.5N2—C16—H16B109.5
H7A—C7—H7B109.5C15—C16—H16B109.5
C6—C7—H7C109.5H16A—C16—H16B108.1
H7A—C7—H7C109.5N2—C17—C18108.85 (16)
H7B—C7—H7C109.5N2—C17—H17A109.9
C2—C8—H8A109.5C18—C17—H17A109.9
C2—C8—H8B109.5N2—C17—H17B109.9
H8A—C8—H8B109.5C18—C17—H17B109.9
C2—C8—H8C109.5H17A—C17—H17B108.3
H8A—C8—H8C109.5O2—C18—C17111.6 (2)
H8B—C8—H8C109.5O2—C18—H18A109.3
C4—C9—H9A109.5C17—C18—H18A109.3
C4—C9—H9B109.5O2—C18—H18B109.3
H9A—C9—H9B109.5C17—C18—H18B109.3
C4—C9—H9C109.5H18A—C18—H18B108.0
H9A—C9—H9C109.5O2—C19—C20110.93 (19)
H9B—C9—H9C109.5O2—C19—H19A109.5
C11—C10—H10A109.5C20—C19—H19A109.5
C11—C10—H10B109.5O2—C19—H19B109.5
H10A—C10—H10B109.5C20—C19—H19B109.5
C11—C10—H10C109.5H19A—C19—H19B108.0
H10A—C10—H10C109.5N2—C20—C19109.40 (19)
H10B—C10—H10C109.5N2—C20—H20A109.8
C1—C11—C10111.39 (13)C19—C20—H20A109.8
C1—C11—C12116.03 (14)N2—C20—H20B109.8
C10—C11—C12111.90 (15)C19—C20—H20B109.8
C1—C11—C14116.62 (13)H20A—C20—H20B108.2
C10—C11—C14111.97 (15)C15—N1—O1113.21 (15)
C12—C11—C1486.87 (11)C17—N2—C20109.05 (15)
C13—C12—C1191.08 (12)C17—N2—C16112.40 (13)
C13—C12—H12A113.5C20—N2—C16113.32 (16)
C11—C12—H12A113.5N1—O1—H1109.5
C13—C12—H12B113.5C18—O2—C19109.51 (16)
C11—C12—H12B113.5
C6—C1—C2—C36.9 (2)C11—C12—C13—C15134.65 (15)
C11—C1—C2—C3173.84 (15)C11—C12—C13—C1414.10 (13)
C6—C1—C2—C8169.57 (16)C15—C13—C14—C11135.28 (15)
C11—C1—C2—C89.6 (2)C12—C13—C14—C1114.01 (13)
C1—C2—C3—C41.8 (3)C1—C11—C14—C13131.49 (14)
C8—C2—C3—C4174.94 (18)C10—C11—C14—C1398.55 (16)
C2—C3—C4—C53.5 (3)C12—C11—C14—C1313.83 (13)
C2—C3—C4—C9178.3 (2)C12—C13—C15—N1159.02 (16)
C3—C4—C5—C63.6 (3)C14—C13—C15—N197.0 (2)
C9—C4—C5—C6178.3 (2)C12—C13—C15—C1622.9 (2)
C4—C5—C6—C11.6 (3)C14—C13—C15—C1681.1 (2)
C4—C5—C6—C7175.97 (19)N1—C15—C16—N2118.59 (16)
C2—C1—C6—C56.9 (2)C13—C15—C16—N259.7 (2)
C11—C1—C6—C5173.91 (15)N2—C17—C18—O259.1 (2)
C2—C1—C6—C7170.59 (17)O2—C19—C20—N259.6 (3)
C11—C1—C6—C78.6 (3)C16—C15—N1—O1179.84 (14)
C2—C1—C11—C1091.37 (19)C13—C15—N1—O11.6 (2)
C6—C1—C11—C1087.81 (19)C18—C17—N2—C2058.0 (2)
C2—C1—C11—C1238.2 (2)C18—C17—N2—C16175.45 (18)
C6—C1—C11—C12142.60 (15)C19—C20—N2—C1758.7 (2)
C2—C1—C11—C14138.40 (15)C19—C20—N2—C16175.29 (17)
C6—C1—C11—C1442.4 (2)C15—C16—N2—C1774.95 (18)
C1—C11—C12—C13132.15 (13)C15—C16—N2—C20160.85 (15)
C10—C11—C12—C1398.51 (15)C17—C18—O2—C1959.2 (3)
C14—C11—C12—C1313.94 (13)C20—C19—O2—C1859.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.112.7944 (19)141
C16—H16B···O2ii0.972.553.494 (2)165
C19—H19B···O1iii0.972.563.305 (3)134
C12—H12B···Cg1iv0.972.843.777 (3)161
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1/2, z+3/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H30N2O2
Mr330.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.0273 (4), 10.2337 (2), 18.1262 (6)
β (°) 126.574 (2)
V3)1940.69 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.60 × 0.55 × 0.48
Data collection
DiffractometerStoe IPDS II CCD area-detector
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.964, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
28812, 4031, 3110
Rint0.058
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.171, 1.09
No. of reflections4031
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.21

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.112.7944 (19)141
C16—H16B···O2ii0.972.553.494 (2)165
C19—H19B···O1iii0.972.563.305 (3)134
C12—H12B···Cg1iv0.972.843.777 (3)161
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1/2, z+3/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2.
 

Acknowledgements

This study was supported financially by the Research Center of Ondokuz Mayıs University (Project No. F-461).

References

First citationBalsamo, A., Macchia, B., Martinelli, A., Orlandini, E., Rossello, A., Macchia, F., Bocelli, G. & Domiano, P. (1990). Eur. J. Med. Chem. 25, 227–233.  CrossRef CAS Web of Science Google Scholar
First citationBertolasi, V., Gilli, G. & Veronese, A. C. (1982). Acta Cryst. B38, 502–511.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCoghi, L., Lanfredi, A. M. M. & Tiripicchio, A. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1808–1810.  CSD CrossRef Google Scholar
First citationDehmlow, E. V. & Schmidt, S. (1990). Liebigs Ann. Chem. p. 411.  Google Scholar
First citationDinçer, M., Özdemir, N., Yılmaz, İ, Çukurovalı, A. & Büyükgüngör, O. (2004). Acta Cryst. C60, o674–o676.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationForman, S. E. (1964). J. Org. Chem. 29, 3323–3327.  CrossRef CAS Web of Science Google Scholar
First citationGilli, G., Bertolasi, V. & Veronese, A. C. (1983). Acta Cryst. B39, 450–456.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Zülfikaroğlu, A. & Batı, H. (2001). Acta Cryst. E57, o1247–o1249.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHolan, G., Johnson, W. M. P., Rihs, K. & Virgona, C. T. (1984). Pestic. Sci. 15, 361–368.  CrossRef CAS Web of Science Google Scholar
First citationMarsman, A. W., Leussing, E. D., Zwikker, J. W. & Jenneskens, L. W. (1999). Chem. Mater. 11, 1484–1491.  Web of Science CSD CrossRef CAS Google Scholar
First citationMathison, I. W., Solomons, W. E., Morgan, P. H. & Tidwell, R. R. (1989). Principals of Medicinal Chemistry. In Structural Features and Pharmacologic Activity, edited by W. O. Foye, pp. 49–77. Philadelphia: Lea and Febiger.  Google Scholar
First citationMigrdichian, V. (1957). Organic Synthesis, Open-Chain Saturated Compounds, pp. 703–707. New York: Reinhold.  Google Scholar
First citationMixich, G. V. & Thiele, K. (1979). Arzneim. Forsch. (Drug Res.), 29, 1510–1513.  CAS Google Scholar
First citationÖzdemir, N., Dinçer, M., Yılmaz, İ. & Çukurovalı, A. (2004). Acta Cryst. E60, o145–o147.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPolak, A. (1982). Arzneim. Forsch. (Drug Res.), 32, 17–24.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSwenson, D. C., Yamamoto, M. & Burton, D. J. (1997). Acta Cryst. C53, 1445–1447.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o958-o959
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds