organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1278

5-Ethyl-3-(3-fluoro­phenyl­sulfon­yl)-2-methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 7 April 2011; accepted 24 April 2011; online 29 April 2011)

In the title compound, C17H15FO3S, the fluoro­phenyl ring makes a dihedral angle of 76.11 (5)° with the mean plane of the benzofuran fragment. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions.

Related literature

For the biological activity of benzofuran compounds, see: Aslam et al. (2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For structural studies of related 5-alkyl-3-(4-fluoro­phenyl­sulfon­yl)-2-methyl-1-benzofurans, see: Choi et al. (2010a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o1067.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o1813.],c[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010c). Acta Cryst. E66, o2575.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15FO3S

  • Mr = 318.35

  • Orthorhombic, P 21 21 21

  • a = 8.4395 (1) Å

  • b = 11.3701 (2) Å

  • c = 15.3559 (2) Å

  • V = 1473.52 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 K

  • 0.35 × 0.25 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.920, Tmax = 0.962

  • 14844 measured reflections

  • 3665 independent reflections

  • 3453 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.077

  • S = 1.09

  • 3665 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1555 Friedel pairs

  • Flack parameter: −0.01 (6)

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.95 2.49 3.206 (2) 133
C13—H13⋯O3ii 0.95 2.51 3.395 (2) 155
C9—H9ACgiii 0.99 2.68 3.625 (2) 159
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many compounds having a benzofuran skeleton exhibit interesting biological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009; Galal et al., 2009; Khan et al., 2005). These compounds occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing study of the substituent effect on the solid state structures of 5-alkyl-3-(4-fluorophenylsulfonyl)-2-methyl-1-benzofuran analogues (Choi et al., 2010a,b,c), we report herein on the molecular and crystal structures of the title compound.

The title compound crystallizes in the non-centrosymmetric space group P212121 in spite of having no asymmetric C atoms.

In the title compound (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.017 (1) Å from the least-squares plane defined by the nine constituent atoms. The 3-fluorophenyl ring makes a dihedral angle of 76.11 (5)° with the mean plane of the benzofuran fragment. The crystal packing (Fig. 2) is stabilized by weak intermolecular C–H···O hydrogen bonds; the first one between a benzene H atom and the O atom of the sulfonyl group (Table 1; C6–H6···O2i), and the second one between a 3-fluorophenyl H atom and the O atom of the sulfonyl (Table 1; C13–H13···O3ii). The crystal packing (Fig. 3) is further stabilized by intermolecular C–H···π interactions between a methylene H atom of the ethyl group and the benzene ring (Table 1; C9–H9A···Cgiii, Cg is the centroid of the C2···C7 benzene ring).

Related literature top

For the biological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For structural studies of related 5-alkyl-3-(4-fluorophenylsulfonyl)-2-methyl-1-benzofurans, see: Choi et al. (2010a,b,c).

Experimental top

77% 3-Chloroperoxybenzoic acid (560 mg, 2.5 mmol) was added in small portions to a stirred solution of 5-ethyl-3-(3-fluorophenylsulfanyl)-2-methyl-1-benzofuran (320 mg, 1.2 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 6 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 4:1 v/v) to afford the title compound as a colorless solid [yield 71%, m.p. 395-396 K; Rf = 0.51 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in diisopropyl ether at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. Uiso(H) = 1.2Ueq(C) for aryl and methylene H atoms, and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C–H···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) -x+1/2, -y+1, z+1/2; (ii) -x+1, y-1/2, -z+1/2; (iv) -x+1/2, -y+1, z-1/2; (v) -x+1, y+1/2, -z+1/2].
[Figure 3] Fig. 3. A view of the C–H···π interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (iii) x-1/2, -y+1/2, -z+1; (vi) x+1/2, -y+1/2, -z+1].
5-Ethyl-3-(3-fluorophenylsulfonyl)-2-methyl-1-benzofuran top
Crystal data top
C17H15FO3SDx = 1.435 Mg m3
Mr = 318.35Melting point: 395 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6176 reflections
a = 8.4395 (1) Åθ = 2.2–27.6°
b = 11.3701 (2) ŵ = 0.24 mm1
c = 15.3559 (2) ÅT = 173 K
V = 1473.52 (4) Å3Block, colourless
Z = 40.35 × 0.25 × 0.16 mm
F(000) = 664
Data collection top
Bruker SMART APEXII CCD
diffractometer
3665 independent reflections
Radiation source: rotating anode3453 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.035
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 2.2°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1415
Tmin = 0.920, Tmax = 0.962l = 1920
14844 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.1728P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
3665 reflectionsΔρmax = 0.23 e Å3
200 parametersΔρmin = 0.30 e Å3
0 restraintsAbsolute structure: Flack (1983), 1555 Friedel pairs
0 constraintsAbsolute structure parameter: 0.01 (6)
Primary atom site location: structure-invariant direct methods
Crystal data top
C17H15FO3SV = 1473.52 (4) Å3
Mr = 318.35Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.4395 (1) ŵ = 0.24 mm1
b = 11.3701 (2) ÅT = 173 K
c = 15.3559 (2) Å0.35 × 0.25 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3665 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3453 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.962Rint = 0.035
14844 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.077Δρmax = 0.23 e Å3
S = 1.09Δρmin = 0.30 e Å3
3665 reflectionsAbsolute structure: Flack (1983), 1555 Friedel pairs
200 parametersAbsolute structure parameter: 0.01 (6)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.55279 (4)0.61633 (3)0.30198 (2)0.02203 (9)
F10.83613 (14)0.24805 (9)0.20382 (9)0.0530 (3)
O10.45021 (12)0.62846 (9)0.55130 (7)0.0262 (2)
O20.43231 (13)0.56682 (11)0.24756 (7)0.0326 (3)
O30.59979 (14)0.73710 (10)0.29031 (8)0.0320 (3)
C10.49455 (16)0.59635 (12)0.40936 (9)0.0208 (3)
C20.41587 (16)0.49312 (12)0.44346 (9)0.0203 (3)
C30.36195 (16)0.38604 (13)0.40976 (9)0.0221 (3)
H30.37940.36630.35040.027*
C40.28224 (17)0.30910 (13)0.46495 (10)0.0241 (3)
C50.25768 (18)0.34013 (14)0.55252 (11)0.0278 (3)
H50.20200.28700.58910.033*
C60.31114 (19)0.44473 (15)0.58750 (11)0.0278 (3)
H60.29440.46480.64680.033*
C70.39063 (17)0.51841 (13)0.53065 (10)0.0227 (3)
C80.51210 (18)0.67416 (13)0.47591 (10)0.0246 (3)
C90.2197 (2)0.19327 (14)0.43146 (11)0.0300 (4)
H9A0.22580.19310.36710.036*
H9B0.10660.18600.44790.036*
C100.3089 (2)0.08760 (15)0.46610 (15)0.0425 (5)
H10A0.42040.09290.44880.064*
H10B0.26250.01550.44220.064*
H10C0.30160.08600.52980.064*
C110.5782 (2)0.79444 (14)0.48421 (12)0.0351 (4)
H11A0.66450.79410.52690.042*
H11B0.49490.84840.50360.042*
H11C0.61910.82030.42760.042*
C120.72448 (17)0.52843 (13)0.29036 (9)0.0210 (3)
C130.70954 (19)0.41921 (14)0.25199 (11)0.0272 (3)
H130.60990.39040.23270.033*
C140.8463 (2)0.35391 (15)0.24302 (12)0.0322 (4)
C150.9925 (2)0.39204 (16)0.27131 (11)0.0327 (4)
H151.08380.34390.26490.039*
C161.00295 (19)0.50192 (15)0.30918 (11)0.0312 (3)
H161.10280.53010.32880.037*
C170.86942 (18)0.57153 (13)0.31887 (10)0.0251 (3)
H170.87690.64730.34450.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02206 (16)0.02353 (17)0.02051 (16)0.00299 (14)0.00042 (13)0.00420 (14)
F10.0469 (6)0.0286 (6)0.0835 (9)0.0008 (5)0.0124 (6)0.0213 (6)
O10.0279 (5)0.0269 (5)0.0239 (5)0.0037 (5)0.0046 (4)0.0048 (4)
O20.0275 (6)0.0449 (7)0.0254 (6)0.0034 (5)0.0062 (5)0.0003 (5)
O30.0394 (6)0.0228 (5)0.0337 (6)0.0054 (5)0.0075 (5)0.0086 (5)
C10.0188 (6)0.0215 (7)0.0221 (7)0.0002 (5)0.0015 (5)0.0002 (5)
C20.0174 (6)0.0217 (7)0.0218 (7)0.0023 (5)0.0003 (5)0.0016 (5)
C30.0209 (6)0.0237 (7)0.0216 (7)0.0011 (6)0.0012 (5)0.0008 (6)
C40.0195 (7)0.0246 (8)0.0282 (8)0.0002 (5)0.0018 (6)0.0039 (6)
C50.0241 (8)0.0310 (8)0.0282 (8)0.0023 (6)0.0045 (6)0.0048 (6)
C60.0264 (7)0.0334 (9)0.0236 (8)0.0009 (6)0.0056 (6)0.0002 (6)
C70.0195 (6)0.0247 (7)0.0239 (7)0.0007 (6)0.0008 (5)0.0026 (6)
C80.0223 (7)0.0266 (8)0.0250 (7)0.0001 (6)0.0026 (6)0.0011 (6)
C90.0302 (8)0.0258 (8)0.0341 (9)0.0071 (6)0.0021 (7)0.0023 (7)
C100.0443 (10)0.0253 (9)0.0579 (13)0.0019 (7)0.0031 (9)0.0033 (8)
C110.0406 (9)0.0279 (8)0.0368 (9)0.0094 (7)0.0056 (8)0.0075 (7)
C120.0226 (6)0.0204 (7)0.0198 (7)0.0005 (5)0.0026 (5)0.0043 (5)
C130.0262 (7)0.0272 (8)0.0281 (8)0.0038 (6)0.0031 (6)0.0007 (6)
C140.0366 (9)0.0231 (8)0.0369 (9)0.0007 (6)0.0087 (8)0.0039 (6)
C150.0277 (7)0.0301 (8)0.0402 (9)0.0067 (7)0.0070 (7)0.0047 (7)
C160.0228 (7)0.0337 (8)0.0372 (9)0.0014 (6)0.0036 (7)0.0019 (7)
C170.0266 (7)0.0229 (7)0.0259 (8)0.0012 (6)0.0003 (6)0.0008 (6)
Geometric parameters (Å, º) top
S1—O21.4315 (12)C9—C101.515 (2)
S1—O31.4405 (12)C9—H9A0.9900
S1—C11.7356 (14)C9—H9B0.9900
S1—C121.7692 (14)C10—H10A0.9800
F1—C141.3484 (19)C10—H10B0.9800
O1—C81.3723 (18)C10—H10C0.9800
O1—C71.3853 (18)C11—H11A0.9800
C1—C81.360 (2)C11—H11B0.9800
C1—C21.4466 (19)C11—H11C0.9800
C2—C71.386 (2)C12—C131.380 (2)
C2—C31.399 (2)C12—C171.389 (2)
C3—C41.391 (2)C13—C141.379 (2)
C3—H30.9500C13—H130.9500
C4—C51.406 (2)C14—C151.378 (2)
C4—C91.509 (2)C15—C161.381 (3)
C5—C61.381 (2)C15—H150.9500
C5—H50.9500C16—C171.385 (2)
C6—C71.383 (2)C16—H160.9500
C6—H60.9500C17—H170.9500
C8—C111.483 (2)
O2—S1—O3119.86 (7)C4—C9—H9B108.9
O2—S1—C1107.58 (7)C10—C9—H9B108.9
O3—S1—C1108.72 (7)H9A—C9—H9B107.7
O2—S1—C12107.50 (7)C9—C10—H10A109.5
O3—S1—C12107.48 (7)C9—C10—H10B109.5
C1—S1—C12104.70 (7)H10A—C10—H10B109.5
C8—O1—C7106.68 (12)C9—C10—H10C109.5
C8—C1—C2107.81 (13)H10A—C10—H10C109.5
C8—C1—S1126.72 (12)H10B—C10—H10C109.5
C2—C1—S1125.46 (11)C8—C11—H11A109.5
C7—C2—C3119.21 (13)C8—C11—H11B109.5
C7—C2—C1104.59 (13)H11A—C11—H11B109.5
C3—C2—C1136.17 (14)C8—C11—H11C109.5
C4—C3—C2118.62 (14)H11A—C11—H11C109.5
C4—C3—H3120.7H11B—C11—H11C109.5
C2—C3—H3120.7C13—C12—C17122.18 (14)
C3—C4—C5119.75 (14)C13—C12—S1118.45 (12)
C3—C4—C9120.68 (14)C17—C12—S1119.36 (11)
C5—C4—C9119.56 (14)C14—C13—C12116.78 (15)
C6—C5—C4122.70 (15)C14—C13—H13121.6
C6—C5—H5118.7C12—C13—H13121.6
C4—C5—H5118.7F1—C14—C15118.59 (15)
C5—C6—C7115.76 (15)F1—C14—C13118.16 (16)
C5—C6—H6122.1C15—C14—C13123.25 (16)
C7—C6—H6122.1C14—C15—C16118.35 (15)
C6—C7—O1125.35 (14)C14—C15—H15120.8
C6—C7—C2123.95 (14)C16—C15—H15120.8
O1—C7—C2110.65 (13)C15—C16—C17120.67 (15)
C1—C8—O1110.26 (13)C15—C16—H16119.7
C1—C8—C11134.90 (15)C17—C16—H16119.7
O1—C8—C11114.83 (13)C16—C17—C12118.77 (14)
C4—C9—C10113.49 (14)C16—C17—H17120.6
C4—C9—H9A108.9C12—C17—H17120.6
C10—C9—H9A108.9
O2—S1—C1—C8140.71 (14)C2—C1—C8—O10.08 (17)
O3—S1—C1—C89.51 (16)S1—C1—C8—O1179.27 (10)
C12—S1—C1—C8105.13 (15)C2—C1—C8—C11178.45 (17)
O2—S1—C1—C238.35 (14)S1—C1—C8—C110.7 (3)
O3—S1—C1—C2169.55 (12)C7—O1—C8—C10.53 (16)
C12—S1—C1—C275.81 (13)C7—O1—C8—C11178.32 (13)
C8—C1—C2—C70.40 (16)C3—C4—C9—C10109.92 (17)
S1—C1—C2—C7178.81 (11)C5—C4—C9—C1071.0 (2)
C8—C1—C2—C3178.42 (16)O2—S1—C12—C1314.67 (14)
S1—C1—C2—C30.8 (2)O3—S1—C12—C13144.95 (12)
C7—C2—C3—C41.0 (2)C1—S1—C12—C1399.55 (13)
C1—C2—C3—C4176.79 (15)O2—S1—C12—C17164.54 (12)
C2—C3—C4—C50.0 (2)O3—S1—C12—C1734.25 (14)
C2—C3—C4—C9179.12 (13)C1—S1—C12—C1781.25 (13)
C3—C4—C5—C60.7 (2)C17—C12—C13—C140.0 (2)
C9—C4—C5—C6179.80 (15)S1—C12—C13—C14179.16 (13)
C4—C5—C6—C70.3 (2)C12—C13—C14—F1178.39 (15)
C5—C6—C7—O1178.16 (14)C12—C13—C14—C150.9 (3)
C5—C6—C7—C20.8 (2)F1—C14—C15—C16178.19 (15)
C8—O1—C7—C6176.83 (14)C13—C14—C15—C161.1 (3)
C8—O1—C7—C20.81 (16)C14—C15—C16—C170.4 (3)
C3—C2—C7—C61.5 (2)C15—C16—C17—C120.5 (2)
C1—C2—C7—C6176.93 (14)C13—C12—C17—C160.7 (2)
C3—C2—C7—O1179.17 (11)S1—C12—C17—C16179.84 (12)
C1—C2—C7—O10.74 (16)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.493.206 (2)133
C13—H13···O3ii0.952.513.395 (2)155
C9—H9A···Cgiii0.992.683.625 (2)159
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC17H15FO3S
Mr318.35
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)8.4395 (1), 11.3701 (2), 15.3559 (2)
V3)1473.52 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.35 × 0.25 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.920, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
14844, 3665, 3453
Rint0.035
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.077, 1.09
No. of reflections3665
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.30
Absolute structureFlack (1983), 1555 Friedel pairs
Absolute structure parameter0.01 (6)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.493.206 (2)133
C13—H13···O3ii0.952.513.395 (2)155
C9—H9A···Cgiii0.992.683.625 (2)159
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x1/2, y+1/2, z+1.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o1067.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o1813.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010c). Acta Cryst. E66, o2575.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1278
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds