organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1200-o1201

(E)-1-(2,4-Di­nitro­phen­yl)-2-(2-fluoro­benzyl­­idene)hydrazine

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cSeQuent Scientific Ltd, Baikampady, New Mangalore 575 011, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 13 April 2011; accepted 16 April 2011; online 22 April 2011)

In the title compound, C13H9FN4O4, the dihedral angle between the mean planes of the two benzene rings of the nearly planar mol­ecule is 6.6 (9)°. The dihedral angles between the mean planes of the benzene ring and its two attached nitro groups are 6.7 (7) and 7.2 (9)°. Crystal packing is stabilized by N—H⋯O hydrogen bonds, weak C—H⋯O and C—H⋯F inter­molecular inter­actions and centroid–centroid π-ring stacking inter­actions.

Related literature

For Schiff base propeties, see: Liang (2007[Liang, Z.-P. (2007). Acta Cryst. E63, o2943.]). For nonlinear optical and crystalline properties, see: Baughman et al. (2004[Baughman, R. G., Martin, K. L., Singh, R. K. & Stoffer, J. O. (2004). Acta Cryst. C60, o103-o106.]). For DNA-damaging and mutagenic agents, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]). For related structures, see: Bolte & Dill (1998[Bolte, M. & Dill, M. (1998). Acta Cryst. C54, IUC9800065.]); Shan et al. (2002[Shan, S., Xu, D.-J., Wu, J.-Y. & Chiang, M. Y. (2002). Acta Cryst. E58, o1333-o1335.]); Fan et al. (2004[Fan, Z., Shan, S., Hu, W.-X. & Xu, D.-J. (2004). Acta Cryst. E60, o1102-o1104.]); Motherwell & Ramsay, (2007[Motherwell, W. D. S. & Ramsay, J. (2007). Acta Cryst. E63, o4043.]); Shi et al. (2008[Shi, Z.-Q., Ji, N.-N. & Li, X.-Y. (2008). Acta Cryst. E64, o2135.]); Ji et al. (2010[Ji, N.-N., Shi, Z.-Q., Zhao, R.-G., Zheng, Z.-B. & Li, Z.-F. (2010). Bull. Korean Chem. Soc. 31, 881-886.]); Kia et al. (2009[Kia, R., Fun, H.-K., Etemadi, B. & Kargar, H. (2009). Acta Cryst. E65, o833-o834.]); Jasinski et al. (2010[Jasinski, J. P., Guild, C. J., Chidan Kumar, C. S., Yathirajan, H. S. & Mayekar, A. N. (2010). Acta Cryst. E66, o2832-o2833.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9FN4O4

  • Mr = 304.24

  • Triclinic, [P \overline 1]

  • a = 7.0961 (8) Å

  • b = 8.2714 (9) Å

  • c = 11.7230 (8) Å

  • α = 88.614 (7)°

  • β = 80.544 (8)°

  • γ = 71.368 (10)°

  • V = 642.86 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 173 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.967, Tmax = 1.000

  • 6346 measured reflections

  • 3466 independent reflections

  • 2802 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.143

  • S = 1.09

  • 3466 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.88 2.02 2.6317 (15) 126
N2—H2A⋯O1i 0.88 2.51 3.3424 (15) 158
C2—H2B⋯F1ii 0.95 2.45 3.3386 (17) 156
C3—H3A⋯O4iii 0.95 2.48 3.3177 (19) 148
C5—H5A⋯O3iv 0.95 2.43 3.2694 (17) 148
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+3, -y, -z+1; (iii) x+2, y-1, z; (iv) -x+1, -y, -z.

Table 2
CgCg π-ring stacking inter­actions

Cg1 and Cg2 are the centroids of rings C1–C6 and C8–C13, respectively.

CgICgJ CgCg (Å) Cg I_Perp (Å) CgJ_Perp (Å)
Cg1⋯Cg2i 3.6916 (10) −3.4632 (6) 3.3267 (5)
Cg2⋯Cg1ii 3.6916 (10) 3.3267 (5) −3.4632 (6)
Symmetry codes: (i) 1 + x, y, z; (ii) −1 + x, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases and their complexes are widely used in the fields of biology, catalysis etc. (Liang, 2007). Especially, the dinitrophenyl hydrazones exhibit good nonlinear optical (NLO) and crystalline properties (Baughman et al., 2004) and are found to have versatile coordinating abilities towards different metal ions. In addition, some 2,4-dinitrophenyl hydrazone derivatives have been shown to be potentially DNA-damaging and mutagenic agents (Okabe et al., 1993). As a result of their significant molecular nonlinearities many x-ray structural studies of 2,4-dinitrophenylhydrazones have been reported. Among them, the most closely related structures are (E)-p-methoxy-acetophenone 2,4-dinitrophenylhydrazone (Bolte & Dill, 1998), acetophenone (2,4-dinitrophenyl)hydrazone (Shan et al., 2002), 3-chloroacetophenone 2,4-dintrophenyl- hydrazone (Fan et al., 2004), 2,4-dihydroxyacetophenone 2,4-dinitrophenylhydrazone (Baughman et al., 2004), syn-acetophenone (2,4-dinitrophenyl) hydrazone (Motherwell & Ramsay, 2007), 1-(2-chlorobenzylidene)-2-(2,4-dinitrophenyl)hydrazine (Shi et al., 2008), N-(2,4-dinitrophenyl)-N'-(1-p-tolylethylidene) hydrazine (Kia et al., 2009), N-(2,4-dinitrophenyl)-N'-(1-phenylethylidene)hydrazine (Ji et al., 2010) and (1E)-1-(3-bromophenyl)ethanone 2,4-dinitrophenylhydrazone (Jasinski et al., 2010). In view of the importance of 2,4-dinitrophenylhydrazones, this paper reports the crystal structure of the title compound, C13H9FN4O4, (I).

In the title compound the dihedral angle between the mean planes of the two benzene rings of a nearly planar molecule is 6.69°, (Fig. 2). The dihedral angle between the mean planes of the benzene ring and its two bonded nitro groups are 6.7 (7)° and 7.2 (9)°, respectively. Crystal packing is stabilized by N—H···O hydrogen bonds (Fig. 3), weak C—H···O intermolecular interactions and Cg—Cg π-ring stacking interactions (Table 2).

Related literature top

For Schiff base propeties, see: Liang et al. (2007). For nonlinear optical and crystalline properties, see: Baughman et al. (2004). For DNA-damaging and mutagenic agents, see: Okabe et al. (1993). For related structures, see: Bolte & Dill (1998); Shan et al. (2002); Fan et al. (2004); Motherwell & Ramsay, (2007); Shi et al. (2008); Ji et al. (2010); Kia et al. (2009); Jasinski et al. (2010).

Experimental top

A mixture of 2,4-dinitrophenylhydrazine (1.98 g) and 2-fluorobenzaldehyde (1.24 g) was dissolved in methanol and refluxed for about 6h. The precipitate formed was filtered, dried and recrystallized in ethlyacetate. X-ray quality crystals of the title compound (I), were obtained after three days by the slow evaporation of a 1:1 mixture of dimethylformamide and pyridine at room temperature. (mp: 502 - 505 K).

Refinement top

The parameters of all the H atoms have been constrained within the riding atom approximation. C—H bond lengths were constrained to 0.95 Å for aryl atoms, Uiso(H) = 1.18–1.20Ueq(Caryl). N—H bond lengths were constrained to 0.88 Å, Uiso(H) = 1.20Ueq(N).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the b axis. Dashed lines indicate N—H···O hydrogen bonds and weak N—H···O intermolecular interactions.
(E)-1-(2,4-Dinitrophenyl)-2-(2-fluorobenzylidene)hydrazine top
Crystal data top
C13H9FN4O4Z = 2
Mr = 304.24F(000) = 312
Triclinic, P1Dx = 1.572 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0961 (8) ÅCell parameters from 3528 reflections
b = 8.2714 (9) Åθ = 3.1–32.2°
c = 11.7230 (8) ŵ = 0.13 mm1
α = 88.614 (7)°T = 173 K
β = 80.544 (8)°Block, orange-red
γ = 71.368 (10)°0.20 × 0.18 × 0.15 mm
V = 642.86 (11) Å3
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
3466 independent reflections
Radiation source: Enhance (Mo) X-ray Source2802 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 16.1500 pixels mm-1θmax = 29.1°, θmin = 3.1°
ϕ and ω scansh = 98
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1111
Tmin = 0.967, Tmax = 1.000l = 1615
6346 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0733P)2 + 0.0845P]
where P = (Fo2 + 2Fc2)/3
3466 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C13H9FN4O4γ = 71.368 (10)°
Mr = 304.24V = 642.86 (11) Å3
Triclinic, P1Z = 2
a = 7.0961 (8) ÅMo Kα radiation
b = 8.2714 (9) ŵ = 0.13 mm1
c = 11.7230 (8) ÅT = 173 K
α = 88.614 (7)°0.20 × 0.18 × 0.15 mm
β = 80.544 (8)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
3466 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2802 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 1.000Rint = 0.016
6346 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.09Δρmax = 0.31 e Å3
3466 reflectionsΔρmin = 0.17 e Å3
199 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.25967 (13)0.08268 (12)0.46347 (7)0.0542 (3)
O10.33061 (16)0.49706 (16)0.46244 (9)0.0576 (3)
O20.04251 (15)0.62057 (14)0.41195 (9)0.0539 (3)
O30.0526 (2)0.21724 (19)0.01824 (12)0.0791 (4)
O40.15820 (15)0.42413 (15)0.08977 (10)0.0561 (3)
N10.79790 (15)0.14775 (14)0.28682 (9)0.0377 (2)
N20.61603 (16)0.26801 (15)0.32453 (9)0.0391 (3)
H2A0.59590.32910.38840.047*
N30.00969 (19)0.32023 (16)0.06233 (11)0.0443 (3)
N40.20937 (16)0.51447 (14)0.39505 (10)0.0393 (3)
C11.2885 (2)0.02327 (17)0.37123 (11)0.0381 (3)
C21.4763 (2)0.1424 (2)0.33969 (14)0.0499 (3)
H2B1.58230.15110.38190.060*
C31.5057 (2)0.2487 (2)0.24485 (15)0.0534 (4)
H3A1.63360.33210.22140.064*
C41.3510 (2)0.23481 (18)0.18385 (13)0.0482 (3)
H4A1.37270.30860.11870.058*
C51.1651 (2)0.11396 (17)0.21735 (11)0.0404 (3)
H5A1.05950.10520.17470.049*
C61.12930 (18)0.00419 (15)0.31287 (10)0.0332 (3)
C70.93392 (18)0.12582 (16)0.34949 (11)0.0358 (3)
H7A0.90910.19240.41850.043*
C80.46749 (17)0.29040 (15)0.26058 (10)0.0329 (3)
C90.26980 (18)0.40469 (15)0.29198 (10)0.0324 (3)
C100.12047 (18)0.41764 (14)0.22616 (10)0.0336 (3)
H10A0.01150.49540.24870.040*
C110.16630 (19)0.31661 (15)0.12820 (11)0.0345 (3)
C120.3609 (2)0.20726 (17)0.09136 (11)0.0396 (3)
H12A0.39090.14120.02160.048*
C130.50799 (19)0.19515 (17)0.15534 (11)0.0390 (3)
H13A0.64080.12130.12900.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0485 (5)0.0679 (6)0.0446 (5)0.0099 (4)0.0184 (4)0.0156 (4)
O10.0428 (6)0.0767 (7)0.0512 (6)0.0123 (5)0.0111 (5)0.0292 (5)
O20.0424 (6)0.0553 (6)0.0517 (6)0.0007 (5)0.0030 (4)0.0189 (5)
O30.0686 (8)0.0871 (9)0.0790 (9)0.0060 (7)0.0370 (7)0.0388 (7)
O40.0380 (5)0.0613 (7)0.0664 (7)0.0057 (5)0.0209 (5)0.0032 (5)
N10.0290 (5)0.0430 (6)0.0384 (6)0.0080 (4)0.0046 (4)0.0036 (4)
N20.0292 (5)0.0480 (6)0.0373 (5)0.0077 (4)0.0053 (4)0.0108 (4)
N30.0440 (6)0.0463 (6)0.0455 (6)0.0131 (5)0.0174 (5)0.0022 (5)
N40.0348 (5)0.0427 (6)0.0392 (6)0.0121 (4)0.0013 (4)0.0110 (4)
C10.0385 (6)0.0426 (6)0.0338 (6)0.0116 (5)0.0102 (5)0.0005 (5)
C20.0391 (7)0.0540 (8)0.0529 (8)0.0048 (6)0.0174 (6)0.0011 (6)
C30.0407 (7)0.0461 (7)0.0613 (9)0.0020 (6)0.0060 (6)0.0041 (7)
C40.0529 (8)0.0415 (7)0.0455 (8)0.0103 (6)0.0031 (6)0.0091 (6)
C50.0408 (7)0.0430 (7)0.0393 (7)0.0136 (5)0.0107 (5)0.0040 (5)
C60.0317 (6)0.0357 (6)0.0329 (6)0.0113 (5)0.0061 (4)0.0007 (4)
C70.0333 (6)0.0418 (6)0.0331 (6)0.0129 (5)0.0054 (5)0.0042 (5)
C80.0286 (5)0.0363 (6)0.0339 (6)0.0108 (5)0.0044 (4)0.0034 (4)
C90.0313 (6)0.0335 (5)0.0318 (6)0.0103 (4)0.0027 (4)0.0058 (4)
C100.0298 (6)0.0313 (5)0.0382 (6)0.0076 (4)0.0056 (4)0.0021 (4)
C110.0354 (6)0.0335 (6)0.0363 (6)0.0104 (5)0.0115 (5)0.0006 (5)
C120.0394 (7)0.0403 (6)0.0361 (6)0.0071 (5)0.0077 (5)0.0092 (5)
C130.0316 (6)0.0416 (6)0.0385 (6)0.0044 (5)0.0045 (5)0.0090 (5)
Geometric parameters (Å, º) top
F1—C11.3555 (15)C3—H3A0.9500
O1—N41.2343 (15)C4—C51.3785 (19)
O2—N41.2161 (15)C4—H4A0.9500
O3—N31.2204 (16)C5—C61.3967 (17)
O4—N31.2225 (15)C5—H5A0.9500
N1—C71.2724 (16)C6—C71.4618 (17)
N1—N21.3653 (15)C7—H7A0.9500
N2—C81.3548 (16)C8—C91.4131 (17)
N2—H2A0.8800C8—C131.4181 (16)
N3—C111.4463 (16)C9—C101.3863 (16)
N4—C91.4500 (15)C10—C111.3685 (17)
C1—C21.3783 (19)C10—H10A0.9500
C1—C61.3800 (17)C11—C121.3916 (18)
C2—C31.381 (2)C12—C131.3597 (18)
C2—H2B0.9500C12—H12A0.9500
C3—C41.379 (2)C13—H13A0.9500
C7—N1—N2117.04 (11)C1—C6—C5116.70 (11)
C8—N2—N1117.99 (10)C1—C6—C7121.17 (11)
C8—N2—H2A121.0C5—C6—C7122.12 (11)
N1—N2—H2A121.0N1—C7—C6118.51 (11)
O3—N3—O4123.15 (12)N1—C7—H7A120.7
O3—N3—C11117.69 (12)C6—C7—H7A120.7
O4—N3—C11119.16 (11)N2—C8—C9123.98 (11)
O2—N4—O1122.32 (11)N2—C8—C13119.48 (11)
O2—N4—C9119.24 (11)C9—C8—C13116.55 (11)
O1—N4—C9118.44 (11)C10—C9—C8121.82 (10)
F1—C1—C2118.20 (12)C10—C9—N4115.72 (11)
F1—C1—C6118.24 (11)C8—C9—N4122.45 (11)
C2—C1—C6123.55 (12)C11—C10—C9118.91 (11)
C1—C2—C3118.00 (13)C11—C10—H10A120.5
C1—C2—H2B121.0C9—C10—H10A120.5
C3—C2—H2B121.0C10—C11—C12121.27 (11)
C4—C3—C2120.60 (14)C10—C11—N3119.78 (11)
C4—C3—H3A119.7C12—C11—N3118.93 (11)
C2—C3—H3A119.7C13—C12—C11119.89 (11)
C5—C4—C3120.00 (13)C13—C12—H12A120.1
C5—C4—H4A120.0C11—C12—H12A120.1
C3—C4—H4A120.0C12—C13—C8121.44 (11)
C4—C5—C6121.14 (12)C12—C13—H13A119.3
C4—C5—H5A119.4C8—C13—H13A119.3
C6—C5—H5A119.4
C7—N1—N2—C8178.38 (11)N2—C8—C9—N42.32 (19)
F1—C1—C2—C3179.24 (13)C13—C8—C9—N4177.74 (11)
C6—C1—C2—C30.3 (2)O2—N4—C9—C106.98 (17)
C1—C2—C3—C40.2 (2)O1—N4—C9—C10173.40 (12)
C2—C3—C4—C50.0 (2)O2—N4—C9—C8173.56 (12)
C3—C4—C5—C60.1 (2)O1—N4—C9—C86.07 (19)
F1—C1—C6—C5179.17 (11)C8—C9—C10—C110.07 (18)
C2—C1—C6—C50.3 (2)N4—C9—C10—C11179.40 (11)
F1—C1—C6—C70.39 (18)C9—C10—C11—C122.71 (19)
C2—C1—C6—C7179.28 (13)C9—C10—C11—N3176.08 (11)
C4—C5—C6—C10.0 (2)O3—N3—C11—C10173.46 (14)
C4—C5—C6—C7179.51 (12)O4—N3—C11—C106.06 (19)
N2—N1—C7—C6178.86 (10)O3—N3—C11—C125.4 (2)
C1—C6—C7—N1173.99 (12)O4—N3—C11—C12175.12 (12)
C5—C6—C7—N15.54 (19)C10—C11—C12—C132.3 (2)
N1—N2—C8—C9177.09 (11)N3—C11—C12—C13176.51 (12)
N1—N2—C8—C132.85 (18)C11—C12—C13—C80.8 (2)
N2—C8—C9—C10177.12 (11)N2—C8—C13—C12176.68 (12)
C13—C8—C9—C102.82 (18)C9—C8—C13—C123.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.882.022.6317 (15)126
N2—H2A···O1i0.882.513.3424 (15)158
C2—H2B···F1ii0.952.453.3386 (17)156
C3—H3A···O4iii0.952.483.3177 (19)148
C5—H5A···O3iv0.952.433.2694 (17)148
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3, y, z+1; (iii) x+2, y1, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H9FN4O4
Mr304.24
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.0961 (8), 8.2714 (9), 11.7230 (8)
α, β, γ (°)88.614 (7), 80.544 (8), 71.368 (10)
V3)642.86 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.967, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6346, 3466, 2802
Rint0.016
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.143, 1.09
No. of reflections3466
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.17

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.882.022.6317 (15)125.7
N2—H2A···O1i0.882.513.3424 (15)158.3
C2—H2B···F1ii0.952.453.3386 (17)156.4
C3—H3A···O4iii0.952.483.3177 (19)147.7
C5—H5A···O3iv0.952.433.2694 (17)147.6
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3, y, z+1; (iii) x+2, y1, z; (iv) x+1, y, z.
Cg···Cg π-ring stacking interactions, Cg1 and Cg2 are the centroids of rings C1–C6 and C8–C13; [Symmetry codes: (i) 1+x,y,z; (ii) -1+x, y, z] top
CgI···CgJCg···Cg (Å)Cg I_Perp (Å)CgJ_Perp (Å)
Cg1···Cg2i3.6916 (10)-3.4632 (6)3.3267 (5)
Cg2···Cg1ii3.6916 (10)3.3267 (5)-3.4632 (6)
 

Acknowledgements

CSCK and HSY thank the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationBaughman, R. G., Martin, K. L., Singh, R. K. & Stoffer, J. O. (2004). Acta Cryst. C60, o103–o106.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBolte, M. & Dill, M. (1998). Acta Cryst. C54, IUC9800065.  CrossRef IUCr Journals Google Scholar
First citationFan, Z., Shan, S., Hu, W.-X. & Xu, D.-J. (2004). Acta Cryst. E60, o1102–o1104.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Guild, C. J., Chidan Kumar, C. S., Yathirajan, H. S. & Mayekar, A. N. (2010). Acta Cryst. E66, o2832–o2833.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJi, N.-N., Shi, Z.-Q., Zhao, R.-G., Zheng, Z.-B. & Li, Z.-F. (2010). Bull. Korean Chem. Soc. 31, 881–886.  CSD CrossRef CAS Google Scholar
First citationKia, R., Fun, H.-K., Etemadi, B. & Kargar, H. (2009). Acta Cryst. E65, o833–o834.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiang, Z.-P. (2007). Acta Cryst. E63, o2943.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMotherwell, W. D. S. & Ramsay, J. (2007). Acta Cryst. E63, o4043.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationShan, S., Xu, D.-J., Wu, J.-Y. & Chiang, M. Y. (2002). Acta Cryst. E58, o1333–o1335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Z.-Q., Ji, N.-N. & Li, X.-Y. (2008). Acta Cryst. E64, o2135.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1200-o1201
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds