organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1133-o1134

2,2,2-Tris(pyrazol-1-yl)ethanol

aDepartment of Chemistry, Illinois State University, Campus Box 4160, Normal, IL 61790-4160, USA
*Correspondence e-mail: mclauchlan@ilstu.edu

(Received 31 March 2011; accepted 6 April 2011; online 16 April 2011)

The title compound TPE, C11H12N6O, was prepared by slow evaporation from diethyl ether. In the crystal, there is a hydrogen bond between the alcohol H atom and an N in the pyrazole ring of a neighboring mol­ecule.

Related literature

For the original preparation, see: Reger et al. (2000[Reger, D. L., Grattan, T. C., Brown, K. J., Little, C. A., Lamba, J. J. S., Rheingold, A. L. & Sommer, R. D. (2000). J. Organomet. Chem. 607, 120-128.]). The title compound was prepared as part of our efforts to study tridentate scorpionate and psuedo-scorpionate ligands for coordination to vanadium, see: McLauchlan et al. (2004[McLauchlan, C. C., Varda, A. N. & Giles, J. R. (2004). Acta Cryst. E60, o1419-o1420.], 2009[McLauchlan, C. C., Weberski, M. P. Jr & Greiner, B. A. (2009). Inorg. Chim. Acta, 362, 2662-2669.]); McLauchlan & McDonald (2005[McLauchlan, C. C. & McDonald, K. J. (2005). Acta Cryst. E61, m2379-m2381.], 2006[McLauchlan, C. C. & McDonald, K. J. (2006). Acta Cryst. E62, m588-m590.]). For coordination complexes with TPE, see: Sánchez-Méndez et al. (2004[Sánchez-Méndez, A., Silvestri, G. F., de Jesús, E., de la Mata, F. J., Flores, J. C., Gómez, R. & Gómez-Sal, P. (2004). Eur. J. Inorg. Chem. pp. 3287-3296.]), Garcia-Orozco et al. (2006[Garcia-Orozco, I., Quijada, R., Vera, K. & Valderrama, M. (2006). J. Mol. Catal. A: Chem. 260, 70-76.]); Silva et al. (2009[Silva, T. F. S., Mishra, G. S., Guedes da Silva, M. F., Wanke, R., Martins, L. M. D. R. S. & Pombeiro, A. J. L. (2009). Dalton Trans. pp. 9207-9215.]). For applications following substitution of the alcohol, see: Reger, Wright et al. (2001[Reger, D. L., Wright, T. D., Semeniuc, R. F., Grattan, T. C. & Smith, M. D. (2001). Inorg. Chem. 40, 6212-6219.]); Reger, Semeniuc et al. (2001[Reger, D. L., Semeniuc, R. F. & Smith, M. D. (2001). Inorg. Chem. 40, 6545-6546.]); Reger & Grattan (2003[Reger, D. L. & Grattan, T. C. (2003). Synthesis, 3, 350-356.]); Pettinari & Pettinari (2005[Pettinari, C. & Pettinari, R. (2005). Coord. Chem. Rev. 249, 525-543.]); Silva et al. (2009[Silva, T. F. S., Mishra, G. S., Guedes da Silva, M. F., Wanke, R., Martins, L. M. D. R. S. & Pombeiro, A. J. L. (2009). Dalton Trans. pp. 9207-9215.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12N6O

  • Mr = 244.27

  • Monoclinic, C 2/c

  • a = 19.6589 (14) Å

  • b = 11.5155 (8) Å

  • c = 12.4185 (18) Å

  • β = 125.740 (1)°

  • V = 2281.9 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 93 K

  • 0.40 × 0.39 × 0.33 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.699, Tmax = 0.746

  • 9505 measured reflections

  • 2334 independent reflections

  • 2187 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.087

  • S = 1.05

  • 2334 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N5i 0.851 (18) 2.003 (18) 2.8494 (13) 172.9 (16)
Symmetry code: (i) [x, -y+2, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In our efforts to study tridentate scorpionate and psuedo-scorpionate ligands for coordination to vanadium (McLauchlan et al., 2004; McLauchlan & McDonald, 2005; McLauchlan & McDonald, 2006; McLauchlan et al., 2009), we have prepared and crystallized the title compound, tris-2,2,2-(1-pyrazolyl)ethanol, TPE, Figure 1. TPE had been reported by Reger et al. (2000) and used as a valuable tool for coordination chemistry owing to the ability to functionalize the alcohol (inter alia Reger, Wright et al., 2001; Reger, Semeniuc et al., 2001; Reger & Grattan, 2003; Pettinari & Pettinari, 2005; Silva et al., 2009). Others have reported coordination complexes with TPE, including Sánchez-Méndez et al.(2004), Garcia-Orozco et al. (2006), and Silva et al. (2009). The structure of TPE shows evidence of hydrogen bonding between the alcoholic H and an N in the pyrazole ring of a neighboring molecule (Table 1) to form chains of TPE parallel to the c axis (Figure 2). The structural parameters are similar to those of that seen in the structure of TPE bound to Cu(II) by Silva et al. (2009).

Related literature top

For the original preparation, see: Reger et al. (2000). For background to this study, see: McLauchlan et al. (2004, 2009); McLauchlan & McDonald (2005, 2006). For coordination with complexes with TPE, see: Sánchez-Méndez et al. (2004), Garcia-Orozco et al. (2006); Silva et al. (2009). For applications with substitution of the alcohol, see: Reger, Wright et al. (2001); Reger, Semeniuc et al. (2001); Reger & Grattan (2003); Pettinari & Pettinari (2005); Silva et al. (2009).

Experimental top

The title compound was prepared using the method of Reger et al. (2000). Use of freshly sublimed KOtBu was critical for reasonable yield (Silva et al., 2009). Crystals suitable for diffraction study were obtained from slow evaporation of a diethyl ether solution of the product. Characterization data are in line with published data (Reger et al., 2000).

Refinement top

The H atoms were geometrically placed (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Uiso(C) or 1.5Ueq(methylene C). H atoms for the pyrazoles and the methylene unit were modeled in fixed positions whereas the alcoholic H (on O1) was allowed to refine freely.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound showing 50% displacement ellipsoids (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. Several symmetry equivalent molecules of the title compound viewed along the b axis. Hydrogen bonds between the alcoholic O and the neighboring pyrazole N are indicated in light blue and are parallel to the c axis. The neighboring molecule is related by the symmetry code x, -y + 2, z - 1/2. Non-H-bonding hydrogen atoms have been removed for clarity.
2,2,2-Tris(pyrazol-1-yl)ethanol top
Crystal data top
C11H12N6OF(000) = 1024
Mr = 244.27Dx = 1.422 Mg m3
Monoclinic, C2/cMelting point: 387(2) K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 19.6589 (14) ÅCell parameters from 6831 reflections
b = 11.5155 (8) Åθ = 2.2–31.4°
c = 12.4185 (18) ŵ = 0.10 mm1
β = 125.740 (1)°T = 93 K
V = 2281.9 (4) Å3Block, colorless
Z = 80.40 × 0.39 × 0.33 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2334 independent reflections
Radiation source: fine-focus sealed tube2187 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2423
Tmin = 0.699, Tmax = 0.746k = 1414
9505 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0454P)2 + 1.8611P]
where P = (Fo2 + 2Fc2)/3
2334 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C11H12N6OV = 2281.9 (4) Å3
Mr = 244.27Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.6589 (14) ŵ = 0.10 mm1
b = 11.5155 (8) ÅT = 93 K
c = 12.4185 (18) Å0.40 × 0.39 × 0.33 mm
β = 125.740 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2334 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2187 reflections with I > 2σ(I)
Tmin = 0.699, Tmax = 0.746Rint = 0.018
9505 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.27 e Å3
2334 reflectionsΔρmin = 0.25 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H atoms for the pyrazoles and the methylene unit were modeled in fixed positions whereas the alcoholic H (on O1) was allowed to refine freely.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.16215 (5)0.93915 (7)0.05201 (8)0.01904 (19)
N10.14888 (6)1.06979 (8)0.22818 (9)0.0163 (2)
N20.18638 (6)0.87863 (8)0.30788 (9)0.0161 (2)
N30.29052 (6)1.02830 (8)0.40204 (9)0.0169 (2)
N40.16341 (6)1.17862 (8)0.20317 (10)0.0198 (2)
N50.17186 (6)0.88180 (8)0.40312 (9)0.0207 (2)
N60.36644 (6)0.98761 (9)0.43963 (10)0.0225 (2)
C10.08823 (7)1.22859 (10)0.13521 (11)0.0196 (2)
H1A0.07821.30660.10460.024*
C20.02568 (7)1.15312 (10)0.11394 (11)0.0214 (2)
H2A0.03241.16910.06840.026*
C30.06644 (7)1.05131 (10)0.17310 (11)0.0198 (2)
H3A0.04180.98120.17530.024*
C40.13735 (8)0.77969 (10)0.39302 (12)0.0231 (3)
H4A0.12100.75570.44800.028*
C50.12786 (7)0.71147 (10)0.29158 (12)0.0221 (2)
H5A0.10450.63580.26520.027*
C60.15956 (7)0.77737 (9)0.23876 (11)0.0180 (2)
H6A0.16230.75630.16740.022*
C70.42096 (8)1.04416 (11)0.55168 (12)0.0242 (3)
H7A0.48001.03410.60220.029*
C80.38124 (8)1.12033 (10)0.58653 (11)0.0231 (3)
H8A0.40681.16990.66170.028*
C90.29742 (7)1.10762 (10)0.48837 (11)0.0199 (2)
H9A0.25271.14690.48210.024*
C100.21515 (7)0.98322 (9)0.28018 (10)0.0156 (2)
C110.23604 (7)0.95939 (10)0.17984 (10)0.0168 (2)
H11A0.26621.02690.17710.020*
H11B0.27320.89080.20890.020*
H1O0.1605 (10)0.9921 (15)0.0027 (17)0.033 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0198 (4)0.0210 (4)0.0151 (4)0.0026 (3)0.0094 (3)0.0001 (3)
N10.0177 (5)0.0141 (4)0.0187 (5)0.0005 (3)0.0116 (4)0.0007 (3)
N20.0192 (5)0.0152 (4)0.0161 (4)0.0000 (3)0.0115 (4)0.0003 (3)
N30.0167 (5)0.0166 (4)0.0171 (5)0.0006 (3)0.0096 (4)0.0015 (4)
N40.0228 (5)0.0154 (5)0.0249 (5)0.0002 (4)0.0160 (4)0.0017 (4)
N50.0278 (5)0.0207 (5)0.0192 (5)0.0005 (4)0.0169 (4)0.0002 (4)
N60.0168 (5)0.0238 (5)0.0220 (5)0.0014 (4)0.0087 (4)0.0031 (4)
C10.0235 (6)0.0177 (5)0.0190 (5)0.0032 (4)0.0132 (5)0.0008 (4)
C20.0176 (5)0.0227 (6)0.0208 (6)0.0010 (4)0.0095 (5)0.0018 (4)
C30.0175 (5)0.0199 (5)0.0215 (5)0.0029 (4)0.0111 (5)0.0029 (4)
C40.0292 (6)0.0211 (6)0.0255 (6)0.0015 (5)0.0196 (5)0.0024 (4)
C50.0246 (6)0.0168 (5)0.0266 (6)0.0023 (4)0.0159 (5)0.0010 (4)
C60.0189 (5)0.0157 (5)0.0187 (5)0.0000 (4)0.0106 (5)0.0019 (4)
C70.0197 (6)0.0265 (6)0.0203 (6)0.0025 (5)0.0081 (5)0.0023 (5)
C80.0267 (6)0.0234 (6)0.0184 (6)0.0069 (5)0.0128 (5)0.0045 (4)
C90.0254 (6)0.0189 (5)0.0205 (5)0.0032 (4)0.0163 (5)0.0031 (4)
C100.0158 (5)0.0147 (5)0.0162 (5)0.0004 (4)0.0093 (4)0.0010 (4)
C110.0166 (5)0.0188 (5)0.0161 (5)0.0012 (4)0.0102 (4)0.0009 (4)
Geometric parameters (Å, º) top
O1—C111.4108 (13)C2—C31.3669 (17)
O1—H1O0.851 (18)C2—H2A0.9500
N1—C31.3582 (14)C3—H3A0.9500
N1—N41.3610 (13)C4—C51.4015 (17)
N1—C101.4578 (13)C4—H4A0.9500
N2—C61.3586 (14)C5—C61.3683 (16)
N2—N51.3698 (13)C5—H5A0.9500
N2—C101.4546 (14)C6—H6A0.9500
N3—C91.3535 (14)C7—C81.4005 (18)
N3—N61.3607 (13)C7—H7A0.9500
N3—C101.4613 (14)C8—C91.3696 (17)
N4—C11.3307 (15)C8—H8A0.9500
N5—C41.3263 (15)C9—H9A0.9500
N6—C71.3292 (16)C10—C111.5475 (15)
C1—C21.3992 (16)C11—H11A0.9900
C1—H1A0.9500C11—H11B0.9900
C11—O1—H1O105.9 (11)C6—C5—H5A127.4
C3—N1—N4112.15 (9)C4—C5—H5A127.4
C3—N1—C10127.64 (9)N2—C6—C5106.90 (10)
N4—N1—C10118.58 (9)N2—C6—H6A126.6
C6—N2—N5111.62 (9)C5—C6—H6A126.6
C6—N2—C10128.49 (9)N6—C7—C8112.10 (11)
N5—N2—C10119.22 (9)N6—C7—H7A124.0
C9—N3—N6112.23 (9)C8—C7—H7A124.0
C9—N3—C10129.19 (9)C9—C8—C7104.84 (10)
N6—N3—C10118.58 (9)C9—C8—H8A127.6
C1—N4—N1103.86 (9)C7—C8—H8A127.6
C4—N5—N2104.35 (9)N3—C9—C8106.80 (10)
C7—N6—N3104.04 (9)N3—C9—H9A126.6
N4—C1—C2112.28 (10)C8—C9—H9A126.6
N4—C1—H1A123.9N2—C10—N1107.50 (8)
C2—C1—H1A123.9N2—C10—N3110.38 (9)
C3—C2—C1104.87 (10)N1—C10—N3108.60 (8)
C3—C2—H2A127.6N2—C10—C11111.49 (8)
C1—C2—H2A127.6N1—C10—C11110.70 (9)
N1—C3—C2106.78 (10)N3—C10—C11108.15 (9)
N1—C3—H3A126.6O1—C11—C10110.62 (9)
C2—C3—H3A126.6O1—C11—H11A109.5
N5—C4—C5111.97 (10)C10—C11—H11A109.5
N5—C4—H4A124.0O1—C11—H11B109.5
C5—C4—H4A124.0C10—C11—H11B109.5
C6—C5—C4105.14 (10)H11A—C11—H11B108.1
C3—N1—N4—C12.18 (12)C6—N2—C10—N1105.80 (12)
C10—N1—N4—C1168.76 (9)N5—N2—C10—N163.96 (12)
C6—N2—N5—C41.32 (12)C6—N2—C10—N3135.91 (11)
C10—N2—N5—C4172.70 (9)N5—N2—C10—N354.33 (12)
C9—N3—N6—C70.22 (13)C6—N2—C10—C1115.69 (15)
C10—N3—N6—C7179.92 (10)N5—N2—C10—C11174.56 (9)
N1—N4—C1—C21.23 (12)C3—N1—C10—N220.24 (14)
N4—C1—C2—C30.10 (13)N4—N1—C10—N2175.52 (9)
N4—N1—C3—C22.31 (13)C3—N1—C10—N3139.67 (11)
C10—N1—C3—C2167.39 (10)N4—N1—C10—N356.09 (12)
C1—C2—C3—N11.41 (12)C3—N1—C10—C11101.74 (12)
N2—N5—C4—C51.10 (13)N4—N1—C10—C1162.50 (12)
N5—C4—C5—C60.51 (14)C9—N3—C10—N291.92 (13)
N5—N2—C6—C51.04 (12)N6—N3—C10—N287.72 (11)
C10—N2—C6—C5171.42 (10)C9—N3—C10—N125.69 (15)
C4—C5—C6—N20.32 (13)N6—N3—C10—N1154.67 (9)
N3—N6—C7—C80.03 (14)C9—N3—C10—C11145.87 (11)
N6—C7—C8—C90.15 (14)N6—N3—C10—C1134.49 (13)
N6—N3—C9—C80.32 (13)N2—C10—C11—O170.77 (11)
C10—N3—C9—C8179.98 (10)N1—C10—C11—O148.84 (12)
C7—C8—C9—N30.28 (13)N3—C10—C11—O1167.70 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N5i0.851 (18)2.003 (18)2.8494 (13)172.9 (16)
Symmetry code: (i) x, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC11H12N6O
Mr244.27
Crystal system, space groupMonoclinic, C2/c
Temperature (K)93
a, b, c (Å)19.6589 (14), 11.5155 (8), 12.4185 (18)
β (°) 125.740 (1)
V3)2281.9 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.39 × 0.33
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.699, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
9505, 2334, 2187
Rint0.018
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.087, 1.05
No. of reflections2334
No. of parameters167
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.25

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXTL (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N5i0.851 (18)2.003 (18)2.8494 (13)172.9 (16)
Symmetry code: (i) x, y+2, z1/2.
 

Acknowledgements

This work was supported by Illinois State University, the American Chemical Society Petroleum Research Fund (46064-B3) and the National Science Foundation (US, CHE-0645081). RSP also acknowledges the support of the Ameri­can Chemical Society Project SEED. The authors also thank the STaRBURSTT Cyberdiffraction Consortium and Dr M. Zeller (Youngstown State University) for the data collection.

References

First citationBruker (2008). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationGarcia-Orozco, I., Quijada, R., Vera, K. & Valderrama, M. (2006). J. Mol. Catal. A: Chem. 260, 70–76.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcLauchlan, C. C. & McDonald, K. J. (2005). Acta Cryst. E61, m2379–m2381.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcLauchlan, C. C. & McDonald, K. J. (2006). Acta Cryst. E62, m588–m590.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcLauchlan, C. C., Varda, A. N. & Giles, J. R. (2004). Acta Cryst. E60, o1419–o1420.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcLauchlan, C. C., Weberski, M. P. Jr & Greiner, B. A. (2009). Inorg. Chim. Acta, 362, 2662–2669.  CrossRef CAS Google Scholar
First citationPettinari, C. & Pettinari, R. (2005). Coord. Chem. Rev. 249, 525–543.  CAS Google Scholar
First citationReger, D. L. & Grattan, T. C. (2003). Synthesis, 3, 350–356.  CrossRef Google Scholar
First citationReger, D. L., Grattan, T. C., Brown, K. J., Little, C. A., Lamba, J. J. S., Rheingold, A. L. & Sommer, R. D. (2000). J. Organomet. Chem. 607, 120–128.  Web of Science CrossRef CAS Google Scholar
First citationReger, D. L., Semeniuc, R. F. & Smith, M. D. (2001). Inorg. Chem. 40, 6545–6546.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationReger, D. L., Wright, T. D., Semeniuc, R. F., Grattan, T. C. & Smith, M. D. (2001). Inorg. Chem. 40, 6212–6219.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSánchez-Méndez, A., Silvestri, G. F., de Jesús, E., de la Mata, F. J., Flores, J. C., Gómez, R. & Gómez-Sal, P. (2004). Eur. J. Inorg. Chem. pp. 3287–3296.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, T. F. S., Mishra, G. S., Guedes da Silva, M. F., Wanke, R., Martins, L. M. D. R. S. & Pombeiro, A. J. L. (2009). Dalton Trans. pp. 9207–9215.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1133-o1134
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds