inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hemipotassium hemirubidium digallium(III) manganese(II) tris­(phos­phate) dihydrate

aSchool of Chemistry and Materials Science, Shaanxi Normal University, Xi'an 710062, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 29 March 2011; accepted 4 April 2011; online 13 April 2011)

The title manganese(II) substituted gallophosphate, K0.5Rb0.5[Ga2Mn(PO4)3(H2O)2], features a three-dimensional network built of PO4 tetra­hedra, GaO5 trigonal bipyramids and MnO6 octa­hedra. The RbI and KI ions, which are disordered with respect to each other in a 1:1 ratio, occupy sites within the channels of the framework. The RbI/KI and MnII atoms occupy positions of 2 symmetry, as does one of the two P atoms. The RbI/KI site is surrounded by six O atoms [2.996 (2)–3.178 (4) Å] in an irregularly-shaped coordination environment. O—H⋯O hydrogen bonds between the water molecules and phosphate O atoms consolidate the crystal packing.

Related literature

For isotypic NH4[Ga2Mn(PO4)3(H2O)2], see: Chippindale et al. (1998[Chippindale, A. M., Cowley, A. R. & Bond, A. D. (1998). Acta Cryst. C54, IUC9800061.]).

Experimental

Crystal data
  • K0.5Rb0.5[Ga2Mn(PO4)3(H2O)2]

  • Mr = 577.61

  • Monoclinic, C 2/c

  • a = 13.5504 (12) Å

  • b = 10.2965 (9) Å

  • c = 8.9072 (8) Å

  • β = 108.527 (1)°

  • V = 1178.34 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.31 mm−1

  • T = 295 K

  • 0.45 × 0.40 × 0.35 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.118, Tmax = 0.159

  • 6267 measured reflections

  • 1348 independent reflections

  • 1239 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.065

  • S = 1.04

  • 1348 reflections

  • 103 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1⋯O3i 0.84 (3) 1.97 (2) 2.790 (3) 166 (4)
O1w—H2⋯O6ii 0.84 (3) 2.10 (2) 2.913 (3) 165 (4)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Microporous aluminium phosphates are readily synthesized by using the hydrothermal route; studies on these compounds have led to improvements in the synthesis of the related gallophosphates. The structure of NH4[Ga2Mn(PO4)3(H2O)2] features PO4 tetrahedra, GaO5 trigonal bipyramids and MnO6 octahedra that are linked together to form a three-dimensional network (Chippindale et al., 1998). The title compound has a similar structure (Fig. 1); however, the rubidium and potassium atoms that occupy the channels within the network rattle in the cavities, as noted from the irregular nature of the polyhedron surrounding the atoms. The coordination number is much higher when longer interactions are considered.

Related literature top

For isotypic NH4[Ga2Mn(PO4)3(H2O)2], see: Chippindale et al. (1998).

Experimental top

The compound was synthesized from a mixture of gallium oxide (0.037 g), boric acid (0.035 g), rubidium carbonate (0.023 g), potassium carbonate (0.138 g), manganese dichloride tetrahydrate (0.397 g), phosphoric acid (0.15 ml) and water (1.8 ml) (molar ratio of 2:5:1:10:20:20:1000). This mixture was sealed in 25 ml, Teflon-lined, stainless-steel Parr bomb. The bomb was heated at 468 K for 7 days. Colorless block-shaped crystals were isolated.

Refinement top

The water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H 0.84±0.01 Å; their temperature factors were tied to those of the O atom by a factor of 1.5 times.

The potassium and rubidium atoms share the same site, a special position of 2 site symmetry. As the occupancy of each refined to nearly 1/2, the occupancies were then fixed as exactly 1/2. The temperature factors of K1 and Rb1 were restrained to be identical.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of a portion of the polymeric structure of K0.5Rb0.5[Ga2Mn(PO4)3(H2O)2] at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The potassium atoms are disordered with respect to the rubidium atoms in a 1:1 ratio. Symmetry codes: (i) x + 1/2, -y + 3/2, z + 1/2; (ii) -x + 1/2, -y + 3/2, -z + 1; (iii) -x + 1, y, -z + 3/2; (iv) -x + 1/2, y + 1/2, -z + 1/2; (v) x + 1/2, y + 1/2, z + 1; (vi) x, -y + 1, z + 1/2; (vii) -x + 1, -y + 1, -z + 1; (viii) x, -y + 1, z - 1/2; (ix) -x, y, -z + 1/2; (x) x - 1/2, -y + 1/2, z - 1/2.
Hemipotassium hemirubidium digallium(III) manganese(II) tris(phosphate) dihydrate top
Crystal data top
K0.5Rb0.5[Ga2Mn(PO4)3(H2O)2]F(000) = 1104
Mr = 577.61Dx = 3.256 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4099 reflections
a = 13.5504 (12) Åθ = 2.5–28.6°
b = 10.2965 (9) ŵ = 8.31 mm1
c = 8.9072 (8) ÅT = 295 K
β = 108.527 (1)°Block, colorless
V = 1178.34 (18) Å30.45 × 0.40 × 0.35 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
1348 independent reflections
Radiation source: fine-focus sealed tube1239 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.118, Tmax = 0.159k = 1313
6267 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: difference Fourier map
wR(F2) = 0.065H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0391P)2 + 2.8102P]
where P = (Fo2 + 2Fc2)/3
1348 reflections(Δ/σ)max = 0.001
103 parametersΔρmax = 0.63 e Å3
2 restraintsΔρmin = 0.75 e Å3
Crystal data top
K0.5Rb0.5[Ga2Mn(PO4)3(H2O)2]V = 1178.34 (18) Å3
Mr = 577.61Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.5504 (12) ŵ = 8.31 mm1
b = 10.2965 (9) ÅT = 295 K
c = 8.9072 (8) Å0.45 × 0.40 × 0.35 mm
β = 108.527 (1)°
Data collection top
Bruker SMART APEX
diffractometer
1348 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1239 reflections with I > 2σ(I)
Tmin = 0.118, Tmax = 0.159Rint = 0.037
6267 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0232 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.04Δρmax = 0.63 e Å3
1348 reflectionsΔρmin = 0.75 e Å3
103 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rb10.50000.86132 (6)0.75000.03306 (18)0.50
Ga10.32950 (2)0.57498 (3)0.42741 (3)0.01061 (11)
Mn10.00000.28198 (6)0.25000.01443 (15)
K10.50000.86132 (6)0.75000.03306 (18)0.50
P10.50000.49997 (9)0.75000.0106 (2)
P20.21012 (6)0.37336 (7)0.17422 (8)0.01171 (16)
O10.44106 (16)0.59068 (19)0.6149 (2)0.0150 (4)
O20.42851 (16)0.40472 (19)0.8014 (2)0.0154 (4)
O30.29213 (16)0.41300 (18)0.3344 (2)0.0146 (4)
O40.10038 (17)0.3988 (2)0.1749 (3)0.0198 (4)
O50.23416 (16)0.22845 (19)0.1603 (2)0.0156 (4)
O60.22740 (16)0.45222 (19)0.0373 (2)0.0148 (4)
O1w0.11223 (19)0.3043 (2)0.0069 (3)0.0263 (5)
H10.146 (3)0.237 (3)0.033 (5)0.039*
H20.154 (3)0.366 (3)0.001 (5)0.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0418 (4)0.0181 (3)0.0425 (4)0.0000.0179 (3)0.000
Ga10.01323 (18)0.01036 (17)0.00716 (17)0.00043 (10)0.00172 (12)0.00000 (10)
Mn10.0166 (3)0.0129 (3)0.0145 (3)0.0000.0059 (2)0.000
K10.0418 (4)0.0181 (3)0.0425 (4)0.0000.0179 (3)0.000
P10.0127 (4)0.0117 (4)0.0067 (4)0.0000.0021 (3)0.000
P20.0142 (4)0.0121 (3)0.0088 (3)0.0013 (3)0.0036 (3)0.0006 (2)
O10.0181 (10)0.0163 (10)0.0072 (9)0.0007 (8)0.0010 (7)0.0015 (7)
O20.0182 (10)0.0134 (9)0.0165 (10)0.0009 (8)0.0081 (8)0.0005 (8)
O30.0213 (11)0.0110 (9)0.0101 (9)0.0030 (8)0.0028 (8)0.0027 (7)
O40.0176 (10)0.0203 (10)0.0232 (11)0.0004 (8)0.0088 (9)0.0042 (9)
O50.0202 (10)0.0115 (9)0.0147 (9)0.0038 (8)0.0048 (8)0.0038 (7)
O60.0196 (10)0.0146 (9)0.0118 (9)0.0006 (8)0.0072 (8)0.0026 (7)
O1w0.0286 (13)0.0226 (11)0.0204 (11)0.0018 (10)0.0025 (9)0.0040 (9)
Geometric parameters (Å, º) top
Rb1—O13.040 (2)Mn1—O2ix2.264 (2)
Rb1—O1i3.040 (2)Mn1—O2x2.264 (2)
Rb1—O4ii3.613 (2)Mn1—O42.079 (2)
Rb1—O4iii2.996 (2)Mn1—O4xi2.079 (2)
Rb1—O4iv2.996 (2)Mn1—O1w2.228 (2)
Rb1—O5v3.555 (2)Mn1—O1wxi2.228 (2)
Rb1—O5vi3.555 (2)P1—O11.532 (2)
Rb1—O6vii3.451 (2)P1—O1i1.532 (2)
Rb1—O6ii3.451 (2)P1—O21.546 (2)
Rb1—O4vii3.613 (2)P1—O2i1.546 (2)
Rb1—O1wii3.178 (3)P2—O41.512 (2)
Rb1—O1wvii3.178 (3)P2—O51.541 (2)
Ga1—O11.870 (2)P2—O61.543 (2)
Ga1—O2viii2.015 (2)P2—O31.558 (2)
Ga1—O31.860 (2)O1w—H10.84 (3)
Ga1—O5ii1.850 (2)O1w—H20.84 (3)
Ga1—O6vi1.952 (2)
O4iv—Rb1—O4iii68.95 (8)O4iii—Rb1—O4ii95.69 (5)
O4iv—Rb1—O1138.43 (6)O1—Rb1—O4ii73.69 (5)
O4iii—Rb1—O1139.75 (6)O1i—Rb1—O4ii118.48 (5)
O4iv—Rb1—O1i139.75 (6)O1wii—Rb1—O4ii51.14 (5)
O4iii—Rb1—O1i138.43 (6)O1wvii—Rb1—O4ii131.83 (5)
O1—Rb1—O1i47.11 (7)O6vii—Rb1—O4ii134.28 (5)
O4iv—Rb1—O1wii68.68 (6)O6ii—Rb1—O4ii40.88 (5)
O4iii—Rb1—O1wii131.90 (6)O5vi—Rb1—O4ii77.00 (5)
O1—Rb1—O1wii70.81 (6)O5v—Rb1—O4ii106.30 (5)
O1i—Rb1—O1wii89.44 (6)O4iv—Rb1—O4vii95.69 (5)
O4iv—Rb1—O1wvii131.90 (6)O4iii—Rb1—O4vii74.01 (6)
O4iii—Rb1—O1wvii68.68 (6)O1—Rb1—O4vii118.48 (5)
O1—Rb1—O1wvii89.44 (6)O1i—Rb1—O4vii73.69 (5)
O1i—Rb1—O1wvii70.81 (6)O1wii—Rb1—O4vii131.83 (5)
O1wii—Rb1—O1wvii158.73 (9)O1wvii—Rb1—O4vii51.14 (5)
O4iv—Rb1—O6vii65.17 (5)O6vii—Rb1—O4vii40.88 (5)
O4iii—Rb1—O6vii88.43 (6)O6ii—Rb1—O4vii134.28 (5)
O1—Rb1—O6vii127.06 (5)O5vi—Rb1—O4vii106.30 (5)
O1i—Rb1—O6vii83.95 (5)O5v—Rb1—O4vii77.00 (5)
O1wii—Rb1—O6vii93.74 (5)O4ii—Rb1—O4vii167.72 (7)
O1wvii—Rb1—O6vii92.00 (5)O5ii—Ga1—O3123.61 (9)
O4iv—Rb1—O6ii88.43 (6)O5ii—Ga1—O1116.06 (9)
O4iii—Rb1—O6ii65.17 (5)O3—Ga1—O1120.26 (9)
O1—Rb1—O6ii83.95 (5)O5ii—Ga1—O6vi91.40 (9)
O1i—Rb1—O6ii127.06 (5)O3—Ga1—O6vi87.64 (9)
O1wii—Rb1—O6ii92.00 (5)O1—Ga1—O6vi93.74 (9)
O1wvii—Rb1—O6ii93.74 (5)O5ii—Ga1—O2viii88.85 (8)
O6vii—Rb1—O6ii148.53 (7)O3—Ga1—O2viii88.85 (9)
O4iv—Rb1—O5vi131.58 (5)O1—Ga1—O2viii89.78 (9)
O4iii—Rb1—O5vi76.41 (5)O6vi—Ga1—O2viii175.95 (8)
O1—Rb1—O5vi63.43 (5)O4—Mn1—O4xi109.28 (12)
O1i—Rb1—O5vi88.32 (5)O4—Mn1—O1w86.67 (9)
O1wii—Rb1—O5vi118.20 (5)O4xi—Mn1—O1w86.48 (9)
O1wvii—Rb1—O5vi55.36 (5)O4—Mn1—O1wxi86.48 (9)
O6vii—Rb1—O5vi147.08 (4)O4xi—Mn1—O1wxi86.67 (9)
O6ii—Rb1—O5vi45.70 (4)O1w—Mn1—O1wxi168.14 (13)
O4iv—Rb1—O5v76.41 (5)O4—Mn1—O2x157.23 (8)
O4iii—Rb1—O5v131.58 (6)O4xi—Mn1—O2x93.49 (8)
O1—Rb1—O5v88.32 (5)O1w—Mn1—O2x94.61 (8)
O1i—Rb1—O5v63.43 (5)O1wxi—Mn1—O2x95.46 (8)
O1wii—Rb1—O5v55.36 (5)O4—Mn1—O2ix93.49 (8)
O1wvii—Rb1—O5v118.20 (5)O4xi—Mn1—O2ix157.23 (8)
O6vii—Rb1—O5v45.70 (4)O1w—Mn1—O2ix95.46 (8)
O6ii—Rb1—O5v147.08 (4)O1wxi—Mn1—O2ix94.61 (8)
O5vi—Rb1—O5v149.86 (6)O2x—Mn1—O2ix63.75 (10)
O4iv—Rb1—O4ii74.01 (6)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+3/2, z+1; (iv) x+1/2, y+3/2, z+1/2; (v) x+1, y+1, z+1; (vi) x, y+1, z+1/2; (vii) x+1/2, y+1/2, z+1; (viii) x, y+1, z1/2; (ix) x+1/2, y+1/2, z+1; (x) x1/2, y+1/2, z1/2; (xi) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1···O3x0.84 (3)1.97 (2)2.790 (3)166 (4)
O1w—H2···O6xii0.84 (3)2.10 (2)2.913 (3)165 (4)
Symmetry codes: (x) x1/2, y+1/2, z1/2; (xii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaK0.5Rb0.5[Ga2Mn(PO4)3(H2O)2]
Mr577.61
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)13.5504 (12), 10.2965 (9), 8.9072 (8)
β (°) 108.527 (1)
V3)1178.34 (18)
Z4
Radiation typeMo Kα
µ (mm1)8.31
Crystal size (mm)0.45 × 0.40 × 0.35
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.118, 0.159
No. of measured, independent and
observed [I > 2σ(I)] reflections
6267, 1348, 1239
Rint0.037
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.065, 1.04
No. of reflections1348
No. of parameters103
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.75

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1···O3i0.84 (3)1.97 (2)2.790 (3)166 (4)
O1w—H2···O6ii0.84 (3)2.10 (2)2.913 (3)165 (4)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y+1, z.
 

Acknowledgements

We thank Shaanxi Normal University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChippindale, A. M., Cowley, A. R. & Bond, A. D. (1998). Acta Cryst. C54, IUC9800061.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds