organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1122

Piperazine-1,4-diium pyridine-2,3-di­carboxyl­ate methanol monosolvate

aDepartment of Chemistry, Iran University of Science and Technology, Tehran, Iran, and bDepartment of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
*Correspondence e-mail: mghadermazi@yahoo.com

(Received 16 March 2011; accepted 3 April 2011; online 13 April 2011)

The title solvated molecular salt, C4H12N22+·C7H3NO42−·CH3OH or (pipzH2)(py-2,3-dc)·MeOH, was prepared by the reaction of pyridine-2,3-dicarb­oxy­lic acid (py-2,3-dcH2) and piperazine (pipz) in methanol (MeOH) as solvent. One of the two carboxylate groups of the acid fragment is nearly perpendicular to the pyridine ring and the other is almost in its plane [C—C—C—O torsion angles = −85.50 (11) and 88.07 (11)° and N—C—C—O torsion angles = −176.31 (8) and 5.41 (13)°]. In the crystal, the components are linked by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, generating a three-dimensional network.

Related literature

For similar ion pairs, see: Aghabozorg, Manteghi & Ghadermazi (2008[Aghabozorg, H., Manteghi, F. & Ghadermazi, M. (2008). Acta Cryst. E64, o230.]); Aghabozorg, Manteghi & Sheshmani (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]). For related metal complexes, see: Barszcz et al. (2010[Barszcz, B., Hodorowicz, M., Jablonska-Wawrzycka, A., Masternak, J., Nitek, W. & Stadnicka, K. (2010). Polyhedron, 29, 1191-1200.]); Li & Li (2004[Li, L.-J. & Li, Y. (2004). J. Mol. Struct. 697, 199-203.]).

[Scheme 1]

Experimental

Crystal data
  • C4H12N22+·C7H3NO42−·CH4O

  • Mr = 285.30

  • Monoclinic, P 21 /n

  • a = 8.2541 (6) Å

  • b = 11.8988 (8) Å

  • c = 13.8197 (9) Å

  • β = 90.288 (2)°

  • V = 1357.27 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • 16044 measured reflections

  • 3579 independent reflections

  • 3189 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.085

  • S = 1.03

  • 3579 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4i 0.90 1.74 2.6257 (11) 168
N2—H2B⋯O2 0.90 1.89 2.7274 (11) 155
N3—H3A⋯O1ii 0.90 1.85 2.7379 (11) 169
N3—H3B⋯O3iii 0.90 1.86 2.7393 (11) 166
O5—H5A⋯O1 0.85 1.84 2.6867 (10) 171
C3—H3⋯O5iv 0.95 2.41 3.3163 (13) 159
Symmetry codes: (i) -x, -y+2, -z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) x-1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyridine-2,3-dicarboxylic acid is remarkably attractive for its flexible and variable coordination modes to construct polymeric architecture. It can act as monodicarboxylate chelating anion, or tridentate coordinating anion with acid hydrogen on nitrogen and doubly deprotonated, tridentate dicarboxylate anion (py-2,3-dc) and even in Mn(II) complexes as tetradenatate and pentadentate ligands (Barszcz et al., 2010; Li & Li, 2004). Preparation of ion pairs with the acid increases the chance of its coordination to metals. Therefore, in our work to obtain proton transfer ion pairs, we have reviewed many ion pairs and their metal complexes (Aghabozorg, Manteghi & Sheshmani, 2008). Also, we have reported a similar ion pair formulated as (pipzH2)(pydcH)2, (Aghabozorg, Manteghi & Ghadermazi, 2008). The title structure, as shown in Fig. 1, has an asymmetric unit constructed by (pipzH2)2+ and (py-2,3-dc)2– and a neutral methanol molecule with two hydrogen bonds. There are varieties of other strong and weak hydrogen bonds in the structure, shown in Table 1. Also, a C–O···π stacking, between C6–O2 and N1/C1-C5 ring (-x, -y + 2, -z) with the distance of 3.5240 (9) Å, and a C–H···π stacking, between C12–H1A and N1/C1-C5 ring (x +1/2, -y +3/2, z -1/2), with the distance of 2.791 (1) Å, shown in Fig. 2 are observed.

Related literature top

For similar ion pairs, see: Aghabozorg, Manteghi & Ghadermazi (2008); Aghabozorg, Manteghi & Sheshmani (2008). For related metal complexes, see: Barszcz et al. (2010); Li & Li (2004).

Experimental top

The title compound was synthesized via reaction of 1670 mg (10 mmol) pyridine-2,3-dicarboxylic acid with 860 mg (10 mmol) piperazine in a methanol solution (60 ml). The obtained white precipitate was filtered out and dissolved in water to recrystallize. Colorless crystals of the title compound were obtained after 14 days.

Refinement top

The H(N) and H(O) atoms were found from a difference Fourier map. The H(C) atom positions were calculated. All the hydrogen atoms were refined with isotropic displacement paramaters using a riding model with the Uiso(H) parameters equal to 1.2 times the equivalent isotropic thermal parameter of the bonded C(CH2) or N(NH2) or 1.5 times that of C(CH3) and O(H2O). Distances were 0.90 Å for N-H, 0.85 Å for O-H, and 0.95 - 0.99 Å for C-H.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (pipzH2)(py-2,3-dc).MeOH
[Figure 2] Fig. 2. The C–H···π stacking between C12–H1A of methanol and N1/C1-C5 ring of py-2,3-dc.
Piperazine-1,4-diium pyridine-2,3-dicarboxylate methanol monosolvate top
Crystal data top
C4H12N22+·C7H3NO42·CH4OF(000) = 608
Mr = 285.30Dx = 1.396 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7483 reflections
a = 8.2541 (6) Åθ = 2.3–28.1°
b = 11.8988 (8) ŵ = 0.11 mm1
c = 13.8197 (9) ÅT = 100 K
β = 90.288 (2)°Prism, colourless
V = 1357.27 (16) Å30.25 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
3189 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 29.0°, θmin = 2.3°
Detector resolution: 8.3 pixels mm-1h = 1111
ϕ and ω scansk = 1616
16044 measured reflectionsl = 1818
3579 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.085H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.035P)2 + 0.650P]
where P = (Fo2 + 2Fc2)/3
3579 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C4H12N22+·C7H3NO42·CH4OV = 1357.27 (16) Å3
Mr = 285.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.2541 (6) ŵ = 0.11 mm1
b = 11.8988 (8) ÅT = 100 K
c = 13.8197 (9) Å0.25 × 0.20 × 0.10 mm
β = 90.288 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
3189 reflections with I > 2σ(I)
16044 measured reflectionsRint = 0.023
3579 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.03Δρmax = 0.42 e Å3
3579 reflectionsΔρmin = 0.21 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.16285 (8)0.76486 (6)0.03344 (5)0.01401 (15)
O20.21626 (9)0.91599 (6)0.12414 (6)0.01918 (16)
O30.13943 (9)0.61040 (6)0.03291 (5)0.01666 (16)
O40.11791 (9)0.70279 (6)0.10648 (5)0.01627 (15)
N10.09833 (10)0.97903 (7)0.11968 (6)0.01339 (17)
N20.17152 (10)1.11819 (7)0.21302 (6)0.01264 (16)
H2A0.14101.17460.17350.015*
H2B0.15381.05230.18280.015*
N30.31476 (10)1.05117 (7)0.39424 (6)0.01304 (16)
H3A0.33491.11890.42060.016*
H3B0.34730.99870.43710.016*
C10.05754 (11)0.88142 (8)0.07675 (6)0.01078 (17)
C20.17210 (11)0.80866 (8)0.03586 (7)0.01165 (18)
C30.33567 (12)0.83780 (9)0.04316 (7)0.01506 (19)
H30.41690.78960.01750.018*
C40.37860 (12)0.93756 (9)0.08809 (7)0.0166 (2)
H40.48910.95850.09430.020*
C50.25545 (12)1.00615 (9)0.12379 (7)0.01563 (19)
H50.28451.07580.15250.019*
C60.12243 (11)0.85332 (8)0.07816 (7)0.01183 (18)
C70.13540 (11)0.69936 (8)0.01603 (7)0.01243 (18)
C80.07828 (12)1.12692 (9)0.30451 (7)0.01538 (19)
H8A0.03831.11490.29080.018*
H8B0.09141.20320.33200.018*
C90.34843 (12)1.13038 (8)0.23146 (7)0.01367 (18)
H9A0.37091.20590.25840.016*
H9B0.40801.12310.16980.016*
C100.40670 (12)1.04139 (8)0.30194 (7)0.01438 (19)
H10A0.39010.96580.27370.017*
H10B0.52391.05130.31480.017*
C110.13684 (12)1.04015 (9)0.37760 (7)0.0162 (2)
H11A0.07901.05080.43950.019*
H11B0.11210.96370.35330.019*
O50.39165 (9)0.71135 (8)0.09625 (6)0.02485 (19)
H5A0.32550.73440.05370.037*
C120.29401 (15)0.65794 (12)0.16692 (9)0.0302 (3)
H1A0.34270.66790.23090.045*
H1B0.18550.69130.16670.045*
H1C0.28610.57760.15220.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0156 (3)0.0103 (3)0.0162 (3)0.0017 (2)0.0019 (3)0.0011 (3)
O20.0139 (3)0.0188 (4)0.0248 (4)0.0001 (3)0.0031 (3)0.0083 (3)
O30.0236 (4)0.0110 (3)0.0153 (3)0.0009 (3)0.0041 (3)0.0011 (3)
O40.0233 (4)0.0130 (3)0.0124 (3)0.0028 (3)0.0019 (3)0.0007 (3)
N10.0154 (4)0.0117 (4)0.0130 (4)0.0005 (3)0.0011 (3)0.0010 (3)
N20.0152 (4)0.0111 (4)0.0116 (4)0.0003 (3)0.0022 (3)0.0000 (3)
N30.0168 (4)0.0105 (4)0.0118 (4)0.0007 (3)0.0025 (3)0.0007 (3)
C10.0128 (4)0.0103 (4)0.0093 (4)0.0003 (3)0.0007 (3)0.0009 (3)
C20.0143 (4)0.0109 (4)0.0097 (4)0.0003 (3)0.0006 (3)0.0008 (3)
C30.0135 (4)0.0173 (5)0.0144 (4)0.0005 (3)0.0013 (3)0.0005 (4)
C40.0134 (4)0.0201 (5)0.0163 (4)0.0037 (4)0.0002 (3)0.0002 (4)
C50.0181 (5)0.0136 (4)0.0152 (4)0.0032 (4)0.0023 (3)0.0016 (3)
C60.0132 (4)0.0111 (4)0.0112 (4)0.0005 (3)0.0006 (3)0.0015 (3)
C70.0117 (4)0.0115 (4)0.0141 (4)0.0001 (3)0.0035 (3)0.0015 (3)
C80.0142 (4)0.0172 (5)0.0148 (4)0.0009 (4)0.0003 (3)0.0002 (4)
C90.0142 (4)0.0137 (4)0.0132 (4)0.0004 (3)0.0002 (3)0.0007 (3)
C100.0154 (4)0.0146 (4)0.0130 (4)0.0021 (3)0.0011 (3)0.0002 (3)
C110.0160 (5)0.0168 (5)0.0159 (4)0.0040 (4)0.0006 (3)0.0028 (4)
O50.0159 (4)0.0345 (5)0.0242 (4)0.0027 (3)0.0035 (3)0.0117 (3)
C120.0239 (6)0.0398 (7)0.0269 (6)0.0016 (5)0.0002 (5)0.0160 (5)
Geometric parameters (Å, º) top
O1—C61.2662 (12)C3—H30.9500
O2—C61.2469 (12)C4—C51.3920 (14)
O3—C71.2566 (12)C4—H40.9500
O4—C71.2597 (12)C5—H50.9500
N1—C51.3379 (13)C8—C111.5215 (14)
N1—C11.3477 (12)C8—H8A0.9900
N2—C81.4871 (12)C8—H8B0.9900
N2—C91.4881 (12)C9—C101.5155 (13)
N2—H2A0.9001C9—H9A0.9900
N2—H2B0.9001C9—H9B0.9900
N3—C111.4911 (13)C10—H10A0.9900
N3—C101.4920 (12)C10—H10B0.9900
N3—H3A0.9000C11—H11A0.9900
N3—H3B0.9001C11—H11B0.9900
C1—C21.3992 (13)O5—C121.4139 (14)
C1—C61.5227 (13)O5—H5A0.8500
C2—C31.3981 (13)C12—H1A0.9800
C2—C71.5164 (13)C12—H1B0.9800
C3—C41.3864 (14)C12—H1C0.9800
C5—N1—C1118.09 (8)O4—C7—C2117.75 (8)
C8—N2—C9111.05 (7)N2—C8—C11110.67 (8)
C8—N2—H2A108.6N2—C8—H8A109.5
C9—N2—H2A107.6C11—C8—H8A109.5
C8—N2—H2B111.9N2—C8—H8B109.5
C9—N2—H2B108.8C11—C8—H8B109.5
H2A—N2—H2B108.9H8A—C8—H8B108.1
C11—N3—C10111.47 (7)N2—C9—C10110.48 (8)
C11—N3—H3A108.7N2—C9—H9A109.6
C10—N3—H3A108.9C10—C9—H9A109.6
C11—N3—H3B109.3N2—C9—H9B109.6
C10—N3—H3B110.9C10—C9—H9B109.6
H3A—N3—H3B107.5H9A—C9—H9B108.1
N1—C1—C2122.77 (9)N3—C10—C9109.50 (8)
N1—C1—C6115.44 (8)N3—C10—H10A109.8
C2—C1—C6121.77 (8)C9—C10—H10A109.8
C3—C2—C1117.92 (9)N3—C10—H10B109.8
C3—C2—C7116.24 (8)C9—C10—H10B109.8
C1—C2—C7125.84 (8)H10A—C10—H10B108.2
C4—C3—C2119.59 (9)N3—C11—C8110.61 (8)
C4—C3—H3120.2N3—C11—H11A109.5
C2—C3—H3120.2C8—C11—H11A109.5
C3—C4—C5118.22 (9)N3—C11—H11B109.5
C3—C4—H4120.9C8—C11—H11B109.5
C5—C4—H4120.9H11A—C11—H11B108.1
N1—C5—C4123.36 (9)C12—O5—H5A104.9
N1—C5—H5118.3O5—C12—H1A109.5
C4—C5—H5118.3O5—C12—H1B109.5
O2—C6—O1125.55 (9)H1A—C12—H1B109.5
O2—C6—C1118.59 (8)O5—C12—H1C109.5
O1—C6—C1115.84 (8)H1A—C12—H1C109.5
O3—C7—O4124.39 (9)H1B—C12—H1C109.5
O3—C7—C2117.52 (8)
C5—N1—C1—C20.66 (14)N1—C1—C6—O1176.31 (8)
C5—N1—C1—C6177.60 (8)C2—C1—C6—O15.41 (13)
N1—C1—C2—C32.12 (14)C3—C2—C7—O385.50 (11)
C6—C1—C2—C3176.03 (8)C1—C2—C7—O394.23 (12)
N1—C1—C2—C7178.16 (9)C3—C2—C7—O488.07 (11)
C6—C1—C2—C73.69 (14)C1—C2—C7—O492.20 (12)
C1—C2—C3—C41.40 (14)C9—N2—C8—C1156.46 (10)
C7—C2—C3—C4178.84 (9)C8—N2—C9—C1058.30 (10)
C2—C3—C4—C50.61 (15)C11—N3—C10—C957.68 (10)
C1—N1—C5—C41.56 (15)N2—C9—C10—N358.17 (10)
C3—C4—C5—N12.20 (15)C10—N3—C11—C856.39 (11)
N1—C1—C6—O25.41 (13)N2—C8—C11—N355.14 (11)
C2—C1—C6—O2172.86 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.901.742.6257 (11)168
N2—H2B···O20.901.892.7274 (11)155
N3—H3A···O1ii0.901.852.7379 (11)169
N3—H3B···O3iii0.901.862.7393 (11)166
O5—H5A···O10.851.842.6867 (10)171
C3—H3···O5iv0.952.413.3163 (13)159
Symmetry codes: (i) x, y+2, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC4H12N22+·C7H3NO42·CH4O
Mr285.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.2541 (6), 11.8988 (8), 13.8197 (9)
β (°) 90.288 (2)
V3)1357.27 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.25 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16044, 3579, 3189
Rint0.023
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.085, 1.03
No. of reflections3579
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.21

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.901.742.6257 (11)168
N2—H2B···O20.901.892.7274 (11)155
N3—H3A···O1ii0.901.852.7379 (11)169
N3—H3B···O3iii0.901.862.7393 (11)166
O5—H5A···O10.851.842.6867 (10)171
C3—H3···O5iv0.952.413.3163 (13)159
Symmetry codes: (i) x, y+2, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x1, y, z.
 

Footnotes

In memory of our great professor, Dr Hossein Aghabozorg, who passed away recently.

Acknowledgements

We acknowledge financial support of this work by the Iran University of Science and Technology and the University of Kurdistan.

References

First citationAghabozorg, H., Manteghi, F. & Ghadermazi, M. (2008). Acta Cryst. E64, o230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationBarszcz, B., Hodorowicz, M., Jablonska-Wawrzycka, A., Masternak, J., Nitek, W. & Stadnicka, K. (2010). Polyhedron, 29, 1191–1200.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, L.-J. & Li, Y. (2004). J. Mol. Struct. 697, 199–203.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1122
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds