metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di-μ-aqua-di­aqua-di-μ6-malonato-cobalt(II)dipotassium(I)]

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bDépartement de Chimie, Faculté des Sciences, Université de Nouakchott, Nouakchott, Mauritania, and cCampus Universitaire, Département de Chimie, Faculté des Sciences, Université de Tunis, 1060 Tunis, Tunisia
*Correspondence e-mail: mlgayeastou@yahoo.fr

(Received 5 April 2011; accepted 6 April 2011; online 16 April 2011)

In the title complex, [CoK2(C3H2O4)2(H2O)4]n, the Co atom is located on a position with site symmetry 2/m, the K atom and one water mol­ecule are located on a mirror plane, and the malonate and one water mol­ecule are located on a twofold rotation axis. The KI atom is seven-coordinated by four carboxyl­ate O atoms from four malonate ligands and by three water O atoms, forming a distorted polyhedron. The CoII atom is in an almost octa­hedral environment formed by four carboxyl­ate O atoms from two malonate ligands and two water O atoms. The structure consists of layers parallel to (20[\overline1]) built up from edge-sharing KO7 and CoO6 polyhedra, which are connected by O—H⋯O hydrogen bonding including water mol­ecules into a three-dimensional network.

Related literature

For related structures, see: Baggio et al. (2003[Baggio, R., Garland, M. T. & Perec, M. (2003). Acta Cryst. C59, m30-m32.]); Li et al. (2004[Li, X., Cao, R., Sun, D., Yuan, D., Bi, W., Li, X. & Wang, Y. (2004). J. Mol. Struct. 694, 205-210.]); Zhao et al. (2007[Zhao, X.-J., Zhang, Z.-H., Wang, Y. & Du, M. (2007). Inorg. Chim. Acta, 360, 1921-1928.]); Wang (2006[Wang, D.-Q. (2006). Acta Cryst. E62, m1530-m1532.]).

[Scheme 1]

Experimental

Crystal data
  • [CoK2(C3H2O4)2(H2O)4]

  • Mr = 413.28

  • Monoclinic, C 2/m

  • a = 9.462 (2) Å

  • b = 11.014 (3) Å

  • c = 7.740 (2) Å

  • β = 115.65 (2)°

  • V = 727.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.81 mm−1

  • T = 293 K

  • 0.15 × 0.13 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 1825 measured reflections

  • 835 independent reflections

  • 813 reflections with I > 2σ(I)

  • Rint = 0.022

  • Standard reflections: 2; every 120 minutes intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.057

  • S = 1.15

  • 835 reflections

  • 63 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O2 2.0584 (11)
Co1—O1 2.1347 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—HW1⋯O3iv 0.81 (2) 1.91 (2) 2.7077 (17) 167 (2)
O4—HW2⋯O3i 0.80 (3) 2.03 (3) 2.8372 (18) 176 (3)
Symmetry codes: (i) -x, -y, -z; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands,]); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990[Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The structure of the title compound is represented in Fig. 1. The CoII cations are in a near perfect octahedral geometry with all trans-octahedral angles being 180° and the K ions are all in seven coordinated environment. In the quasi-regular octahedral environment of the six-coordinated CoII cation, basal coordination positions are occupied by four oxygen atoms from two malonate ligands with Co—O distances of 2.0584 (11)Å and the O—Co—O angles in the range [86.32 (5)–93.68 (5) °]. These values agree with those found in literature (Baggio et al., 2003; Li et al.). The apical coordination position are occupied by oxygen atoms from water mlecules with bond length [Co—O 2.1347 (18) Å] and an angle value of 180.00 (11) which agree with the values observed for [Co(malonate)(H2O]2- cobalt complex (Zhao et al., 2007). The potassium cation has an O7 donor set made up by four µ2-bridging malonate oxygen atoms and one µ2-bridging water oxygen atoms and two water coordinated molecules. The K cations share four oxygen atoms bridges from malonate groups and two oxygen atoms from water molecule with Co cations. There are hydrogen bonds between water molecules and carbonyl groups of the malonate anions. The cations CoII and KI are arranged in the following sequence: Co—K—K—Co. The metal atoms are found at linear positions [K—Co—K, 180.00 (0)°] as shown in Fig. 2. The Co—K distance is 3.5726 (13) Å. Two K atoms are found to be very close together, having a distance of 4.2086 (14) Å, which is a short metal–metal distance for these types of complexes. The insertion of two polyhedra of KO7 between two polyhedra of CoO6 results in long Co–Co distances. These two types of geometries form zigzag layers parallel to the ac-plane and alternating with malonate groups along the b axis. The water oxygen atoms provide bridges between K cations. The different polyhedra are still bound to each other through edge-sharing with a compact layer structure defining narrow crossed channels.

Related literature top

For related structures, see : Baggio et al. (2003); Li et al. (2004); Zhao et al. (2007); Wang (2006).

Experimental top

In a round bottomed flask, cobalt acetate tetrahydrate (0.4982 g, 2 mmol) dissoveld in a mixture of water and methanol (10 ml, 1:1) was introduced. Imidazole (0.2720 g, 4 mmol) dissolved in 10 ml of the same mixture was added. The solution turn pink. After 10 mn of stirring, 10 ml of a mixture of methanol and water (10 ml, 1:1) containing malonic acid (0.2081 g, 2 mmol) and KOH (0.2240 g, 4 mmol) was added to the pink solution. After 2 h under stirring, the suspension was filtered off and the precipitate was washed with water and diethyl ether before dring under P2O5. The compound was recrystallized in a mixture of water and dimethylformamide (1/1). After one week, suitable pink crystals for X-ray analyses was obtained. Yield: 72%. m.p. 228±1°C. Anal. Calc. For [C6H12O12K2Co]n (%):C, 17.44; H, 2.93. Found: C, 17.44; H, 2.93. Selected IR data (cm-1, KBr pellet): 3216, 1637, 1600, 1582, 1197, 764.

Refinement top

The H atoms of the water molecules were located in a Fourier difference map and freely refined. H atoms of the CH2 groups were geometrically placed and refined with a riding model with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 50% probability level. Broken lines indicate hydrogen bonds.
[Figure 2] Fig. 2. Projection of the structure onto the c axis showing the polyhedra layers connected by the organics molecules.
Poly[di-µ-aqua-diaqua-di-µ6-malonato-cobalt(II)dipotassium] top
Crystal data top
[CoK2(C3H2O4)2(H2O)4]F(000) = 418
Mr = 413.28Dx = 1.888 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 25 reflections
a = 9.462 (2) Åθ = 11–15°
b = 11.014 (3) ŵ = 1.81 mm1
c = 7.740 (2) ÅT = 293 K
β = 115.65 (2)°Prism, pink
V = 727.1 (3) Å30.15 × 0.13 × 0.10 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.022
Radiation source: fine-focus sealed tubeθmax = 27.0°, θmin = 2.9°
Graphite monochromatorh = 1212
ω scansk = 114
1825 measured reflectionsl = 99
835 independent reflections2 standard reflections every 120 min
813 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0236P)2 + 0.6549P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
835 reflectionsΔρmax = 0.33 e Å3
63 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.045 (2)
Crystal data top
[CoK2(C3H2O4)2(H2O)4]V = 727.1 (3) Å3
Mr = 413.28Z = 2
Monoclinic, C2/mMo Kα radiation
a = 9.462 (2) ŵ = 1.81 mm1
b = 11.014 (3) ÅT = 293 K
c = 7.740 (2) Å0.15 × 0.13 × 0.10 mm
β = 115.65 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.022
1825 measured reflections2 standard reflections every 120 min
835 independent reflections intensity decay: none
813 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.057H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.33 e Å3
835 reflectionsΔρmin = 0.30 e Å3
63 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.00000.00000.00000.01988 (16)
K10.27538 (6)0.00000.49356 (7)0.03100 (18)
O10.0747 (2)0.00000.2237 (3)0.0308 (4)
O20.15473 (12)0.13440 (10)0.15312 (16)0.0290 (3)
O30.24932 (14)0.31676 (10)0.26017 (17)0.0334 (3)
O40.50000.16509 (19)0.50000.0479 (5)
C10.14331 (17)0.24844 (13)0.1464 (2)0.0234 (3)
C20.00000.3130 (2)0.00000.0519 (8)
H10.03710.36570.07200.062*0.50
H20.03710.36570.07200.062*0.50
HW10.134 (2)0.055 (2)0.217 (3)0.054 (7)*
HW20.431 (3)0.211 (2)0.435 (4)0.066 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0200 (2)0.0129 (2)0.0208 (2)0.0000.00322 (16)0.000
K10.0360 (3)0.0267 (3)0.0248 (3)0.0000.0079 (2)0.000
O10.0357 (9)0.0200 (7)0.0416 (10)0.0000.0215 (8)0.000
O20.0261 (5)0.0169 (5)0.0309 (6)0.0021 (4)0.0001 (4)0.0004 (4)
O30.0328 (6)0.0228 (6)0.0330 (6)0.0090 (4)0.0034 (5)0.0032 (5)
O40.0287 (9)0.0348 (10)0.0599 (13)0.0000.0000 (9)0.000
C10.0253 (7)0.0185 (7)0.0233 (7)0.0039 (6)0.0076 (6)0.0002 (5)
C20.0451 (15)0.0169 (11)0.0555 (17)0.0000.0141 (13)0.000
Geometric parameters (Å, º) top
Co1—O2i2.0584 (11)K1—O1vii3.4628 (19)
Co1—O22.0584 (11)K1—K1iv4.2086 (14)
Co1—O2ii2.0584 (11)K1—HW22.89 (3)
Co1—O2iii2.0584 (11)O1—K1vii3.4628 (19)
Co1—O12.1347 (18)O1—HW10.81 (2)
Co1—O1i2.1347 (18)O2—C11.2598 (18)
Co1—K1i3.5726 (13)O2—K1i2.7987 (13)
Co1—K13.5726 (13)O3—C11.2582 (18)
K1—O42.7811 (15)O3—K1viii2.8541 (14)
K1—O4iv2.7811 (15)O4—K1iv2.7810 (15)
K1—O2iii2.7987 (13)O4—HW20.80 (3)
K1—O2i2.7987 (13)C1—C21.5157 (19)
K1—O3v2.8541 (14)C2—C1iii1.5157 (19)
K1—O3vi2.8541 (14)C2—H10.9700
K1—O13.057 (2)C2—H20.9700
O2i—Co1—O2180.00 (11)O3v—K1—O1vii49.62 (3)
O2i—Co1—O2ii88.03 (6)O3vi—K1—O1vii49.62 (3)
O2—Co1—O2ii91.97 (6)O1—K1—O1vii72.74 (6)
O2i—Co1—O2iii91.97 (6)O4—K1—Co1102.54 (2)
O2—Co1—O2iii88.03 (6)O4iv—K1—Co1102.54 (2)
O2ii—Co1—O2iii180.0O2iii—K1—Co135.11 (2)
O2i—Co1—O186.32 (5)O2i—K1—Co135.11 (2)
O2—Co1—O193.68 (5)O3v—K1—Co1118.77 (3)
O2ii—Co1—O193.68 (5)O3vi—K1—Co1118.77 (3)
O2iii—Co1—O186.32 (5)O1—K1—Co136.53 (4)
O2i—Co1—O1i93.68 (5)O1vii—K1—Co1109.27 (4)
O2—Co1—O1i86.32 (5)O4—K1—K1iv40.83 (3)
O2ii—Co1—O1i86.32 (5)O4iv—K1—K1iv40.83 (3)
O2iii—Co1—O1i93.68 (5)O2iii—K1—K1iv91.05 (3)
O1—Co1—O1i180.00 (8)O2i—K1—K1iv91.05 (3)
O2i—Co1—K1i128.56 (3)O3v—K1—K1iv110.98 (3)
O2—Co1—K1i51.44 (3)O3vi—K1—K1iv110.98 (3)
O2ii—Co1—K1i51.44 (3)O1—K1—K1iv143.21 (4)
O2iii—Co1—K1i128.56 (3)O1vii—K1—K1iv144.05 (4)
O1—Co1—K1i121.53 (5)Co1—K1—K1iv106.68 (3)
O1i—Co1—K1i58.47 (5)O4—K1—HW216.2 (5)
O2i—Co1—K151.44 (3)O4iv—K1—HW295.2 (5)
O2—Co1—K1128.56 (3)O2iii—K1—HW2107.8 (5)
O2ii—Co1—K1128.56 (3)O2i—K1—HW257.0 (5)
O2iii—Co1—K151.44 (3)O3v—K1—HW274.4 (6)
O1—Co1—K158.47 (5)O3vi—K1—HW2150.2 (5)
O1i—Co1—K1121.53 (5)O1—K1—HW2111.6 (5)
K1i—Co1—K1180.0O1vii—K1—HW2123.8 (6)
O4—K1—O4iv81.66 (7)Co1—K1—HW291.0 (5)
O4—K1—O2iii111.08 (4)K1iv—K1—HW254.9 (5)
O4iv—K1—O2iii70.62 (3)Co1—O1—K185.00 (6)
O4—K1—O2i70.62 (3)Co1—O1—K1vii167.75 (8)
O4iv—K1—O2i111.08 (4)K1—O1—K1vii107.26 (6)
O2iii—K1—O2i63.86 (5)Co1—O1—HW1114.1 (18)
O4—K1—O3v78.97 (4)K1—O1—HW1124.1 (16)
O4iv—K1—O3v137.16 (4)K1vii—O1—HW159.3 (17)
O2iii—K1—O3v152.22 (4)C1—O2—Co1131.78 (10)
O2i—K1—O3v97.86 (4)C1—O2—K1i123.99 (10)
O4—K1—O3vi137.16 (4)Co1—O2—K1i93.45 (4)
O4iv—K1—O3vi78.97 (4)C1—O3—K1viii128.27 (10)
O2iii—K1—O3vi97.86 (4)K1—O4—K1iv98.34 (7)
O2i—K1—O3vi152.22 (4)K1—O4—HW289.5 (19)
O3v—K1—O3vi90.00 (5)K1iv—O4—HW2146 (2)
O4—K1—O1127.30 (3)O3—C1—O2122.62 (14)
O4iv—K1—O1127.30 (3)O3—C1—C2115.27 (15)
O2iii—K1—O158.47 (4)O2—C1—C2122.11 (15)
O2i—K1—O158.47 (4)C1iii—C2—C1124.1 (2)
O3v—K1—O194.50 (4)C1iii—C2—H1106.3
O3vi—K1—O194.50 (4)C1—C2—H1106.3
O4—K1—O1vii127.77 (3)C1iii—C2—H2106.3
O4iv—K1—O1vii127.77 (3)C1—C2—H2106.3
O2iii—K1—O1vii118.90 (4)H1—C2—H2106.4
O2i—K1—O1vii118.90 (4)
Symmetry codes: (i) x, y, z; (ii) x, y, z; (iii) x, y, z; (iv) x1, y, z1; (v) x1/2, y1/2, z1; (vi) x1/2, y+1/2, z1; (vii) x, y, z1; (viii) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HW1···O3ix0.81 (2)1.91 (2)2.7077 (17)167 (2)
O4—HW2···O3i0.80 (3)2.03 (3)2.8372 (18)176 (3)
Symmetry codes: (i) x, y, z; (ix) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[CoK2(C3H2O4)2(H2O)4]
Mr413.28
Crystal system, space groupMonoclinic, C2/m
Temperature (K)293
a, b, c (Å)9.462 (2), 11.014 (3), 7.740 (2)
β (°) 115.65 (2)
V3)727.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.81
Crystal size (mm)0.15 × 0.13 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1825, 835, 813
Rint0.022
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.057, 1.15
No. of reflections835
No. of parameters63
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.30

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), MolEN (Fair, 1990), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Selected bond lengths (Å) top
Co1—O2i2.0584 (11)Co1—O2iii2.0584 (11)
Co1—O22.0584 (11)Co1—O12.1347 (18)
Co1—O2ii2.0584 (11)Co1—O1i2.1347 (18)
Symmetry codes: (i) x, y, z; (ii) x, y, z; (iii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HW1···O3iv0.81 (2)1.91 (2)2.7077 (17)167 (2)
O4—HW2···O3i0.80 (3)2.03 (3)2.8372 (18)176 (3)
Symmetry codes: (i) x, y, z; (iv) x+1/2, y+1/2, z.
 

Acknowledgements

The authors thank the Agence Universitaire de la Francophonie for financial support (AUF-PSCI No. 6314PS804).

References

First citationBaggio, R., Garland, M. T. & Perec, M. (2003). Acta Cryst. C59, m30–m32.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands,  Google Scholar
First citationFair, C. K. (1990). MolEN. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLi, X., Cao, R., Sun, D., Yuan, D., Bi, W., Li, X. & Wang, Y. (2004). J. Mol. Struct. 694, 205–210.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, D.-Q. (2006). Acta Cryst. E62, m1530–m1532.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, X.-J., Zhang, Z.-H., Wang, Y. & Du, M. (2007). Inorg. Chim. Acta, 360, 1921–1928.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds