organic compounds
(Z)-1-(3-Mesityl-3-methylcyclobutyl)-2-(morpholin-4-yl)ethanone oxime
aDepartment of Physics, Arts and Sciences Faculty, Ondokuz Mayıs University, 55139 Samsun, Turkey, bDepartment of Chemistry, Sciences Faculty, Fırat University, 23119 Elazığ, Turkey, and cDepartment of Chemistry, Faculty of Science, Karamanoğlu Mehmetbey University, 70200 Karaman, Turkey
*Correspondence e-mail: fatihsen55@gmail.com
In the title compound, C20H30N2O2, the cyclobutane ring is puckered, with a dihedral angle of 19.60 (13)° between the two planes. In the crystal, the molecules are linked by intermolecular O—H⋯N and weak C—H⋯O hydrogen bonds, as well as a C—H⋯π hydrogen-bonding association.
Related literature
For applications of related compounds, see: Dehmlow & Schmidt (1990); Coghi et al. (1976); Mixich & Thiele (1979); Migrdichian (1957); Mathison et al. (1989); Polak (1982); Balsamo et al., 1990; Holan et al. (1984); Marsman et al. (1999); Forman (1964); Bertolasi et al. (1982); Gilli et al. (1983); Hökelek et al. (2001). For related structures, see: Özdemir et al. (2004); Dinçer et al. (2004). For the puckering of the cyclobutane ring, see: Swenson et al. (1997).
Experimental
Crystal data
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2002); cell X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811009408/zs2100sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811009408/zs2100Isup2.hkl
A mixture of 10 mmol of 1-mesityl-1-methyl-3-(2-chloro-1-oxoethyl)cyclobutane, 10 mmol of morpholine and 10 mmol of NaHCO3 in 30 ml of absolute ethanol was refluxed while monitoring the reaction course using IR techniques. After completion of the reaction, a mixture of 10 mmol of hydroxylammine hydrochloride and 10 mmol of NaOH in 20 ml of absolute ethanol was added portion-wise and refluxed for ten minutes. After cooling to room temperature, the mixture was poured into stirred water. The solid substance thus formed was separated by suction, washed with copious water and recrystallized from ethanol giving white crystals (yield: 68%), m.p. 428 K (EtOH). IR (KBr, ν, cm-1): 3287 (–OH), 3089–3024 (aromatics), 2954–2818 (aliphatics), 1612 (C═N), 1483 (C—-N), 1118 (C—O), 939 (N—O); 1H NMR (CDCl3, TMS, δ, p.p.m.): 1.58 (s, 3H, p-CH3), 2.32 (s, 6H, o-CH3s), 2.36 (s, 3H, p-CH3), 2.40 (m, 4H, –CH2– in morpholine ring), 2.59 (d, J = 9.6 Hz, 4H, CH2– in cyclobutane ring), 3.03 (s, 2H, CH2—N), 3.58 (m, 4H, in morpholine ring), 3.65 (quint, J1 = 7.4 Hz, J2 = 2.4 Hz, 2H, >CH–, in cyclobutane), 6.77 (s, 2H, aromatics), 8.90 (s, 1H, –OH); 13C NMR (CDCl3, TMS, δ, p.p.m.): 159.31, 144.23, 134.99, 134.60, 130.14, 66.76, 59.08, 53.22, 41.61, 40.98, 28.32, 24.24, 21.36, 20.32.
H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.96, 0.97, 0.98 and 0.93 Å for CH3, CH2, CH and CH (aromatic), respectively. The O—H bond length was fixed at 0.93 Å. The displacement parameters of the H atoms were constrained with Uiso(H) = 1.2Ueq(aromatic, methylene or methine C) or 1.5Ueq (methyl C and oxime O).
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).C20H30N2O2 | F(000) = 720 |
Mr = 330.46 | Dx = 1.131 Mg m−3 |
Monoclinic, P21/c | Melting point: 428 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 13.0273 (4) Å | Cell parameters from 29343 reflections |
b = 10.2337 (2) Å | θ = 1.4–28.0° |
c = 18.1262 (6) Å | µ = 0.07 mm−1 |
β = 126.574 (2)° | T = 296 K |
V = 1940.69 (10) Å3 | Prism, colourless |
Z = 4 | 0.60 × 0.55 × 0.48 mm |
Stoe IPDS II CCD area-detector diffractometer | 4031 independent reflections |
Radiation source: fine-focus sealed tube | 3110 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.058 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.5°, θmin = 2.0° |
rotation method scans | h = −16→16 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −12→12 |
Tmin = 0.964, Tmax = 0.977 | l = −22→22 |
28812 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.171 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.097P)2 + 0.1596P] where P = (Fo2 + 2Fc2)/3 |
4031 reflections | (Δ/σ)max < 0.001 |
217 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
C20H30N2O2 | V = 1940.69 (10) Å3 |
Mr = 330.46 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.0273 (4) Å | µ = 0.07 mm−1 |
b = 10.2337 (2) Å | T = 296 K |
c = 18.1262 (6) Å | 0.60 × 0.55 × 0.48 mm |
β = 126.574 (2)° |
Stoe IPDS II CCD area-detector diffractometer | 4031 independent reflections |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | 3110 reflections with I > 2σ(I) |
Tmin = 0.964, Tmax = 0.977 | Rint = 0.058 |
28812 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.171 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.24 e Å−3 |
4031 reflections | Δρmin = −0.21 e Å−3 |
217 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.36380 (14) | −0.05777 (14) | 0.74190 (10) | 0.0528 (4) | |
C2 | 0.46281 (15) | −0.05329 (16) | 0.83667 (11) | 0.0601 (4) | |
C3 | 0.46390 (18) | −0.1424 (2) | 0.89474 (12) | 0.0715 (5) | |
H3 | 0.5287 | −0.1366 | 0.9575 | 0.086* | |
C4 | 0.3733 (2) | −0.2391 (2) | 0.86371 (15) | 0.0758 (5) | |
C5 | 0.28345 (19) | −0.24910 (18) | 0.77046 (15) | 0.0752 (5) | |
H5 | 0.2242 | −0.3167 | 0.7476 | 0.090* | |
C6 | 0.27696 (16) | −0.16278 (16) | 0.70854 (12) | 0.0625 (4) | |
C7 | 0.1786 (2) | −0.1905 (2) | 0.60720 (14) | 0.0886 (6) | |
H7A | 0.1295 | −0.2660 | 0.5997 | 0.133* | |
H7B | 0.2212 | −0.2066 | 0.5794 | 0.133* | |
H7C | 0.1229 | −0.1166 | 0.5782 | 0.133* | |
C8 | 0.57461 (17) | 0.0403 (2) | 0.87941 (14) | 0.0814 (6) | |
H8A | 0.5632 | 0.0968 | 0.8328 | 0.122* | |
H8B | 0.6524 | −0.0084 | 0.9071 | 0.122* | |
H8C | 0.5790 | 0.0918 | 0.9255 | 0.122* | |
C9 | 0.3761 (3) | −0.3317 (3) | 0.9297 (2) | 0.1137 (9) | |
H9A | 0.4450 | −0.3083 | 0.9916 | 0.171* | |
H9B | 0.3885 | −0.4194 | 0.9175 | 0.171* | |
H9C | 0.2966 | −0.3265 | 0.9219 | 0.171* | |
C10 | 0.4242 (2) | 0.0076 (2) | 0.63806 (16) | 0.0834 (6) | |
H10A | 0.4154 | 0.0753 | 0.5979 | 0.125* | |
H10B | 0.3894 | −0.0724 | 0.6042 | 0.125* | |
H10C | 0.5131 | −0.0045 | 0.6874 | 0.125* | |
C11 | 0.35215 (14) | 0.04679 (15) | 0.67740 (11) | 0.0556 (4) | |
C12 | 0.38414 (15) | 0.18873 (15) | 0.71533 (12) | 0.0603 (4) | |
H12A | 0.3857 | 0.2003 | 0.7691 | 0.072* | |
H12B | 0.4617 | 0.2227 | 0.7263 | 0.072* | |
C13 | 0.26170 (15) | 0.24003 (16) | 0.62660 (12) | 0.0612 (4) | |
H13 | 0.2804 | 0.2744 | 0.5853 | 0.073* | |
C14 | 0.21439 (16) | 0.09740 (16) | 0.60114 (11) | 0.0622 (4) | |
H14A | 0.1840 | 0.0734 | 0.5394 | 0.075* | |
H14B | 0.1520 | 0.0746 | 0.6119 | 0.075* | |
C15 | 0.18063 (15) | 0.33490 (15) | 0.63429 (12) | 0.0597 (4) | |
C16 | 0.18719 (17) | 0.34202 (17) | 0.71954 (13) | 0.0659 (4) | |
H16A | 0.2731 | 0.3658 | 0.7713 | 0.079* | |
H16B | 0.1291 | 0.4090 | 0.7123 | 0.079* | |
C17 | 0.01643 (17) | 0.1917 (2) | 0.67605 (14) | 0.0768 (5) | |
H17A | −0.0136 | 0.1987 | 0.6127 | 0.092* | |
H17B | −0.0288 | 0.2556 | 0.6863 | 0.092* | |
C18 | −0.0090 (2) | 0.0568 (3) | 0.69414 (19) | 0.0989 (7) | |
H18A | −0.1000 | 0.0394 | 0.6532 | 0.119* | |
H18B | 0.0338 | −0.0066 | 0.6813 | 0.119* | |
C19 | 0.1671 (3) | 0.0674 (3) | 0.84584 (18) | 0.1042 (8) | |
H19A | 0.2119 | 0.0042 | 0.8346 | 0.125* | |
H19B | 0.1968 | 0.0574 | 0.9089 | 0.125* | |
C20 | 0.1967 (2) | 0.2022 (2) | 0.83206 (14) | 0.0853 (6) | |
H20A | 0.1544 | 0.2658 | 0.8451 | 0.102* | |
H20B | 0.2881 | 0.2175 | 0.8738 | 0.102* | |
N1 | 0.09976 (13) | 0.41245 (15) | 0.57100 (11) | 0.0688 (4) | |
N2 | 0.15302 (12) | 0.21666 (14) | 0.73755 (9) | 0.0607 (4) | |
O1 | 0.09479 (13) | 0.40408 (15) | 0.49164 (10) | 0.0860 (5) | |
H1 | 0.0415 | 0.4558 | 0.4531 | 0.129* | |
O2 | 0.03433 (18) | 0.0426 (2) | 0.78590 (14) | 0.1121 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0502 (7) | 0.0468 (8) | 0.0587 (8) | 0.0063 (6) | 0.0309 (7) | 0.0032 (6) |
C2 | 0.0531 (8) | 0.0541 (9) | 0.0625 (9) | 0.0078 (6) | 0.0288 (7) | 0.0039 (7) |
C3 | 0.0706 (10) | 0.0733 (11) | 0.0618 (10) | 0.0145 (9) | 0.0347 (8) | 0.0132 (8) |
C4 | 0.0818 (12) | 0.0698 (11) | 0.0875 (13) | 0.0176 (9) | 0.0567 (11) | 0.0240 (10) |
C5 | 0.0735 (11) | 0.0534 (9) | 0.1002 (14) | −0.0039 (8) | 0.0526 (11) | 0.0056 (9) |
C6 | 0.0595 (9) | 0.0489 (8) | 0.0701 (10) | −0.0001 (7) | 0.0337 (8) | −0.0010 (7) |
C7 | 0.0829 (13) | 0.0665 (11) | 0.0782 (13) | −0.0119 (9) | 0.0273 (10) | −0.0135 (9) |
C8 | 0.0540 (9) | 0.0729 (12) | 0.0757 (12) | 0.0005 (8) | 0.0161 (9) | 0.0020 (9) |
C9 | 0.132 (2) | 0.1057 (19) | 0.130 (2) | 0.0176 (15) | 0.0929 (19) | 0.0460 (16) |
C10 | 0.0956 (14) | 0.0795 (12) | 0.1036 (15) | 0.0194 (11) | 0.0748 (13) | 0.0129 (11) |
C11 | 0.0547 (8) | 0.0525 (8) | 0.0620 (9) | 0.0068 (6) | 0.0360 (7) | 0.0056 (7) |
C12 | 0.0513 (8) | 0.0492 (8) | 0.0768 (10) | 0.0033 (6) | 0.0362 (8) | 0.0077 (7) |
C13 | 0.0623 (9) | 0.0582 (9) | 0.0717 (10) | 0.0118 (7) | 0.0447 (8) | 0.0181 (7) |
C14 | 0.0623 (9) | 0.0614 (9) | 0.0546 (9) | 0.0093 (7) | 0.0303 (7) | 0.0056 (7) |
C15 | 0.0561 (8) | 0.0487 (8) | 0.0770 (10) | 0.0061 (6) | 0.0411 (8) | 0.0153 (7) |
C16 | 0.0649 (9) | 0.0578 (9) | 0.0783 (11) | 0.0075 (7) | 0.0443 (9) | 0.0049 (8) |
C17 | 0.0589 (10) | 0.0881 (13) | 0.0795 (12) | 0.0028 (9) | 0.0392 (9) | 0.0151 (10) |
C18 | 0.0821 (13) | 0.1011 (17) | 0.1184 (19) | −0.0112 (12) | 0.0623 (14) | 0.0161 (14) |
C19 | 0.1032 (17) | 0.135 (2) | 0.0954 (16) | 0.0212 (15) | 0.0707 (15) | 0.0459 (15) |
C20 | 0.0821 (12) | 0.1126 (17) | 0.0656 (11) | 0.0095 (11) | 0.0464 (10) | 0.0115 (11) |
N1 | 0.0620 (8) | 0.0629 (8) | 0.0853 (10) | 0.0120 (6) | 0.0460 (8) | 0.0260 (7) |
N2 | 0.0563 (7) | 0.0677 (8) | 0.0599 (8) | 0.0052 (6) | 0.0357 (6) | 0.0100 (6) |
O1 | 0.0755 (8) | 0.1020 (11) | 0.0870 (9) | 0.0268 (7) | 0.0519 (7) | 0.0429 (8) |
O2 | 0.1121 (13) | 0.1290 (15) | 0.1348 (15) | 0.0072 (10) | 0.0949 (12) | 0.0415 (11) |
C1—C2 | 1.406 (2) | C12—H12A | 0.9700 |
C1—C6 | 1.409 (2) | C12—H12B | 0.9700 |
C1—C11 | 1.524 (2) | C13—C15 | 1.501 (2) |
C2—C3 | 1.386 (3) | C13—C14 | 1.544 (2) |
C2—C8 | 1.515 (3) | C13—H13 | 0.9800 |
C3—C4 | 1.378 (3) | C14—H14A | 0.9700 |
C3—H3 | 0.9300 | C14—H14B | 0.9700 |
C4—C5 | 1.371 (3) | C15—N1 | 1.271 (2) |
C4—C9 | 1.509 (3) | C15—C16 | 1.498 (3) |
C5—C6 | 1.391 (3) | C16—N2 | 1.457 (2) |
C5—H5 | 0.9300 | C16—H16A | 0.9700 |
C6—C7 | 1.514 (3) | C16—H16B | 0.9700 |
C7—H7A | 0.9600 | C17—N2 | 1.453 (2) |
C7—H7B | 0.9600 | C17—C18 | 1.500 (3) |
C7—H7C | 0.9600 | C17—H17A | 0.9700 |
C8—H8A | 0.9600 | C17—H17B | 0.9700 |
C8—H8B | 0.9600 | C18—O2 | 1.410 (3) |
C8—H8C | 0.9600 | C18—H18A | 0.9700 |
C9—H9A | 0.9600 | C18—H18B | 0.9700 |
C9—H9B | 0.9600 | C19—O2 | 1.414 (3) |
C9—H9C | 0.9600 | C19—C20 | 1.493 (4) |
C10—C11 | 1.533 (2) | C19—H19A | 0.9700 |
C10—H10A | 0.9600 | C19—H19B | 0.9700 |
C10—H10B | 0.9600 | C20—N2 | 1.456 (2) |
C10—H10C | 0.9600 | C20—H20A | 0.9700 |
C11—C12 | 1.554 (2) | C20—H20B | 0.9700 |
C11—C14 | 1.563 (2) | N1—O1 | 1.404 (2) |
C12—C13 | 1.533 (2) | O1—H1 | 0.8200 |
C2—C1—C6 | 117.83 (14) | H12A—C12—H12B | 110.8 |
C2—C1—C11 | 120.93 (14) | C15—C13—C12 | 118.29 (15) |
C6—C1—C11 | 121.24 (14) | C15—C13—C14 | 117.48 (14) |
C3—C2—C1 | 119.55 (16) | C12—C13—C14 | 88.30 (12) |
C3—C2—C8 | 117.12 (16) | C15—C13—H13 | 110.3 |
C1—C2—C8 | 123.24 (16) | C12—C13—H13 | 110.3 |
C4—C3—C2 | 122.95 (17) | C14—C13—H13 | 110.3 |
C4—C3—H3 | 118.5 | C13—C14—C11 | 90.31 (12) |
C2—C3—H3 | 118.5 | C13—C14—H14A | 113.6 |
C5—C4—C3 | 116.83 (17) | C11—C14—H14A | 113.6 |
C5—C4—C9 | 122.0 (2) | C13—C14—H14B | 113.6 |
C3—C4—C9 | 121.2 (2) | C11—C14—H14B | 113.6 |
C4—C5—C6 | 122.97 (18) | H14A—C14—H14B | 110.9 |
C4—C5—H5 | 118.5 | N1—C15—C16 | 114.07 (15) |
C6—C5—H5 | 118.5 | N1—C15—C13 | 124.80 (17) |
C5—C6—C1 | 119.40 (16) | C16—C15—C13 | 121.10 (13) |
C5—C6—C7 | 117.43 (17) | N2—C16—C15 | 110.55 (14) |
C1—C6—C7 | 123.12 (16) | N2—C16—H16A | 109.5 |
C6—C7—H7A | 109.5 | C15—C16—H16A | 109.5 |
C6—C7—H7B | 109.5 | N2—C16—H16B | 109.5 |
H7A—C7—H7B | 109.5 | C15—C16—H16B | 109.5 |
C6—C7—H7C | 109.5 | H16A—C16—H16B | 108.1 |
H7A—C7—H7C | 109.5 | N2—C17—C18 | 108.85 (16) |
H7B—C7—H7C | 109.5 | N2—C17—H17A | 109.9 |
C2—C8—H8A | 109.5 | C18—C17—H17A | 109.9 |
C2—C8—H8B | 109.5 | N2—C17—H17B | 109.9 |
H8A—C8—H8B | 109.5 | C18—C17—H17B | 109.9 |
C2—C8—H8C | 109.5 | H17A—C17—H17B | 108.3 |
H8A—C8—H8C | 109.5 | O2—C18—C17 | 111.6 (2) |
H8B—C8—H8C | 109.5 | O2—C18—H18A | 109.3 |
C4—C9—H9A | 109.5 | C17—C18—H18A | 109.3 |
C4—C9—H9B | 109.5 | O2—C18—H18B | 109.3 |
H9A—C9—H9B | 109.5 | C17—C18—H18B | 109.3 |
C4—C9—H9C | 109.5 | H18A—C18—H18B | 108.0 |
H9A—C9—H9C | 109.5 | O2—C19—C20 | 110.93 (19) |
H9B—C9—H9C | 109.5 | O2—C19—H19A | 109.5 |
C11—C10—H10A | 109.5 | C20—C19—H19A | 109.5 |
C11—C10—H10B | 109.5 | O2—C19—H19B | 109.5 |
H10A—C10—H10B | 109.5 | C20—C19—H19B | 109.5 |
C11—C10—H10C | 109.5 | H19A—C19—H19B | 108.0 |
H10A—C10—H10C | 109.5 | N2—C20—C19 | 109.40 (19) |
H10B—C10—H10C | 109.5 | N2—C20—H20A | 109.8 |
C1—C11—C10 | 111.39 (13) | C19—C20—H20A | 109.8 |
C1—C11—C12 | 116.03 (14) | N2—C20—H20B | 109.8 |
C10—C11—C12 | 111.90 (15) | C19—C20—H20B | 109.8 |
C1—C11—C14 | 116.62 (13) | H20A—C20—H20B | 108.2 |
C10—C11—C14 | 111.97 (15) | C15—N1—O1 | 113.21 (15) |
C12—C11—C14 | 86.87 (11) | C17—N2—C20 | 109.05 (15) |
C13—C12—C11 | 91.08 (12) | C17—N2—C16 | 112.40 (13) |
C13—C12—H12A | 113.5 | C20—N2—C16 | 113.32 (16) |
C11—C12—H12A | 113.5 | N1—O1—H1 | 109.5 |
C13—C12—H12B | 113.5 | C18—O2—C19 | 109.51 (16) |
C11—C12—H12B | 113.5 | ||
C6—C1—C2—C3 | −6.9 (2) | C11—C12—C13—C15 | 134.65 (15) |
C11—C1—C2—C3 | 173.84 (15) | C11—C12—C13—C14 | 14.10 (13) |
C6—C1—C2—C8 | 169.57 (16) | C15—C13—C14—C11 | −135.28 (15) |
C11—C1—C2—C8 | −9.6 (2) | C12—C13—C14—C11 | −14.01 (13) |
C1—C2—C3—C4 | 1.8 (3) | C1—C11—C14—C13 | 131.49 (14) |
C8—C2—C3—C4 | −174.94 (18) | C10—C11—C14—C13 | −98.55 (16) |
C2—C3—C4—C5 | 3.5 (3) | C12—C11—C14—C13 | 13.83 (13) |
C2—C3—C4—C9 | −178.3 (2) | C12—C13—C15—N1 | 159.02 (16) |
C3—C4—C5—C6 | −3.6 (3) | C14—C13—C15—N1 | −97.0 (2) |
C9—C4—C5—C6 | 178.3 (2) | C12—C13—C15—C16 | −22.9 (2) |
C4—C5—C6—C1 | −1.6 (3) | C14—C13—C15—C16 | 81.1 (2) |
C4—C5—C6—C7 | 175.97 (19) | N1—C15—C16—N2 | 118.59 (16) |
C2—C1—C6—C5 | 6.9 (2) | C13—C15—C16—N2 | −59.7 (2) |
C11—C1—C6—C5 | −173.91 (15) | N2—C17—C18—O2 | 59.1 (2) |
C2—C1—C6—C7 | −170.59 (17) | O2—C19—C20—N2 | −59.6 (3) |
C11—C1—C6—C7 | 8.6 (3) | C16—C15—N1—O1 | −179.84 (14) |
C2—C1—C11—C10 | 91.37 (19) | C13—C15—N1—O1 | −1.6 (2) |
C6—C1—C11—C10 | −87.81 (19) | C18—C17—N2—C20 | −58.0 (2) |
C2—C1—C11—C12 | −38.2 (2) | C18—C17—N2—C16 | 175.45 (18) |
C6—C1—C11—C12 | 142.60 (15) | C19—C20—N2—C17 | 58.7 (2) |
C2—C1—C11—C14 | −138.40 (15) | C19—C20—N2—C16 | −175.29 (17) |
C6—C1—C11—C14 | 42.4 (2) | C15—C16—N2—C17 | −74.95 (18) |
C1—C11—C12—C13 | −132.15 (13) | C15—C16—N2—C20 | 160.85 (15) |
C10—C11—C12—C13 | 98.51 (15) | C17—C18—O2—C19 | −59.2 (3) |
C14—C11—C12—C13 | −13.94 (13) | C20—C19—O2—C18 | 59.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.82 | 2.11 | 2.7944 (19) | 141 |
C16—H16B···O2ii | 0.97 | 2.55 | 3.494 (2) | 165 |
C19—H19B···O1iii | 0.97 | 2.56 | 3.305 (3) | 134 |
C12—H12B···Cg1iv | 0.97 | 2.84 | 3.777 (3) | 161 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, y+1/2, −z+3/2; (iii) x, −y+1/2, z+1/2; (iv) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C20H30N2O2 |
Mr | 330.46 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 13.0273 (4), 10.2337 (2), 18.1262 (6) |
β (°) | 126.574 (2) |
V (Å3) | 1940.69 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.60 × 0.55 × 0.48 |
Data collection | |
Diffractometer | Stoe IPDS II CCD area-detector diffractometer |
Absorption correction | Integration (X-RED32; Stoe & Cie, 2002) |
Tmin, Tmax | 0.964, 0.977 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 28812, 4031, 3110 |
Rint | 0.058 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.171, 1.09 |
No. of reflections | 4031 |
No. of parameters | 217 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.21 |
Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.82 | 2.11 | 2.7944 (19) | 141 |
C16—H16B···O2ii | 0.97 | 2.55 | 3.494 (2) | 165 |
C19—H19B···O1iii | 0.97 | 2.56 | 3.305 (3) | 134 |
C12—H12B···Cg1iv | 0.97 | 2.84 | 3.777 (3) | 161 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, y+1/2, −z+3/2; (iii) x, −y+1/2, z+1/2; (iv) −x+1, y−1/2, −z+1/2. |
Acknowledgements
This study was supported financially by the Research Center of Ondokuz Mayıs University (Project No. F-461).
References
Balsamo, A., Macchia, B., Martinelli, A., Orlandini, E., Rossello, A., Macchia, F., Bocelli, G. & Domiano, P. (1990). Eur. J. Med. Chem. 25, 227–233. CrossRef CAS Web of Science Google Scholar
Bertolasi, V., Gilli, G. & Veronese, A. C. (1982). Acta Cryst. B38, 502–511. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Coghi, L., Lanfredi, A. M. M. & Tiripicchio, A. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1808–1810. CSD CrossRef Google Scholar
Dehmlow, E. V. & Schmidt, S. (1990). Liebigs Ann. Chem. p. 411. Google Scholar
Dinçer, M., Özdemir, N., Yılmaz, İ, Çukurovalı, A. & Büyükgüngör, O. (2004). Acta Cryst. C60, o674–o676. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Forman, S. E. (1964). J. Org. Chem. 29, 3323–3327. CrossRef CAS Web of Science Google Scholar
Gilli, G., Bertolasi, V. & Veronese, A. C. (1983). Acta Cryst. B39, 450–456. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Hökelek, T., Zülfikaroğlu, A. & Batı, H. (2001). Acta Cryst. E57, o1247–o1249. Web of Science CSD CrossRef IUCr Journals Google Scholar
Holan, G., Johnson, W. M. P., Rihs, K. & Virgona, C. T. (1984). Pestic. Sci. 15, 361–368. CrossRef CAS Web of Science Google Scholar
Marsman, A. W., Leussing, E. D., Zwikker, J. W. & Jenneskens, L. W. (1999). Chem. Mater. 11, 1484–1491. Web of Science CSD CrossRef CAS Google Scholar
Mathison, I. W., Solomons, W. E., Morgan, P. H. & Tidwell, R. R. (1989). Principals of Medicinal Chemistry. In Structural Features and Pharmacologic Activity, edited by W. O. Foye, pp. 49–77. Philadelphia: Lea and Febiger. Google Scholar
Migrdichian, V. (1957). Organic Synthesis, Open-Chain Saturated Compounds, pp. 703–707. New York: Reinhold. Google Scholar
Mixich, G. V. & Thiele, K. (1979). Arzneim. Forsch. (Drug Res.), 29, 1510–1513. CAS Google Scholar
Özdemir, N., Dinçer, M., Yılmaz, İ. & Çukurovalı, A. (2004). Acta Cryst. E60, o145–o147. Web of Science CSD CrossRef IUCr Journals Google Scholar
Polak, A. (1982). Arzneim. Forsch. (Drug Res.), 32, 17–24. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
Swenson, D. C., Yamamoto, M. & Burton, D. J. (1997). Acta Cryst. C53, 1445–1447. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
It is well known that 3-substituted cyclobutane carboxylic acid derivatives exhibit anti-inflammatory and antidepressant activity (Dehmlow & Schmidt, 1990) and also have liquid crystal properties (Coghi et al., 1976). Oximes show geometric isomerism due to the double bond between the N and C atoms (Mixich & Thiele, 1979; Migrdichian, 1957). As there are significant differences in the physical, chemical and biological properties of these geometric isomers, the determination of the configuration of the isomers is important (Mathison et al., 1989). Oximes and oxime ethers also have a broad pharmacological activity spectrum, encompassing antifungal, antibacterial, antidepressant and insecticidal activities, as well as activity as nerve-gas antidotes, depending on the pharmacophoric group of the molecule (Polak, 1982; Balsamo et al., 1990; Holan et al., 1984; Forman, 1964). The oxime group (C═N—OH) possesses stronger hydrogen-bonding capabilities than the alcohol, phenol or carboxylic acid groups (Marsman et al., 1999). Hydrogen bonding plays a key role in molecular recognition in chemical engineering (Bertolasi et al., 1982; Gilli et al., 1983; Hökelek et al., 2001).
As part of our ongoing study of the relationship between the structures of cyclobutane and oxime derivatives, a crystal structure determination of the title compound C20H30N2O2 (I), has been undertaken and the results are presented here. Previously we have reported the crystal structures of similar compounds,viz. 2-[2-hydroxyimino-2-(3-methyl-3-phenylcyclobutyl)ethyl]isoindole-1,3-dione, (II) (Özdemir et al., 2004) and 3-[1-hydroxyimino-2-(succinimido)ethyl]-1-methyl-1-phenylcyclobutane, (III) (Dinçer et al., 2004). The main aim of the present investigation was to study the differences among the structures of (I), (II) and (III), and also to determine the strength of the hydrogen-bonding capabilities of the oxime group.
The structure of (I) (Fig. 1) contains a mesityl group (C1–C9), an oxime group (C15,N1,O1), a cyclobutane ring (C11–C14), and a morpholine ring (C17–C20/O2/N2). The mesityl ring comprises an aromatic hydrocarbon with three methyl substituents attached to the benzene ring. The morpholine and cyclobutane rings adopt chair and butterfly conformations respectively. The plane of the morpholine ring forms a dihedral angle of 7.56 (12)° with the plane of the mesityl group and an angle of 47.62 (7)° with the plane of the mesityl ring bonded to atom C11 of the cyclobutane ring. The plane of the cyclobutane ring forms a dihedral angle of 47.86 (8)° with the plane of the morpholine ring.
The C11—C12, C12—C13, C13—C14 and C14—C11 bond lengths are 1.554 (2), 1.533 (2), 1.544 (2) and 1.564 (2) Å respectively and the C11—C12—C13, C11—C14—C13, C12—C11—C14 and C12—C13—C14 bond angles are 91.05 (12), 90.32 (11), 86.85 (11) and 88.33 (11)° respectively within the cyclobutane ring. Although the value for the puckering of the cyclobutane ring found in the literature is 23.5° (Swenson et al., 1997), there is a negligible puckering in the cyclobutane ring in (I): the C11—C12—C13 plane forms a dihedral angle of 20.13 (16)° with the C11—C14—C13 plane while the C14—C13—C12 plane forms a dihedral angle of 19.60 (13)° with the C14—C11—C12 plane of the cyclobutane ring.
In the structure the molecules are linked by an intermolecular oxime O—H···N hydrogen bonds and two weak C—H···O interactions, as well as a C—H···π hydrogen-bonding association (Table 1). These hydrogen bonds link the molecules into infinite chains (Figs. 2 and 3).