organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1266-o1267

7-(4-Chloro­benzyl­­idene)-3-[(4-chloro­phen­­oxy)meth­yl]-6-(4-nitro­thio­phen-2-yl)-7H-1,2,4-triazolo[3,4-b][1,3,4]thia­diazine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 21 April 2011; accepted 26 April 2011; online 29 April 2011)

In the title compound, C22H13Cl2N5O3S2, the thia­diazine ring adopts a half-chair conformation. The benzene rings of the chloro­phen­oxy and chloro­benzyl groups and the thio­phene ring form dihedral angles of 35.6 (1), 80.7 (1) and 14.2 (1)°, respectively, with the triazole ring. In the crystal, mol­ecules are connected into sheets parallel to ([\overline{1}]11) by inter­molecular C—H⋯N and C—H⋯Cl hydrogen bonds. In addition, ππ stacking inter­actions are observed between thio­phene and triazole rings, and between inversion-related triazole rings [centroid–centroid distances = 3.5975 (11) and 3.4324 (11) Å].

Related literature

For general background to and applications of 1,2,4-triazole derivatives, see: Shujuan et al. (2004[Shujuan, S., Hongxiang, L., Gao, Y., Fan, P., Ma, B., Ge, W. & Wang, X. (2004). J. Pharm. Biomed. Anal. 34, 1117-1124.]); Clemons et al. (2004[Clemons, M., Coleman, R. E. & Verma, S. (2004). Cancer Treat. Rev. 30, 325-332.]); Johnston (2002[Johnston, G. A. R. (2002). Curr. Top. Med. Chem. 2, 903-913.]); Wei et al. (2007[Wei, T.-B., Tang, J., Liu, H. & Zhang, Y.-M. (2007). Phosphorus Sulfur Silicon, 182, 1581-1587.]). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Jin et al. (2004[Jin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642-o643.]). For related structures, see: Goh et al. (2010a[Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010a). Acta Cryst. E66, o1303.],b[Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010b). Acta Cryst. E66, o1394-o1395.],c[Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010c). Acta Cryst. E66, o2162-o2163.],d[Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010d). Acta Cryst. E66, o2178-o2179.]).

[Scheme 1]

Experimental

Crystal data
  • C22H13Cl2N5O3S2

  • Mr = 530.39

  • Triclinic, [P \overline 1]

  • a = 8.5021 (2) Å

  • b = 10.0379 (2) Å

  • c = 14.3623 (3) Å

  • α = 94.434 (1)°

  • β = 97.981 (1)°

  • γ = 109.242 (1)°

  • V = 1136.07 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 296 K

  • 0.39 × 0.32 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.827, Tmax = 0.946

  • 19590 measured reflections

  • 6548 independent reflections

  • 5142 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.133

  • S = 1.04

  • 6548 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯N2i 0.93 2.60 3.495 (3) 162
C21—H21A⋯Cl1ii 0.93 2.81 3.691 (2) 159
Symmetry codes: (i) x+1, y+1, z; (ii) x, y-1, z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The 1,2,4-triazole nucleus has been incorporated into a wide variety of therapeutically interesting compounds. Several compounds containing 1,2,4-triazole rings are well known as drugs. For example, fluconazole is used as an antimicrobial drug (Shujuan et al., 2004), while vorozole, letrozole and anastrozole are non-steroidal drugs used for the treatment of cancer (Clemons et al., 2004) and loreclezole is used as an anticonvulsant (Johnston et al., 2002). Similarly substituted derivatives of triazole possess comprehensive bioactivities such as antimicrobial, anti-inflammatory, analgesic, antihypertensive, anticonvulsant and antiviral activities (Wei et al., 2007). In continuation of our search on the synthesis of biologically active compounds, we synthesized triazolothiadiazine from triazole.

In the title compound, the 1,2,4-triazole (C8/N1–N3/C9) and thiophene (C12–C15/S2) rings are essentially planar, with maximum deviations of 0.006 (2) and 0.003 (2) Å for atom C9 and C14, respectively. The 1,3,4-thiadiazine (C9–C11/N3/N4/S1) ring is slightly distorted and may be regarded as having a half-chair conformation with puckering parameters, Q = 0.474 (2) Å, θ = 113.9 (2)°, ϕ = 149.1 (2)° (Cremer & Pople, 1975).

The two benzene rings (C1–C6 and C17–C22) and the thiophene (C12–C15/S2) ring form dihedral angles of 35.6 (1), 80.7 (1) and 14.2 (1)°, respectively, with the 1,2,4-triazole ring (C8/N1–N3/C9). The geometric parameters are consistent with those observed in closely related structures (Goh et al., 2010a,b,c,d). The bond lengths show normal values (Allen et al. 1987).

In the crystal packing (Fig. 2), the molecules are connected by intermolecular C15—H15A···N2 and C21—H21A···Cl1 interactions that link the molecules into two–dimensional arrays parallel to the (1 1 1). In addition, the molecular packing is also stabilized by ππ stacking interactions between thiophene (C12–C15/S2; centroid Cg1) and 1,2,4-triazole (C8/N1–N3/C9; centroid Cg2) rings, with a Cg1···Cg2# separation of 3.5975 (11) Å (symmetry code #: 1-x, 1-y, -z), and that between 1,2,4-triazole (C8/N1–N3/C9) rings at (x, y, z) and (-x, 1-y, -z), with their centroids separated by 3.4324 (11) Å.

Related literature top

For general background and applications of 1,2,4-triazole derivatives, see: Shujuan et al. (2004); Clemons et al. (2004); Johnston (2002); Wei et al. (2007). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987); Jin et al. (2004). For related structures, see: Goh et al. (2010a,b,c,d).

Experimental top

To a soultion of 4-Amino-5-[(p-chlorophenoxy)methyl]-4H-1,2,4-triazole-3-thiol (0.01 mol) and 2-bromo-3-(p-chlorophenyl)-1-(5-nitrothiophen-2-yl) prop-2-en-1-one (0.01 mol) in ethanol, a catalytic amount of anhydrous sodium acetate was added. The solution was refluxed on a water bath for 9 h. The solid product that separated out was filtered and dried. It was then recrystallized from ethanol. Single crystals suitable for X-ray analysis were obtained from a 1:2 mixture of DMF and ethanol by slow evaporation.

Refinement top

H atoms were placed in calculated positions with C–H = 0.93–0.97 Å. The Uiso value of H atoms were constrained to be 1.2Ueq of the carrier atom.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
7-(4-Chlorobenzylidene)-3-[(4-chlorophenoxy)methyl]-6-(4-nitrothiophen-2-yl)- 7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazine top
Crystal data top
C22H13Cl2N5O3S2Z = 2
Mr = 530.39F(000) = 540
Triclinic, P1Dx = 1.551 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5021 (2) ÅCell parameters from 5767 reflections
b = 10.0379 (2) Åθ = 2.7–32.0°
c = 14.3623 (3) ŵ = 0.51 mm1
α = 94.434 (1)°T = 296 K
β = 97.981 (1)°Plate, yellow
γ = 109.242 (1)°0.39 × 0.32 × 0.11 mm
V = 1136.07 (4) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6548 independent reflections
Radiation source: fine-focus sealed tube5142 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 30.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.827, Tmax = 0.946k = 1414
19590 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0647P)2 + 0.3979P]
where P = (Fo2 + 2Fc2)/3
6548 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C22H13Cl2N5O3S2γ = 109.242 (1)°
Mr = 530.39V = 1136.07 (4) Å3
Triclinic, P1Z = 2
a = 8.5021 (2) ÅMo Kα radiation
b = 10.0379 (2) ŵ = 0.51 mm1
c = 14.3623 (3) ÅT = 296 K
α = 94.434 (1)°0.39 × 0.32 × 0.11 mm
β = 97.981 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6548 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5142 reflections with I > 2σ(I)
Tmin = 0.827, Tmax = 0.946Rint = 0.031
19590 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.04Δρmax = 0.59 e Å3
6548 reflectionsΔρmin = 0.46 e Å3
307 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.31310 (6)0.39243 (5)0.13806 (3)0.03764 (12)
S20.65367 (7)0.90408 (5)0.02701 (4)0.04462 (14)
Cl10.32206 (12)1.05741 (9)0.46034 (7)0.0906 (3)
Cl20.17004 (8)0.36669 (8)0.58962 (4)0.06035 (17)
N10.0052 (2)0.34827 (18)0.09684 (11)0.0418 (4)
N20.0543 (2)0.29741 (17)0.01333 (11)0.0391 (3)
N30.23458 (18)0.51207 (16)0.01635 (10)0.0316 (3)
N40.37735 (19)0.63329 (16)0.00403 (10)0.0349 (3)
N51.0471 (2)0.9832 (2)0.22741 (17)0.0602 (5)
O10.25195 (18)0.62527 (17)0.20276 (10)0.0451 (3)
O21.1570 (3)1.0856 (3)0.2079 (2)0.0994 (8)
O31.0661 (3)0.9215 (3)0.29489 (15)0.0825 (6)
C10.1175 (3)0.7481 (2)0.31056 (13)0.0416 (4)
H1A0.00970.69260.30270.050*
C20.1376 (3)0.8504 (2)0.37127 (14)0.0455 (5)
H2A0.04360.86440.40450.055*
C30.2982 (3)0.9316 (2)0.38211 (16)0.0486 (5)
C40.4404 (3)0.9153 (3)0.33232 (18)0.0540 (5)
H4A0.54790.97170.33990.065*
C50.4199 (3)0.8139 (2)0.27120 (15)0.0464 (5)
H5A0.51450.80280.23640.056*
C60.2593 (2)0.7284 (2)0.26134 (12)0.0367 (4)
C70.0975 (3)0.5693 (2)0.16998 (14)0.0433 (4)
H7A0.00890.51580.22270.052*
H7B0.06640.64640.14260.052*
C80.1140 (2)0.4746 (2)0.09737 (12)0.0355 (4)
C90.1912 (2)0.39706 (18)0.03185 (12)0.0321 (3)
C100.4010 (2)0.57962 (18)0.16945 (12)0.0314 (3)
C110.4557 (2)0.66196 (18)0.09118 (12)0.0317 (3)
C120.6138 (2)0.78458 (19)0.10904 (12)0.0336 (3)
C130.7497 (2)0.8140 (2)0.17988 (13)0.0379 (4)
H13A0.75350.76230.23070.045*
C140.8840 (2)0.9339 (2)0.16526 (15)0.0416 (4)
C150.8518 (3)0.9942 (2)0.08699 (16)0.0456 (5)
H15A0.92781.07390.06870.055*
C160.4132 (2)0.64263 (19)0.25710 (12)0.0351 (4)
H16A0.46270.74130.26730.042*
C170.3573 (2)0.57331 (19)0.33897 (12)0.0336 (3)
C180.2834 (3)0.6385 (2)0.40089 (13)0.0405 (4)
H18A0.27320.72580.39060.049*
C190.2251 (3)0.5746 (2)0.47743 (13)0.0435 (4)
H19A0.17460.61800.51790.052*
C200.2426 (2)0.4462 (2)0.49313 (12)0.0392 (4)
C210.3189 (3)0.3808 (2)0.43452 (13)0.0411 (4)
H21A0.33140.29470.44630.049*
C220.3765 (2)0.4453 (2)0.35809 (12)0.0377 (4)
H22A0.42900.40210.31880.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0452 (3)0.0336 (2)0.0311 (2)0.01036 (19)0.00304 (18)0.00748 (16)
S20.0439 (3)0.0399 (3)0.0487 (3)0.0095 (2)0.0095 (2)0.0183 (2)
Cl10.1026 (6)0.0671 (4)0.1053 (6)0.0239 (4)0.0179 (5)0.0532 (4)
Cl20.0592 (4)0.0895 (4)0.0412 (3)0.0276 (3)0.0205 (2)0.0311 (3)
N10.0374 (9)0.0467 (9)0.0348 (8)0.0072 (7)0.0040 (6)0.0042 (7)
N20.0395 (9)0.0373 (8)0.0343 (8)0.0054 (7)0.0059 (6)0.0041 (6)
N30.0280 (7)0.0361 (7)0.0276 (6)0.0057 (6)0.0063 (5)0.0072 (5)
N40.0309 (7)0.0381 (8)0.0310 (7)0.0043 (6)0.0068 (6)0.0083 (6)
N50.0348 (10)0.0588 (12)0.0699 (14)0.0003 (9)0.0002 (9)0.0045 (10)
O10.0376 (7)0.0657 (9)0.0394 (7)0.0221 (7)0.0121 (6)0.0219 (6)
O20.0397 (10)0.0808 (15)0.144 (2)0.0193 (10)0.0013 (12)0.0271 (14)
O30.0505 (11)0.1096 (17)0.0642 (12)0.0057 (11)0.0134 (9)0.0150 (11)
C10.0357 (10)0.0531 (11)0.0356 (9)0.0142 (9)0.0050 (7)0.0100 (8)
C20.0512 (12)0.0492 (11)0.0379 (10)0.0227 (10)0.0005 (8)0.0052 (8)
C30.0614 (14)0.0369 (10)0.0472 (11)0.0146 (9)0.0109 (10)0.0109 (8)
C40.0462 (12)0.0482 (12)0.0640 (14)0.0089 (10)0.0117 (10)0.0162 (10)
C50.0370 (10)0.0531 (12)0.0483 (11)0.0151 (9)0.0045 (8)0.0099 (9)
C60.0361 (9)0.0473 (10)0.0274 (8)0.0153 (8)0.0051 (7)0.0060 (7)
C70.0338 (10)0.0613 (12)0.0345 (9)0.0139 (9)0.0063 (7)0.0156 (8)
C80.0308 (9)0.0439 (10)0.0287 (8)0.0090 (7)0.0048 (6)0.0046 (7)
C90.0328 (8)0.0338 (8)0.0285 (7)0.0086 (7)0.0076 (6)0.0050 (6)
C100.0283 (8)0.0348 (8)0.0291 (8)0.0071 (7)0.0062 (6)0.0073 (6)
C110.0302 (8)0.0349 (8)0.0295 (8)0.0083 (7)0.0086 (6)0.0075 (6)
C120.0316 (9)0.0332 (8)0.0328 (8)0.0049 (7)0.0087 (7)0.0074 (6)
C130.0331 (9)0.0427 (10)0.0329 (8)0.0063 (8)0.0058 (7)0.0053 (7)
C140.0309 (9)0.0404 (10)0.0457 (10)0.0031 (8)0.0069 (8)0.0002 (8)
C150.0408 (11)0.0304 (9)0.0591 (12)0.0004 (8)0.0172 (9)0.0059 (8)
C160.0346 (9)0.0352 (9)0.0315 (8)0.0056 (7)0.0082 (7)0.0046 (7)
C170.0302 (8)0.0395 (9)0.0274 (8)0.0073 (7)0.0052 (6)0.0037 (6)
C180.0448 (11)0.0387 (9)0.0372 (9)0.0115 (8)0.0118 (8)0.0053 (7)
C190.0466 (11)0.0532 (12)0.0327 (9)0.0178 (9)0.0138 (8)0.0031 (8)
C200.0331 (9)0.0540 (11)0.0263 (8)0.0086 (8)0.0047 (7)0.0089 (7)
C210.0434 (11)0.0495 (11)0.0341 (9)0.0201 (9)0.0051 (8)0.0118 (8)
C220.0389 (10)0.0496 (10)0.0278 (8)0.0192 (8)0.0060 (7)0.0055 (7)
Geometric parameters (Å, º) top
S1—C91.7342 (18)C5—C61.386 (3)
S1—C101.7727 (18)C5—H5A0.93
S2—C151.694 (2)C7—C81.486 (3)
S2—C121.7330 (17)C7—H7A0.97
Cl1—C31.736 (2)C7—H7B0.97
Cl2—C201.7386 (18)C10—C161.339 (2)
N1—C81.302 (2)C10—C111.483 (2)
N1—N21.403 (2)C11—C121.467 (2)
N2—C91.303 (2)C12—C131.364 (3)
N3—C91.364 (2)C13—C141.413 (3)
N3—C81.376 (2)C13—H13A0.93
N3—N41.383 (2)C14—C151.354 (3)
N4—C111.296 (2)C15—H15A0.93
N5—O31.210 (3)C16—C171.468 (2)
N5—O21.221 (3)C16—H16A0.93
N5—C141.449 (3)C17—C221.391 (3)
O1—C61.375 (2)C17—C181.397 (3)
O1—C71.410 (2)C18—C191.384 (3)
C1—C21.382 (3)C18—H18A0.93
C1—C61.391 (3)C19—C201.377 (3)
C1—H1A0.93C19—H19A0.93
C2—C31.378 (3)C20—C211.381 (3)
C2—H2A0.93C21—C221.383 (3)
C3—C41.381 (3)C21—H21A0.93
C4—C51.378 (3)C22—H22A0.93
C4—H4A0.93
C9—S1—C1095.62 (8)N3—C9—S1121.40 (13)
C15—S2—C1292.18 (10)C16—C10—C11122.26 (16)
C8—N1—N2107.87 (15)C16—C10—S1122.39 (13)
C9—N2—N1106.29 (15)C11—C10—S1115.32 (12)
C9—N3—C8104.63 (14)N4—C11—C12114.57 (15)
C9—N3—N4128.75 (14)N4—C11—C10125.55 (16)
C8—N3—N4126.23 (14)C12—C11—C10119.85 (15)
C11—N4—N3115.80 (14)C13—C12—C11128.47 (16)
O3—N5—O2124.2 (2)C13—C12—S2111.57 (14)
O3—N5—C14118.5 (2)C11—C12—S2119.62 (13)
O2—N5—C14117.2 (2)C12—C13—C14110.48 (17)
C6—O1—C7115.44 (15)C12—C13—H13A124.8
C2—C1—C6119.61 (19)C14—C13—H13A124.8
C2—C1—H1A120.2C15—C14—C13115.29 (18)
C6—C1—H1A120.2C15—C14—N5122.83 (19)
C3—C2—C1119.4 (2)C13—C14—N5121.8 (2)
C3—C2—H2A120.3C14—C15—S2110.47 (15)
C1—C2—H2A120.3C14—C15—H15A124.8
C2—C3—C4121.7 (2)S2—C15—H15A124.8
C2—C3—Cl1119.05 (18)C10—C16—C17127.24 (17)
C4—C3—Cl1119.29 (18)C10—C16—H16A116.4
C5—C4—C3118.8 (2)C17—C16—H16A116.4
C5—C4—H4A120.6C22—C17—C18118.34 (16)
C3—C4—H4A120.6C22—C17—C16122.56 (16)
C4—C5—C6120.4 (2)C18—C17—C16119.10 (17)
C4—C5—H5A119.8C19—C18—C17120.80 (18)
C6—C5—H5A119.8C19—C18—H18A119.6
O1—C6—C5116.08 (17)C17—C18—H18A119.6
O1—C6—C1123.84 (17)C20—C19—C18119.36 (18)
C5—C6—C1120.07 (18)C20—C19—H19A120.3
O1—C7—C8109.98 (16)C18—C19—H19A120.3
O1—C7—H7A109.7C19—C20—C21121.20 (17)
C8—C7—H7A109.7C19—C20—Cl2119.24 (15)
O1—C7—H7B109.7C21—C20—Cl2119.55 (16)
C8—C7—H7B109.7C20—C21—C22119.05 (18)
H7A—C7—H7B108.2C20—C21—H21A120.5
N1—C8—N3109.93 (16)C22—C21—H21A120.5
N1—C8—C7124.21 (17)C21—C22—C17121.21 (17)
N3—C8—C7125.52 (17)C21—C22—H22A119.4
N2—C9—N3111.26 (15)C17—C22—H22A119.4
N2—C9—S1127.32 (14)
C8—N1—N2—C90.1 (2)C16—C10—C11—N4140.1 (2)
C9—N3—N4—C1121.5 (3)S1—C10—C11—N438.2 (2)
C8—N3—N4—C11166.81 (17)C16—C10—C11—C1242.0 (3)
C6—C1—C2—C30.0 (3)S1—C10—C11—C12139.59 (14)
C1—C2—C3—C41.3 (3)N4—C11—C12—C13156.04 (19)
C1—C2—C3—Cl1178.71 (16)C10—C11—C12—C1322.0 (3)
C2—C3—C4—C50.8 (4)N4—C11—C12—S216.7 (2)
Cl1—C3—C4—C5179.26 (18)C10—C11—C12—S2165.26 (13)
C3—C4—C5—C61.1 (4)C15—S2—C12—C130.15 (16)
C7—O1—C6—C5161.28 (18)C15—S2—C12—C11174.03 (15)
C7—O1—C6—C119.9 (3)C11—C12—C13—C14173.10 (18)
C4—C5—C6—O1176.5 (2)S2—C12—C13—C140.1 (2)
C4—C5—C6—C12.4 (3)C12—C13—C14—C150.4 (3)
C2—C1—C6—O1176.98 (18)C12—C13—C14—N5176.46 (18)
C2—C1—C6—C51.8 (3)O3—N5—C14—C15178.6 (2)
C6—O1—C7—C8172.11 (16)O2—N5—C14—C151.6 (4)
N2—N1—C8—N30.7 (2)O3—N5—C14—C132.0 (3)
N2—N1—C8—C7174.39 (17)O2—N5—C14—C13178.2 (2)
C9—N3—C8—N11.1 (2)C13—C14—C15—S20.5 (2)
N4—N3—C8—N1174.43 (16)N5—C14—C15—S2176.31 (17)
C9—N3—C8—C7174.73 (17)C12—S2—C15—C140.37 (16)
N4—N3—C8—C712.0 (3)C11—C10—C16—C17177.31 (17)
O1—C7—C8—N1132.7 (2)S1—C10—C16—C170.9 (3)
O1—C7—C8—N354.6 (3)C10—C16—C17—C2239.3 (3)
N1—N2—C9—N30.8 (2)C10—C16—C17—C18141.3 (2)
N1—N2—C9—S1177.89 (13)C22—C17—C18—C192.3 (3)
C8—N3—C9—N21.18 (19)C16—C17—C18—C19178.31 (18)
N4—N3—C9—N2174.25 (16)C17—C18—C19—C200.9 (3)
C8—N3—C9—S1177.59 (13)C18—C19—C20—C210.7 (3)
N4—N3—C9—S14.5 (2)C18—C19—C20—Cl2179.75 (16)
C10—S1—C9—N2155.83 (17)C19—C20—C21—C220.8 (3)
C10—S1—C9—N325.61 (15)Cl2—C20—C21—C22179.87 (15)
C9—S1—C10—C16135.40 (16)C20—C21—C22—C170.6 (3)
C9—S1—C10—C1142.97 (14)C18—C17—C22—C212.2 (3)
N3—N4—C11—C12175.41 (15)C16—C17—C22—C21178.45 (18)
N3—N4—C11—C102.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···N2i0.932.603.495 (3)162
C21—H21A···Cl1ii0.932.813.691 (2)159
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z+1.

Experimental details

Crystal data
Chemical formulaC22H13Cl2N5O3S2
Mr530.39
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.5021 (2), 10.0379 (2), 14.3623 (3)
α, β, γ (°)94.434 (1), 97.981 (1), 109.242 (1)
V3)1136.07 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.39 × 0.32 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.827, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
19590, 6548, 5142
Rint0.031
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.133, 1.04
No. of reflections6548
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.46

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···N2i0.932.603.495 (3)162
C21—H21A···Cl1ii0.932.813.691 (2)159
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF, SIJA and IAR thank Universiti Sains Malaysia for the Research University Grants (Nos.1001/PFIZIK/811160 and 1001/PFIZIK/811151).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClemons, M., Coleman, R. E. & Verma, S. (2004). Cancer Treat. Rev. 30, 325–332.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010a). Acta Cryst. E66, o1303.  Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010b). Acta Cryst. E66, o1394–o1395.  Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010c). Acta Cryst. E66, o2162–o2163.  Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010d). Acta Cryst. E66, o2178–o2179.  Google Scholar
First citationJin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642–o643.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJohnston, G. A. R. (2002). Curr. Top. Med. Chem. 2, 903–913.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShujuan, S., Hongxiang, L., Gao, Y., Fan, P., Ma, B., Ge, W. & Wang, X. (2004). J. Pharm. Biomed. Anal. 34, 1117–1124.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, T.-B., Tang, J., Liu, H. & Zhang, Y.-M. (2007). Phosphorus Sulfur Silicon, 182, 1581–1587.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1266-o1267
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds