organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1222

2,6-Di­amino­pyridinium tetra­phenyl­borate–1,2-bis­­(5,7-di­methyl-1,8-naphthyridin-2-yl)diazene (1/1)

aDepartment of Chemistry, The University of Western Ontario, Chemistry Building, 1151 Richmond Street, London, ON, Canada N6A 5B7
*Correspondence e-mail: jwisner@uwo.ca

(Received 15 February 2011; accepted 6 April 2011; online 29 April 2011)

In the title compound, C5H8N3+·C24H20B·C20H18N6, the 1,2-bis­(5,7-dimethyl-1,8-naphthyridin-2-yl)diazene mol­ecule is essentially planar (r.m.s. deviation = 0.0045 Å) and aligned in nearly coplanar manner with the 2,6-diamino­pyridinium ion, making a dihedral angle of 5.19 (5)°. The diamino­pyridine mol­ecule is protonated on the central pyridine N atom and the B atom bears the counter-charge. The amine groups of the diamino pyridinium cation form intra­molecular N—H⋯N hydrogen bonds, resulting in linear and bent inter­actions with the naphthyridine ring system.

Related literature

For related literature, see: Blight et al. (2009[Blight, B. A., Camara-Campos, A., Djurdjevic, S., Kaller, M., Leigh, D. A., McMillan, F. M., McNab, H. & Slawin, A. M. Z. (2009). J. Am. Chem. Soc. 131, 14116-14122.]); Li et al. (2010[Li, H.-J., Fu, W.-F., Li, L., Gan, X., Mu, W.-H., Chen, W.-Q., Duan, X.-M. & Song, H.-B. (2010). Org. Lett. 12, 2924-2927.]); Raboisson et al. (2007[Raboisson, P., DesJarlais, R. L., Reed, R., Lattanze, J., Chaikin, M., Manthey, C. L., Tomczuk, B. E. & Marugan, J. J. (2007). Eur. J. Med. Chem. 42, 334-343.]); Roma et al. (2010[Roma, G., Di Braccio, M., Grossi, G., Piras, D., Ballabeni, V., Tognolini, M., Bertoni, S. & Barocelli, E. (2010). Eur. J. Med. Chem. 45, 352-366.]); Sahoo et al. (2010[Sahoo, U., Seth, A. K., Sen, A. K., Dhanya, B., Chauhan, S. P., Sailor, G. U., Ghelani, T. K. & Chawla, R. (2010). Int. J. ChemTech. Res. 2, 1051-1056.]).

[Scheme 1]

Experimental

Crystal data
  • C5H8N3+·C24H20B·C20H18N6

  • Mr = 771.76

  • Triclinic, [P \overline 1]

  • a = 9.2700 (8) Å

  • b = 14.5143 (10) Å

  • c = 15.9754 (13) Å

  • α = 93.623 (5)°

  • β = 104.266 (5)°

  • γ = 101.876 (5)°

  • V = 2023.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 K

  • 0.09 × 0.07 × 0.03 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.993, Tmax = 0.998

  • 109361 measured reflections

  • 7416 independent reflections

  • 4071 reflections with I > 2σ(I)

  • Rint = 0.177

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.166

  • S = 1.00

  • 7416 reflections

  • 536 parameters

  • H-atom parameters constrained

  • Δρmax = 1.28 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7A⋯N3 0.88 2.21 3.084 (9) 177
N7—H7B⋯N6 0.88 2.51 3.304 (12) 150
N8—H8A⋯N2 0.88 2.30 3.175 (9) 177
N9—H9A⋯N1 0.88 2.02 2.887 (11) 170

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: SHELXTL (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; software used to prepare material for publication: SHELXTL[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.].

Supporting information


Comment top

In the context of utility, 1,8-Naphthyridine derivatives are found to be valuable drugs and with a wide variety of pharmacological applications. They are effective fungicides and known for their antimycobacterial activity. Recent studies have revealed their ability in treatments of diabetes and related disorders. Herein, we report the crystal structure of the title compound C49H46BN9 that has almost coplanar naphthyridine and pyridinium moieties and an almost perfect tetrahedral borate ion. The main forces of attraction here are hydrogen bonding between the acceptor atoms, N of naphthyridine unit and the donor N—H atoms of the diaminopyridinium ion. There is also a π-π stacking interaction between adjacent parallel naphthyridyl rings. The extensions due to these interactions form the three dimensional π-stacked network structure as shown in figure 2.

Within the bis-naphthyridine molecule, the plane of the naphthyridine ring system consisting of N1 and N2 nitrogen atoms is slightly deviated from that of the second naphthyridine ring system consisting of N5 and N6 nitrogen atoms by an angle of 5.300 (4). The torsion angle between the N2, C9, N3 and N4 atoms is -176.514 (280)° indicative of an anti conformation and the torsion angle between the N5, C11, N4 and N3 is 4.165 (441)° indicating the syn conformation of the azo function with each naphthyridine ring system. The diaminopyridinium cation is complexed to the bis(1,8-naphthyridine) in an unsymmetrical fashion via hydrogen bonding and ion-dipole bonding. The hydrogen bonding in the complex displays head-on and bent geometries. The hydrogen bond distances are N1···N9 = 2.887 (4) Å, N2···N8 = 3.175 (4) Å, N3···N7 = 3.084 (4) Å and N6···N7 = 3.304 (4) Å with NH···N bond angles 169.989 (211)°, 177.236 (184)°, 176.497 (194)° and 150.139 (188)° respectively. The hydrogen bond distances range from 2.887 (4) Å to 3.304 (4) Å within the complex. Apart from hydrogen bonding, the naphthyridine moieties interact with the diamino pyridinium cations of adjacent complexes by π-π interactions of their terminal rings. The distance between the centroid of the N1, N2 naphthyridine ring to the plane of the N5, N6 naphthyridine ring and the distance between the centroid of the diamino pyridinium cation to C17 atom which are 3.447 (1) Å and 3.412 (3) Å respectively, strongly indicate π-π interactions. The complexes are set in a columnar arrangement with a distance of 15.531 (1) Å along a axis and 20.350 (1) Å along b axis between the centroids of the columns. The interstices of the columns are occupied by the tetraphenylborate anions. Four phenyl rings complete the slightly distorted tetrahedral geometry around each boron atom and appears non-interactive with the rest of the complex.

Related literature top

For related literature, see: Blight et al. (2009); Li et al. (2010); Raboisson et al. (2007); Roma et al. (2010); Sahoo et al. (2010).

Experimental top

Synthesis of 1,2-bis(5,7-dimethyl-1,8-naphthyridin-2-yl)diazene: A cold solution of 2,4-dimethyl-7-amino-1,8-naphthyridine (1.02 g, 5.86 mmol) in 25 ml water was added dropwise over ten minutes to 10% sodium hypochlorite solution (36 ml, 0.58 mol). The opaque orange mixture was stirred at 0–5° C for 1 h. and extracted using 3x15 ml of dichloromethane. The organic layers were pooled and dried over anhydrous magnesuim sulfate and the solvent was reduced under vacuum to give orange crude solid. The crude product was purified by chromatography on Al2O3 (eluent: acetone/hexane 1/10) in 76% yield.

Synthesis of 2,6-Diaminopyridinium tetrakisphenylborate: The synthesis of (C5H8N3+[BPh4-]) was carried out by adding solution of sodium tetrakisphenylborate (1.65 g, 3.45 mmol, 5 eq.) in water (5 ml) to a a solution of 2,6-di aminopyridine hydrochloride (100 mg, 0.69 mmol) in water (5 ml). After stirring the solution at room temperature for 20 minutes, the resulting precipitate was filtered and washed with small aliquots of water (4x 3 mL) and dried to yield the pure title complex.

Crystallization was carried out by dissolving the 1,2-bis(5,7-dimethyl-1,8-naphthyridin-2-yl)diazene (0.0051 g 0.015 mmol) and 2,6-Diaminopyridinium tetrakisphenylborate (0.0063 g, 0.015 mmoL) in 0.5 ml of acetonitrile and allowing diisopropyl ether (0.5 ml) to slowly diffuse into the acetonitrile solution of the complex. Red plates of the complex developed overnight and were subjected to diffraction at 150 (2) K.

Refinement top

The highest residual peak and deepest hole in the final difference map were located at 0.87 Å and 0.38 Å from the H17 and H1B atoms respectively.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at 50% probability level including hydrogen bonding interactions of the complex.
[Figure 2] Fig. 2. Crystal packing of the complex (borate anion is omitted for ease of visualization) showing π-π interactions.
2,6-Diaminopyridinium tetraphenylborate–1,2-bis(5,7-dimethyl-1,8-naphthyridin-2-yl)diazene (1/1) top
Crystal data top
C5H8N3+·C24H20B·C20H18N6Z = 2
Mr = 771.76F(000) = 816
Triclinic, P1Dx = 1.266 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2700 (8) ÅCell parameters from 4472 reflections
b = 14.5143 (10) Åθ = 2.3–22.3°
c = 15.9754 (13) ŵ = 0.08 mm1
α = 93.623 (5)°T = 150 K
β = 104.266 (5)°Plate, red
γ = 101.876 (5)°0.09 × 0.07 × 0.03 mm
V = 2023.8 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
7416 independent reflections
Radiation source: fine-focus sealed tube4071 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.177
ϕ and ω scansθmax = 25.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1111
Tmin = 0.993, Tmax = 0.998k = 1717
109361 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0614P)2 + 1.9563P]
where P = (Fo2 + 2Fc2)/3
7416 reflections(Δ/σ)max < 0.001
536 parametersΔρmax = 1.28 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C5H8N3+·C24H20B·C20H18N6γ = 101.876 (5)°
Mr = 771.76V = 2023.8 (3) Å3
Triclinic, P1Z = 2
a = 9.2700 (8) ÅMo Kα radiation
b = 14.5143 (10) ŵ = 0.08 mm1
c = 15.9754 (13) ÅT = 150 K
α = 93.623 (5)°0.09 × 0.07 × 0.03 mm
β = 104.266 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
7416 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4071 reflections with I > 2σ(I)
Tmin = 0.993, Tmax = 0.998Rint = 0.177
109361 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.00Δρmax = 1.28 e Å3
7416 reflectionsΔρmin = 0.25 e Å3
536 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0022 (4)0.6545 (2)0.4229 (2)0.0400 (9)
H1A0.10780.66660.45060.060*
H1B0.05760.65440.46790.060*
H1C0.02320.70430.38620.060*
C20.0538 (4)0.5599 (2)0.3681 (2)0.0304 (8)
C30.1584 (4)0.4860 (2)0.3901 (2)0.0310 (8)
H30.19400.49600.44010.037*
C40.2084 (4)0.4000 (2)0.3396 (2)0.0279 (8)
C50.3193 (4)0.3201 (2)0.3621 (2)0.0379 (9)
H5A0.35390.34320.41100.057*
H5B0.26850.26850.37840.057*
H5C0.40750.29670.31160.057*
C60.1513 (4)0.3876 (2)0.2658 (2)0.0248 (7)
C100.0435 (4)0.4647 (2)0.2495 (2)0.0239 (7)
C80.1281 (4)0.2975 (2)0.1409 (2)0.0278 (8)
H80.15470.24110.10150.033*
C90.0201 (4)0.3773 (2)0.1314 (2)0.0255 (7)
C110.0958 (4)0.2935 (2)0.0507 (2)0.0273 (8)
C70.1935 (4)0.3032 (2)0.2082 (2)0.0286 (8)
H70.26690.25060.21610.034*
C120.0664 (4)0.2038 (2)0.0984 (2)0.0307 (8)
H120.00380.15000.08390.037*
C130.1303 (4)0.1963 (2)0.1658 (2)0.0299 (8)
H130.11020.13690.20030.036*
C140.2263 (4)0.2763 (2)0.1846 (2)0.0247 (7)
C150.3010 (4)0.2757 (2)0.2525 (2)0.0289 (8)
C160.2785 (4)0.1871 (2)0.3127 (2)0.0381 (9)
H16A0.34330.19970.35270.057*
H16B0.17100.16730.34620.057*
H16C0.30640.13660.27860.057*
C170.3947 (4)0.3599 (2)0.2600 (2)0.0314 (8)
H170.44720.36230.30420.038*
C180.4143 (4)0.4434 (2)0.2028 (2)0.0306 (8)
C190.5224 (4)0.5332 (2)0.2113 (2)0.0397 (9)
H19A0.49340.58810.18680.059*
H19B0.51710.53770.27280.059*
H19C0.62700.53210.17970.059*
C200.2503 (4)0.3635 (2)0.1314 (2)0.0258 (8)
C210.2972 (4)0.6386 (2)0.0729 (2)0.0253 (8)
C220.3877 (4)0.7207 (2)0.0572 (2)0.0291 (8)
H220.43340.71990.01020.035*
C230.4104 (4)0.8035 (2)0.1107 (2)0.0311 (8)
H230.47030.86020.09900.037*
C240.3484 (4)0.8065 (2)0.1808 (2)0.0294 (8)
H240.36520.86440.21680.035*
C250.2613 (4)0.7237 (2)0.1979 (2)0.0264 (8)
C260.1943 (4)0.2941 (2)0.3487 (2)0.0311 (8)
H260.11880.29500.29650.037*
C270.2582 (4)0.3782 (3)0.4048 (2)0.0392 (9)
H270.22580.43460.39060.047*
C280.3695 (4)0.3794 (3)0.4815 (2)0.0345 (9)
H280.41390.43630.52020.041*
C290.4139 (4)0.2964 (2)0.5004 (2)0.0326 (8)
H290.49010.29620.55250.039*
C300.3483 (4)0.2130 (2)0.4441 (2)0.0265 (8)
H300.38060.15690.45940.032*
C310.2364 (3)0.2082 (2)0.3658 (2)0.0231 (7)
C320.2986 (4)0.2010 (2)0.1835 (2)0.0270 (8)
H320.31370.25930.21860.032*
C330.3457 (4)0.2021 (3)0.1072 (2)0.0349 (9)
H330.39300.26060.09150.042*
C340.3244 (4)0.1191 (3)0.0541 (2)0.0349 (9)
H340.35580.12000.00180.042*
C350.2568 (4)0.0346 (2)0.0780 (2)0.0302 (8)
H350.24080.02320.04200.036*
C360.2124 (4)0.0343 (2)0.1546 (2)0.0255 (7)
H360.16770.02480.17030.031*
C370.2299 (3)0.1169 (2)0.21029 (19)0.0212 (7)
C380.1165 (3)0.0656 (2)0.1803 (2)0.0228 (7)
H380.06810.05730.13540.027*
C390.2754 (4)0.0488 (2)0.1590 (2)0.0251 (7)
H390.33250.03130.09990.030*
C400.3512 (4)0.0574 (2)0.2226 (2)0.0265 (8)
H400.45970.04450.20810.032*
C410.2647 (4)0.0852 (2)0.3080 (2)0.0263 (7)
H410.31430.09110.35290.032*
C420.1064 (4)0.1046 (2)0.3282 (2)0.0250 (7)
H420.05020.12570.38700.030*
C430.0252 (3)0.0944 (2)0.2663 (2)0.0217 (7)
C440.1203 (4)0.0330 (2)0.3938 (2)0.0255 (7)
H440.02200.02200.39180.031*
C450.1699 (4)0.1019 (2)0.4433 (2)0.0311 (8)
H450.10570.13650.47410.037*
C460.3121 (4)0.1201 (2)0.4477 (2)0.0294 (8)
H460.34610.16720.48110.035*
C470.4040 (4)0.0684 (2)0.4026 (2)0.0270 (8)
H470.50250.07930.40530.032*
C480.3519 (4)0.0005 (2)0.3533 (2)0.0236 (7)
H480.41650.03340.32220.028*
C490.2092 (3)0.0205 (2)0.34715 (19)0.0213 (7)
B10.1629 (4)0.1103 (3)0.2967 (2)0.0220 (8)
N10.0032 (3)0.55059 (18)0.30024 (17)0.0270 (6)
N20.0221 (3)0.45896 (18)0.18203 (17)0.0258 (6)
N30.0568 (3)0.37649 (19)0.06346 (17)0.0267 (6)
N40.0220 (3)0.2969 (2)0.01827 (18)0.0293 (7)
N50.1833 (3)0.37119 (18)0.06553 (17)0.0281 (7)
N60.3438 (3)0.44677 (18)0.14110 (18)0.0289 (7)
N70.2625 (3)0.55485 (19)0.02383 (17)0.0307 (7)
H7A0.20290.50550.03690.037*
H7B0.29930.54910.02150.037*
N80.2360 (3)0.64251 (18)0.14261 (16)0.0253 (6)
H8A0.17780.59040.15230.030*
N90.1999 (4)0.7172 (2)0.26545 (18)0.0381 (8)
H9A0.14600.66240.27290.046*
H9B0.21350.76770.30250.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.051 (2)0.031 (2)0.040 (2)0.0054 (18)0.0177 (19)0.0012 (17)
C20.0304 (19)0.028 (2)0.0332 (19)0.0081 (16)0.0083 (16)0.0038 (16)
C30.031 (2)0.032 (2)0.0320 (19)0.0080 (16)0.0111 (16)0.0055 (16)
C40.0272 (18)0.027 (2)0.0334 (19)0.0086 (15)0.0111 (15)0.0101 (16)
C50.039 (2)0.035 (2)0.043 (2)0.0053 (17)0.0182 (18)0.0080 (17)
C60.0225 (17)0.0244 (19)0.0273 (18)0.0067 (14)0.0036 (14)0.0086 (15)
C100.0247 (17)0.0219 (18)0.0259 (17)0.0074 (15)0.0056 (15)0.0061 (14)
C80.0320 (19)0.0220 (19)0.0246 (17)0.0021 (15)0.0021 (15)0.0035 (14)
C90.0271 (18)0.0265 (19)0.0232 (17)0.0086 (15)0.0045 (14)0.0057 (15)
C110.0248 (18)0.026 (2)0.0300 (18)0.0049 (15)0.0064 (15)0.0014 (15)
C70.0282 (19)0.0254 (19)0.0305 (19)0.0032 (15)0.0059 (15)0.0085 (15)
C120.0295 (19)0.024 (2)0.034 (2)0.0011 (15)0.0064 (16)0.0005 (15)
C130.0312 (19)0.0227 (19)0.0333 (19)0.0046 (15)0.0068 (16)0.0028 (15)
C140.0248 (18)0.0250 (19)0.0248 (17)0.0086 (15)0.0050 (14)0.0034 (14)
C150.0292 (19)0.030 (2)0.0285 (18)0.0141 (16)0.0028 (15)0.0055 (15)
C160.045 (2)0.036 (2)0.036 (2)0.0103 (18)0.0164 (18)0.0015 (17)
C170.031 (2)0.034 (2)0.0330 (19)0.0117 (17)0.0116 (16)0.0074 (16)
C180.0258 (19)0.030 (2)0.035 (2)0.0059 (15)0.0059 (16)0.0086 (16)
C190.039 (2)0.032 (2)0.049 (2)0.0049 (18)0.0147 (19)0.0100 (18)
C200.0251 (18)0.0220 (19)0.0285 (18)0.0064 (15)0.0030 (15)0.0020 (15)
C210.0256 (18)0.0241 (19)0.0252 (17)0.0076 (15)0.0035 (15)0.0031 (15)
C220.0315 (19)0.0240 (19)0.0314 (19)0.0030 (15)0.0105 (16)0.0012 (15)
C230.031 (2)0.025 (2)0.036 (2)0.0006 (15)0.0103 (16)0.0052 (16)
C240.0317 (19)0.0196 (18)0.0343 (19)0.0021 (15)0.0080 (16)0.0004 (15)
C250.0277 (18)0.0224 (19)0.0274 (18)0.0046 (15)0.0054 (15)0.0017 (15)
C260.0285 (19)0.032 (2)0.0317 (19)0.0089 (16)0.0040 (15)0.0028 (16)
C270.050 (2)0.026 (2)0.042 (2)0.0108 (18)0.0122 (19)0.0004 (17)
C280.037 (2)0.030 (2)0.033 (2)0.0001 (17)0.0120 (17)0.0062 (16)
C290.0281 (19)0.038 (2)0.0261 (18)0.0005 (16)0.0054 (15)0.0028 (16)
C300.0263 (18)0.0284 (19)0.0260 (17)0.0051 (15)0.0106 (15)0.0016 (15)
C310.0197 (17)0.0272 (19)0.0248 (17)0.0049 (14)0.0104 (14)0.0041 (14)
C320.0280 (18)0.0259 (19)0.0285 (18)0.0053 (15)0.0115 (15)0.0013 (15)
C330.040 (2)0.035 (2)0.033 (2)0.0036 (17)0.0178 (17)0.0129 (17)
C340.036 (2)0.048 (2)0.0246 (18)0.0108 (18)0.0145 (16)0.0063 (17)
C350.0314 (19)0.035 (2)0.0245 (18)0.0095 (16)0.0083 (15)0.0037 (15)
C360.0217 (17)0.0265 (19)0.0279 (18)0.0045 (14)0.0065 (14)0.0037 (15)
C370.0134 (15)0.0256 (18)0.0229 (16)0.0043 (13)0.0020 (13)0.0019 (14)
C380.0231 (17)0.0207 (18)0.0264 (17)0.0055 (14)0.0095 (14)0.0031 (14)
C390.0212 (17)0.0252 (19)0.0257 (17)0.0026 (14)0.0025 (14)0.0036 (14)
C400.0158 (16)0.0262 (19)0.0359 (19)0.0026 (14)0.0064 (15)0.0029 (15)
C410.0235 (18)0.0271 (19)0.0332 (19)0.0076 (15)0.0145 (15)0.0063 (15)
C420.0237 (18)0.0278 (19)0.0226 (17)0.0057 (15)0.0050 (14)0.0013 (14)
C430.0208 (17)0.0197 (17)0.0248 (17)0.0035 (14)0.0071 (14)0.0029 (13)
C440.0200 (17)0.0273 (19)0.0292 (18)0.0027 (14)0.0094 (14)0.0019 (15)
C450.036 (2)0.028 (2)0.0286 (18)0.0024 (16)0.0104 (16)0.0057 (15)
C460.035 (2)0.0248 (19)0.0266 (18)0.0090 (16)0.0036 (15)0.0044 (15)
C470.0244 (18)0.0285 (19)0.0282 (18)0.0095 (15)0.0059 (15)0.0016 (15)
C480.0222 (17)0.0242 (18)0.0242 (17)0.0030 (14)0.0080 (14)0.0014 (14)
C490.0196 (16)0.0222 (18)0.0191 (16)0.0009 (14)0.0047 (13)0.0037 (13)
B10.0169 (18)0.026 (2)0.0214 (18)0.0031 (16)0.0046 (15)0.0003 (16)
N10.0303 (16)0.0236 (16)0.0263 (15)0.0054 (13)0.0069 (13)0.0020 (12)
N20.0262 (15)0.0218 (16)0.0281 (15)0.0050 (12)0.0050 (12)0.0039 (12)
N30.0276 (16)0.0246 (16)0.0255 (15)0.0053 (13)0.0040 (12)0.0004 (13)
N40.0297 (16)0.0255 (16)0.0308 (16)0.0053 (13)0.0056 (13)0.0016 (13)
N50.0281 (16)0.0216 (16)0.0314 (16)0.0016 (13)0.0058 (13)0.0011 (12)
N60.0274 (16)0.0229 (16)0.0357 (16)0.0048 (13)0.0080 (13)0.0033 (13)
N70.0386 (17)0.0246 (16)0.0268 (15)0.0026 (13)0.0101 (13)0.0020 (13)
N80.0268 (15)0.0198 (15)0.0280 (15)0.0018 (12)0.0080 (12)0.0028 (12)
N90.054 (2)0.0242 (16)0.0350 (17)0.0028 (14)0.0217 (15)0.0037 (13)
Geometric parameters (Å, º) top
C1—C21.501 (5)C25—N81.370 (4)
C1—H1A0.9800C26—C271.395 (5)
C1—H1B0.9800C26—C311.405 (4)
C1—H1C0.9800C26—H260.9500
C2—N11.328 (4)C27—C281.390 (5)
C2—C31.416 (5)C27—H270.9500
C3—C41.369 (5)C28—C291.379 (5)
C3—H30.9500C28—H280.9500
C4—C61.422 (4)C29—C301.392 (4)
C4—C51.508 (5)C29—H290.9500
C5—H5A0.9800C30—C311.402 (4)
C5—H5B0.9800C30—H300.9500
C5—H5C0.9800C31—B11.653 (5)
C6—C71.409 (4)C32—C331.393 (4)
C6—C101.422 (4)C32—C371.399 (4)
C10—N21.368 (4)C32—H320.9500
C10—N11.370 (4)C33—C341.379 (5)
C8—C71.363 (5)C33—H330.9500
C8—C91.410 (4)C34—C351.379 (5)
C8—H80.9500C34—H340.9500
C9—N21.321 (4)C35—C361.385 (4)
C9—N31.439 (4)C35—H350.9500
C11—N51.317 (4)C36—C371.403 (4)
C11—C121.406 (4)C36—H360.9500
C11—N41.437 (4)C37—B11.648 (5)
C7—H70.9500C38—C391.393 (4)
C12—C131.361 (5)C38—C431.409 (4)
C12—H120.9500C38—H380.9500
C13—C141.407 (5)C39—C401.382 (4)
C13—H130.9500C39—H390.9500
C14—C151.424 (5)C40—C411.388 (4)
C14—C201.424 (4)C40—H400.9500
C15—C171.377 (5)C41—C421.387 (4)
C15—C161.503 (5)C41—H410.9500
C16—H16A0.9800C42—C431.401 (4)
C16—H16B0.9800C42—H420.9500
C16—H16C0.9800C43—B11.653 (4)
C17—C181.423 (5)C44—C451.395 (4)
C17—H170.9500C44—C491.396 (4)
C18—N61.313 (4)C44—H440.9500
C18—C191.507 (5)C45—C461.383 (5)
C19—H19A0.9800C45—H450.9500
C19—H19B0.9800C46—C471.384 (5)
C19—H19C0.9800C46—H460.9500
C20—N51.357 (4)C47—C481.389 (4)
C20—N61.377 (4)C47—H470.9500
C21—N71.337 (4)C48—C491.400 (4)
C21—N81.372 (4)C48—H480.9500
C21—C221.385 (4)C49—B11.650 (5)
C22—C231.377 (4)N3—N41.259 (3)
C22—H220.9500N7—H7A0.8800
C23—C241.382 (5)N7—H7B0.8800
C23—H230.9500N8—H8A0.8800
C24—C251.386 (4)N9—H9A0.8800
C24—H240.9500N9—H9B0.8800
C25—N91.338 (4)
C2—C1—H1A109.5C28—C27—C26120.0 (3)
C2—C1—H1B109.5C28—C27—H27120.0
H1A—C1—H1B109.5C26—C27—H27120.0
C2—C1—H1C109.5C29—C28—C27118.7 (3)
H1A—C1—H1C109.5C29—C28—H28120.7
H1B—C1—H1C109.5C27—C28—H28120.7
N1—C2—C3123.3 (3)C28—C29—C30120.7 (3)
N1—C2—C1117.0 (3)C28—C29—H29119.6
C3—C2—C1119.7 (3)C30—C29—H29119.6
C4—C3—C2120.2 (3)C29—C30—C31122.8 (3)
C4—C3—H3119.9C29—C30—H30118.6
C2—C3—H3119.9C31—C30—H30118.6
C3—C4—C6118.1 (3)C30—C31—C26114.8 (3)
C3—C4—C5121.0 (3)C30—C31—B1123.1 (3)
C6—C4—C5120.9 (3)C26—C31—B1122.1 (3)
C4—C5—H5A109.5C33—C32—C37122.3 (3)
C4—C5—H5B109.5C33—C32—H32118.9
H5A—C5—H5B109.5C37—C32—H32118.9
C4—C5—H5C109.5C34—C33—C32120.5 (3)
H5A—C5—H5C109.5C34—C33—H33119.7
H5B—C5—H5C109.5C32—C33—H33119.7
C7—C6—C4124.0 (3)C33—C34—C35119.1 (3)
C7—C6—C10117.8 (3)C33—C34—H34120.4
C4—C6—C10118.2 (3)C35—C34—H34120.4
N2—C10—N1114.6 (3)C34—C35—C36119.8 (3)
N2—C10—C6122.7 (3)C34—C35—H35120.1
N1—C10—C6122.7 (3)C36—C35—H35120.1
C7—C8—C9118.3 (3)C35—C36—C37123.3 (3)
C7—C8—H8120.8C35—C36—H36118.3
C9—C8—H8120.8C37—C36—H36118.3
N2—C9—C8125.1 (3)C32—C37—C36115.0 (3)
N2—C9—N3113.0 (3)C32—C37—B1125.1 (3)
C8—C9—N3121.9 (3)C36—C37—B1119.8 (3)
N5—C11—C12124.9 (3)C39—C38—C43122.3 (3)
N5—C11—N4120.0 (3)C39—C38—H38118.9
C12—C11—N4115.1 (3)C43—C38—H38118.9
C8—C7—C6119.5 (3)C40—C39—C38120.9 (3)
C8—C7—H7120.3C40—C39—H39119.6
C6—C7—H7120.3C38—C39—H39119.6
C13—C12—C11118.0 (3)C39—C40—C41118.4 (3)
C13—C12—H12121.0C39—C40—H40120.8
C11—C12—H12121.0C41—C40—H40120.8
C12—C13—C14120.1 (3)C42—C41—C40120.3 (3)
C12—C13—H13120.0C42—C41—H41119.8
C14—C13—H13120.0C40—C41—H41119.8
C13—C14—C15124.5 (3)C41—C42—C43123.2 (3)
C13—C14—C20117.3 (3)C41—C42—H42118.4
C15—C14—C20118.1 (3)C43—C42—H42118.4
C17—C15—C14116.9 (3)C42—C43—C38114.9 (3)
C17—C15—C16121.8 (3)C42—C43—B1120.3 (3)
C14—C15—C16121.3 (3)C38—C43—B1124.7 (3)
C15—C16—H16A109.5C45—C44—C49122.7 (3)
C15—C16—H16B109.5C45—C44—H44118.6
H16A—C16—H16B109.5C49—C44—H44118.6
C15—C16—H16C109.5C46—C45—C44120.4 (3)
H16A—C16—H16C109.5C46—C45—H45119.8
H16B—C16—H16C109.5C44—C45—H45119.8
C15—C17—C18121.2 (3)C45—C46—C47118.7 (3)
C15—C17—H17119.4C45—C46—H46120.6
C18—C17—H17119.4C47—C46—H46120.6
N6—C18—C17123.3 (3)C46—C47—C48120.0 (3)
N6—C18—C19117.2 (3)C46—C47—H47120.0
C17—C18—C19119.4 (3)C48—C47—H47120.0
C18—C19—H19A109.5C47—C48—C49123.3 (3)
C18—C19—H19B109.5C47—C48—H48118.3
H19A—C19—H19B109.5C49—C48—H48118.3
C18—C19—H19C109.5C44—C49—C48114.9 (3)
H19A—C19—H19C109.5C44—C49—B1124.1 (3)
H19B—C19—H19C109.5C48—C49—B1120.6 (3)
N5—C20—N6114.0 (3)C37—B1—C49109.5 (3)
N5—C20—C14122.4 (3)C37—B1—C31111.1 (3)
N6—C20—C14123.6 (3)C49—B1—C31108.1 (2)
N7—C21—N8116.9 (3)C37—B1—C43109.4 (2)
N7—C21—C22124.6 (3)C49—B1—C43109.6 (3)
N8—C21—C22118.5 (3)C31—B1—C43109.2 (3)
C23—C22—C21119.1 (3)C2—N1—C10117.5 (3)
C23—C22—H22120.5C9—N2—C10116.5 (3)
C21—C22—H22120.5N4—N3—C9112.6 (3)
C22—C23—C24121.9 (3)N3—N4—C11114.2 (3)
C22—C23—H23119.1C11—N5—C20117.3 (3)
C24—C23—H23119.1C18—N6—C20116.9 (3)
C23—C24—C25119.0 (3)C21—N7—H7A120.0
C23—C24—H24120.5C21—N7—H7B120.0
C25—C24—H24120.5H7A—N7—H7B120.0
N9—C25—N8117.2 (3)C25—N8—C21123.1 (3)
N9—C25—C24124.4 (3)C25—N8—H8A118.5
N8—C25—C24118.4 (3)C21—N8—H8A118.5
C27—C26—C31123.0 (3)C25—N9—H9A120.0
C27—C26—H26118.5C25—N9—H9B120.0
C31—C26—H26118.5H9A—N9—H9B120.0
N1—C2—C3—C41.3 (5)C41—C42—C43—B1175.0 (3)
C1—C2—C3—C4178.8 (3)C39—C38—C43—C420.2 (4)
C2—C3—C4—C60.5 (5)C39—C38—C43—B1176.8 (3)
C2—C3—C4—C5179.8 (3)C49—C44—C45—C460.2 (5)
C3—C4—C6—C7179.7 (3)C44—C45—C46—C470.3 (5)
C5—C4—C6—C71.0 (5)C45—C46—C47—C480.7 (5)
C3—C4—C6—C101.1 (4)C46—C47—C48—C491.0 (5)
C5—C4—C6—C10178.1 (3)C45—C44—C49—C480.3 (4)
C7—C6—C10—N21.5 (5)C45—C44—C49—B1173.1 (3)
C4—C6—C10—N2177.7 (3)C47—C48—C49—C440.7 (4)
C7—C6—C10—N1178.6 (3)C47—C48—C49—B1172.9 (3)
C4—C6—C10—N12.1 (5)C32—C37—B1—C49138.5 (3)
C7—C8—C9—N21.2 (5)C36—C37—B1—C4945.1 (4)
C7—C8—C9—N3178.6 (3)C32—C37—B1—C3119.2 (4)
C9—C8—C7—C60.2 (5)C36—C37—B1—C31164.3 (3)
C4—C6—C7—C8177.7 (3)C32—C37—B1—C43101.4 (3)
C10—C6—C7—C81.4 (5)C36—C37—B1—C4375.1 (3)
N5—C11—C12—C131.2 (5)C44—C49—B1—C37148.7 (3)
N4—C11—C12—C13178.6 (3)C48—C49—B1—C3738.2 (4)
C11—C12—C13—C141.8 (5)C44—C49—B1—C3190.2 (3)
C12—C13—C14—C15178.8 (3)C48—C49—B1—C3182.9 (3)
C12—C13—C14—C200.9 (5)C44—C49—B1—C4328.7 (4)
C13—C14—C15—C17178.0 (3)C48—C49—B1—C43158.2 (3)
C20—C14—C15—C171.7 (4)C30—C31—B1—C37105.9 (3)
C13—C14—C15—C161.8 (5)C26—C31—B1—C3772.1 (4)
C20—C14—C15—C16178.5 (3)C30—C31—B1—C4914.3 (4)
C14—C15—C17—C180.5 (5)C26—C31—B1—C49167.8 (3)
C16—C15—C17—C18179.7 (3)C30—C31—B1—C43133.4 (3)
C15—C17—C18—N61.3 (5)C26—C31—B1—C4348.6 (4)
C15—C17—C18—C19177.8 (3)C42—C43—B1—C37167.8 (3)
C13—C14—C20—N50.7 (5)C38—C43—B1—C3715.7 (4)
C15—C14—C20—N5179.5 (3)C42—C43—B1—C4972.1 (4)
C13—C14—C20—N6178.5 (3)C38—C43—B1—C49104.4 (3)
C15—C14—C20—N61.2 (5)C42—C43—B1—C3146.1 (4)
N7—C21—C22—C23177.5 (3)C38—C43—B1—C31137.4 (3)
N8—C21—C22—C231.3 (5)C3—C2—N1—C100.4 (5)
C21—C22—C23—C241.6 (5)C1—C2—N1—C10179.8 (3)
C22—C23—C24—C250.2 (5)N2—C10—N1—C2178.5 (3)
C23—C24—C25—N9177.6 (3)C6—C10—N1—C21.4 (4)
C23—C24—C25—N82.1 (5)C8—C9—N2—C101.2 (5)
C31—C26—C27—C280.3 (5)N3—C9—N2—C10178.6 (3)
C26—C27—C28—C290.1 (5)N1—C10—N2—C9179.9 (3)
C27—C28—C29—C300.3 (5)C6—C10—N2—C90.2 (4)
C28—C29—C30—C310.7 (5)N2—C9—N3—N4176.5 (3)
C29—C30—C31—C260.5 (5)C8—C9—N3—N43.2 (4)
C29—C30—C31—B1177.5 (3)C9—N3—N4—C11179.6 (3)
C27—C26—C31—C300.1 (5)N5—C11—N4—N34.2 (4)
C27—C26—C31—B1178.0 (3)C12—C11—N4—N3176.0 (3)
C37—C32—C33—C340.7 (5)C12—C11—N5—C200.4 (5)
C32—C33—C34—C350.5 (5)N4—C11—N5—C20179.8 (3)
C33—C34—C35—C360.3 (5)N6—C20—N5—C11178.0 (3)
C34—C35—C36—C371.1 (5)C14—C20—N5—C111.4 (5)
C33—C32—C37—C360.1 (5)C17—C18—N6—C201.8 (5)
C33—C32—C37—B1176.5 (3)C19—C18—N6—C20177.3 (3)
C35—C36—C37—C320.9 (5)N5—C20—N6—C18178.8 (3)
C35—C36—C37—B1175.9 (3)C14—C20—N6—C180.6 (5)
C43—C38—C39—C401.9 (5)N9—C25—N8—C21177.4 (3)
C38—C39—C40—C411.5 (5)C24—C25—N8—C212.3 (5)
C39—C40—C41—C420.5 (5)N7—C21—N8—C25179.5 (3)
C40—C41—C42—C432.3 (5)C22—C21—N8—C250.6 (5)
C41—C42—C43—C381.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7A···N30.882.213.084 (9)177
N7—H7B···N60.882.513.304 (12)150
N8—H8A···N20.882.303.175 (9)177
N9—H9A···N10.882.022.887 (11)170

Experimental details

Crystal data
Chemical formulaC5H8N3+·C24H20B·C20H18N6
Mr771.76
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)9.2700 (8), 14.5143 (10), 15.9754 (13)
α, β, γ (°)93.623 (5), 104.266 (5), 101.876 (5)
V3)2023.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.09 × 0.07 × 0.03
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.993, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
109361, 7416, 4071
Rint0.177
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.166, 1.00
No. of reflections7416
No. of parameters536
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.28, 0.25

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7A···N30.882.213.084 (9)177
N7—H7B···N60.882.513.304 (12)150
N8—H8A···N20.882.303.175 (9)177
N9—H9A···N10.882.022.887 (11)170
 

Acknowledgements

We thank the University of Western Ontario and NSERC for their generous support of this research.

References

First citationBlight, B. A., Camara-Campos, A., Djurdjevic, S., Kaller, M., Leigh, D. A., McMillan, F. M., McNab, H. & Slawin, A. M. Z. (2009). J. Am. Chem. Soc. 131, 14116–14122.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, H.-J., Fu, W.-F., Li, L., Gan, X., Mu, W.-H., Chen, W.-Q., Duan, X.-M. & Song, H.-B. (2010). Org. Lett. 12, 2924–2927.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRaboisson, P., DesJarlais, R. L., Reed, R., Lattanze, J., Chaikin, M., Manthey, C. L., Tomczuk, B. E. & Marugan, J. J. (2007). Eur. J. Med. Chem. 42, 334–343.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRoma, G., Di Braccio, M., Grossi, G., Piras, D., Ballabeni, V., Tognolini, M., Bertoni, S. & Barocelli, E. (2010). Eur. J. Med. Chem. 45, 352–366.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSahoo, U., Seth, A. K., Sen, A. K., Dhanya, B., Chauhan, S. P., Sailor, G. U., Ghelani, T. K. & Chawla, R. (2010). Int. J. ChemTech. Res. 2, 1051–1056.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1222
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds