organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1103

3-(5-Chloro­naphthalene-1-sulfonamido)-2-(2-hy­dr­oxy­eth­yl)-4,5,6,7-tetra­hydro-2H-pyrazolo­[4,3-c]pyridin-5-ium chloride

aInstitute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
*Correspondence e-mail: imbjxwang@gmail.com

(Received 25 March 2011; accepted 7 April 2011; online 13 April 2011)

In the cation of the title compound, C18H20ClN4O3S+·Cl, the tetra­hydro­pyridinium ring assumes a half-chair conformation. The dihedral angle between the pyrazole ring and the naphthalene ring system is 75.19 (6)°. In the crystal, ions are linked into a three-dimensional network by N—H⋯O, N—H⋯Cl and O—H⋯Cl hydrogen bonds and weak ππ stacking inter­actions with centroid–centroid distances of 3.608 (2) Å.

Related literature

For general background to potential anti­cancer kinase inhibitors, see: Fancelli et al. (2005[Fancelli, D., Berta, D., Bindi, S., Cameron, A., Cappella, P., Carpinelli, P., Catana, C., Forte, B., Giordano, P., Giorgini, M. L., Mantegani, S., Marsiglio, A., Meroni, M., Moll, J., Pittalá, V., Roletto, F., Severino, D., Soncini, C., Storici, P., Tonani, R., et al. (2005). J. Med. Chem. 48, 3080-3084.]); Gadekar et al. (1968[Gadekar, S. M., Johnson, B. D. & Cohen, E. (1968). J. Med. Chem. 11, 616-618.]). For a related structure, see: Brehm (1982[Brehm, L. (1982). Acta Cryst. B38, 2741-2744.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20ClN4O3S+·Cl

  • Mr = 443.34

  • Monoclinic, P 21 /c

  • a = 14.790 (3) Å

  • b = 10.432 (2) Å

  • c = 13.155 (3) Å

  • β = 103.84 (3)°

  • V = 1970.9 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 294 K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Rigaku SCXmini diffractometer

  • 19975 measured reflections

  • 4511 independent reflections

  • 3748 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.097

  • S = 1.08

  • 4511 reflections

  • 258 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl2 0.80 (2) 2.47 (2) 3.261 (2) 170 (2)
N3—H3B⋯O3i 0.90 1.97 2.814 (3) 155
N3—H3A⋯Cl2ii 0.90 2.26 3.1060 (19) 156
O3—H3C⋯Cl2iii 0.82 2.30 3.1151 (18) 172
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

As part of our ongoing project aimed at the development of potential anticancer kinase inhibitors (Fancelli et al., 2005; Gadekar et al., 1968), we have synthesized the title compound and report its crystal structure herein.

In the title compound (Fig. 1) bond lengths and angles have normal values. The dihedral angle between the planes of the pyrazole ring and the naphthalene ring system is 75.19 (6)°. As already observed in the related compound 2-methyl-4,5,6,7-tetrahydro-pyrazolo(3,4-c)pyridin-3-ol monohydrate (Brehm, 1982) the tetrahydropyridinium ring assumes a half-chair conformation, with atom C15 displaced by 0.665 (2) Å from the mean plane through the C12/C13/C14/C16/N3 atoms. The crystal structure (Fig. 2) is stabilized by N—H···O, N—H···Cl and O—H···Cl hydrogen bonds (Table 1) and by weak π···π stacking interactions occurring between centrosymmetrically related C5—C10 rings (centroid-to-centroid distance = 3.608 (2) Å).

Related literature top

For general background to potential anticancer kinase inhibitors, see: Fancelli et al. (2005); Gadekar et al. (1968). For a related structure, see: Brehm (1982).

Experimental top

A mixture of tert-butyl 3-cyano-4-oxopiperidine-1-carboxylate (22.4 g, 100 mmol) and 2-hydroxyethylhydrazine (7.76 g, 100 mmol) in ethanol was stirred at room temperature for 24 h and concentrated by evaporation, then crystallized in AcOEt and petroleum ether (5:1 v/v) to give tert-butyl 3-amino-2-(2-hydroxyethyl)-6,7-dihydro-2H-pyrazolo[4,3-c]pyridine-5(4H)-carboxylate as a yellow solid (13.5 g, one-step yield: 72%). A mixture of a portion (4.0 g, 14.2 mmol) of the material so obtained, azabenzene (10 ml) and dry acetonitrile was stirred at room temperature for 10 min and then a solution of 5-chloronaphthalene-1-sulfonyl chloride (3.7 g, 14.2 mmol) in dry acetonitrile (100 ml) was slowly added dropwise, stirred for 2 additional hours and concentrated by evaporation. The residue was purified by flash chromatography to give 3.9 g of tert-butyl 3-(1-chloronaphthalene-5-sulfonamido)-2-(2-hydroxyethyl)-6,7-dihydro-2H-pyrazolo[4,3-c]pyridine-5(4H)-carboxylate as a slightly yellow solid (one-step yield: 54%). Then, dry HCl gas was bubbled in a solution of the material so obtained (3.0 g, 5.9 mmol) in dry DCM (100 ml) for 3 h to get a white solid of the title compound (one-step yield:98%). Colourless block crystals suitable for X-ray diffraction were obtained in 5 days by slow evaporation of a methanol solution.

Refinement top

All H atoms were detected in a difference map. The H-atom bonded to N1 was refined freely, all other H-atoms were placed in calculated positions and refined using a riding motion approximation, with C—H=0.93–0.97 Å, with Uiso(H)=1.2Ueq(C); N—H=0.90 Å, with Uiso(H)=1.2Ueq(N); O—H=0.82 Å, with Uiso(H)=1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the b axis. Hydrogen bonds are shown as dashed lines.
3-(5-Chloronaphthalene-1-sulfonamido)-2-(2-hydroxyethyl)-4,5,6,7-tetrahydro- 2H-pyrazolo[4,3-c]pyridin-5-ium chloride top
Crystal data top
C18H20ClN4O3S+·ClF(000) = 920
Mr = 443.34Dx = 1.494 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 17906 reflections
a = 14.790 (3) Åθ = 3.1–27.6°
b = 10.432 (2) ŵ = 0.46 mm1
c = 13.155 (3) ÅT = 294 K
β = 103.84 (3)°Prism, colorless
V = 1970.9 (7) Å30.25 × 0.20 × 0.18 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
3748 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
Detector resolution: 13.6612 pixels mm-1h = 1919
CCD Profile fitting scansk = 1313
19975 measured reflectionsl = 1716
4511 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0347P)2 + 1.1868P]
where P = (Fo2 + 2Fc2)/3
4511 reflections(Δ/σ)max < 0.001
258 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C18H20ClN4O3S+·ClV = 1970.9 (7) Å3
Mr = 443.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.790 (3) ŵ = 0.46 mm1
b = 10.432 (2) ÅT = 294 K
c = 13.155 (3) Å0.25 × 0.20 × 0.18 mm
β = 103.84 (3)°
Data collection top
Rigaku SCXmini
diffractometer
3748 reflections with I > 2σ(I)
19975 measured reflectionsRint = 0.036
4511 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.33 e Å3
4511 reflectionsΔρmin = 0.33 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.33453 (13)0.45892 (19)0.58292 (14)0.0301 (4)
C20.27302 (14)0.5562 (2)0.57754 (16)0.0352 (4)
H20.24970.57690.63520.042*
C30.24496 (15)0.6255 (2)0.48403 (17)0.0370 (5)
H30.20150.69090.47950.044*
C40.28016 (14)0.59890 (19)0.39948 (16)0.0339 (4)
H40.26030.64590.33810.041*
C50.34684 (13)0.50006 (18)0.40460 (14)0.0266 (4)
C60.37435 (13)0.42646 (18)0.49814 (14)0.0266 (4)
C70.44156 (14)0.32761 (19)0.50555 (16)0.0349 (4)
H70.45880.27940.56660.042*
C80.48095 (15)0.3027 (2)0.42407 (17)0.0388 (5)
H80.52470.23740.42970.047*
C90.45611 (14)0.3748 (2)0.33186 (16)0.0341 (4)
H90.48430.35820.27720.041*
C100.39047 (13)0.46961 (18)0.32171 (14)0.0280 (4)
C110.22097 (13)0.42683 (18)0.09794 (13)0.0268 (4)
C120.16017 (13)0.34578 (18)0.13062 (14)0.0285 (4)
C130.13724 (13)0.25285 (19)0.05261 (14)0.0302 (4)
C140.07198 (15)0.1447 (2)0.05610 (16)0.0380 (5)
H14A0.10680.06720.08010.046*
H14B0.03290.12900.01330.046*
C150.01232 (15)0.1807 (2)0.13058 (17)0.0423 (5)
H15A0.03110.24760.09940.051*
H15B0.02350.10670.14260.051*
C160.12047 (15)0.3506 (2)0.22543 (16)0.0358 (5)
H16A0.17000.36330.28790.043*
H16B0.07710.42150.21950.043*
C170.28554 (16)0.4324 (2)0.06542 (15)0.0401 (5)
H17A0.29410.36570.11360.048*
H17B0.34660.45690.02420.048*
C180.24133 (19)0.5456 (2)0.12688 (17)0.0486 (6)
H18A0.22720.61000.07970.058*
H18B0.28420.58280.16400.058*
Cl10.36605 (4)0.37099 (6)0.69801 (4)0.04925 (16)
Cl20.09941 (4)0.74385 (6)0.16877 (4)0.04289 (15)
N10.26065 (12)0.54306 (17)0.14066 (12)0.0303 (4)
N20.18020 (12)0.27265 (16)0.02419 (12)0.0344 (4)
N30.07142 (12)0.22688 (17)0.23298 (13)0.0351 (4)
H3A0.03510.23670.27850.042*
H3B0.11410.16650.25900.042*
N40.23153 (11)0.38037 (16)0.00456 (12)0.0303 (4)
O10.37721 (11)0.69457 (15)0.23095 (12)0.0442 (4)
O20.42594 (10)0.50706 (17)0.14152 (11)0.0452 (4)
O30.15812 (13)0.50853 (16)0.19966 (14)0.0547 (4)
H3C0.13780.56940.23780.082*
S10.36955 (3)0.56130 (5)0.20470 (4)0.03171 (13)
H10.2261 (16)0.595 (2)0.1539 (18)0.038 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0327 (10)0.0344 (10)0.0233 (9)0.0036 (8)0.0072 (8)0.0018 (8)
C20.0380 (11)0.0405 (11)0.0312 (10)0.0007 (9)0.0165 (9)0.0034 (9)
C30.0389 (11)0.0363 (11)0.0384 (11)0.0094 (9)0.0145 (9)0.0025 (9)
C40.0388 (11)0.0335 (11)0.0294 (10)0.0055 (8)0.0084 (8)0.0035 (8)
C50.0286 (9)0.0281 (9)0.0228 (9)0.0045 (7)0.0056 (7)0.0031 (7)
C60.0278 (9)0.0264 (9)0.0252 (9)0.0035 (7)0.0053 (7)0.0017 (7)
C70.0376 (11)0.0321 (11)0.0334 (10)0.0034 (9)0.0052 (9)0.0029 (8)
C80.0364 (11)0.0356 (11)0.0436 (12)0.0088 (9)0.0080 (9)0.0045 (9)
C90.0347 (10)0.0374 (11)0.0322 (10)0.0031 (9)0.0120 (9)0.0107 (8)
C100.0299 (9)0.0302 (10)0.0236 (9)0.0053 (8)0.0061 (7)0.0039 (7)
C110.0293 (9)0.0314 (10)0.0193 (8)0.0013 (8)0.0051 (7)0.0001 (7)
C120.0293 (9)0.0334 (10)0.0229 (9)0.0005 (8)0.0061 (7)0.0003 (7)
C130.0317 (10)0.0331 (10)0.0250 (9)0.0005 (8)0.0051 (8)0.0003 (8)
C140.0434 (12)0.0371 (11)0.0314 (10)0.0074 (9)0.0051 (9)0.0020 (9)
C150.0338 (11)0.0494 (13)0.0417 (12)0.0099 (10)0.0052 (9)0.0007 (10)
C160.0417 (11)0.0387 (11)0.0307 (10)0.0067 (9)0.0161 (9)0.0011 (8)
C170.0450 (12)0.0545 (14)0.0240 (10)0.0091 (10)0.0150 (9)0.0028 (9)
C180.0769 (17)0.0394 (13)0.0318 (11)0.0168 (12)0.0175 (11)0.0037 (9)
Cl10.0558 (3)0.0630 (4)0.0308 (3)0.0095 (3)0.0141 (2)0.0166 (2)
Cl20.0352 (3)0.0493 (3)0.0467 (3)0.0017 (2)0.0147 (2)0.0030 (2)
N10.0328 (9)0.0324 (9)0.0260 (8)0.0004 (7)0.0080 (7)0.0021 (7)
N20.0413 (9)0.0368 (10)0.0252 (8)0.0031 (8)0.0081 (7)0.0040 (7)
N30.0327 (9)0.0429 (10)0.0324 (9)0.0021 (7)0.0129 (7)0.0029 (7)
N40.0354 (9)0.0366 (9)0.0208 (7)0.0030 (7)0.0105 (7)0.0011 (6)
O10.0556 (10)0.0372 (8)0.0395 (8)0.0172 (7)0.0107 (7)0.0016 (7)
O20.0364 (8)0.0710 (11)0.0321 (8)0.0051 (7)0.0160 (6)0.0020 (7)
O30.0698 (11)0.0408 (9)0.0483 (10)0.0040 (8)0.0041 (9)0.0094 (8)
S10.0341 (3)0.0385 (3)0.0240 (2)0.0096 (2)0.00986 (19)0.00055 (19)
Geometric parameters (Å, º) top
C1—C21.354 (3)C13—C141.492 (3)
C1—C61.421 (3)C14—C151.514 (3)
C1—Cl11.7359 (19)C14—H14A0.9700
C2—C31.401 (3)C14—H14B0.9700
C2—H20.9300C15—N31.499 (3)
C3—C41.365 (3)C15—H15A0.9700
C3—H30.9300C15—H15B0.9700
C4—C51.417 (3)C16—N31.495 (3)
C4—H40.9300C16—H16A0.9700
C5—C61.425 (3)C16—H16B0.9700
C5—C101.429 (3)C17—N41.460 (2)
C6—C71.419 (3)C17—C181.491 (3)
C7—C81.362 (3)C17—H17A0.9700
C7—H70.9300C17—H17B0.9700
C8—C91.399 (3)C18—O31.420 (3)
C8—H80.9300C18—H18A0.9700
C9—C101.370 (3)C18—H18B0.9700
C9—H90.9300N1—S11.6404 (18)
C10—S11.7755 (19)N1—H10.80 (2)
C11—N41.364 (2)N2—N41.358 (2)
C11—C121.376 (3)N3—H3A0.9000
C11—N11.405 (2)N3—H3B0.9000
C12—C131.393 (3)O1—S11.4305 (16)
C12—C161.501 (3)O2—S11.4276 (16)
C13—N21.332 (2)O3—H3C0.8200
C2—C1—C6122.48 (18)N3—C15—C14110.87 (17)
C2—C1—Cl1118.61 (15)N3—C15—H15A109.5
C6—C1—Cl1118.90 (15)C14—C15—H15A109.5
C1—C2—C3119.12 (18)N3—C15—H15B109.5
C1—C2—H2120.4C14—C15—H15B109.5
C3—C2—H2120.4H15A—C15—H15B108.1
C4—C3—C2121.36 (19)N3—C16—C12108.59 (16)
C4—C3—H3119.3N3—C16—H16A110.0
C2—C3—H3119.3C12—C16—H16A110.0
C3—C4—C5120.39 (18)N3—C16—H16B110.0
C3—C4—H4119.8C12—C16—H16B110.0
C5—C4—H4119.8H16A—C16—H16B108.4
C4—C5—C6119.01 (17)N4—C17—C18113.64 (19)
C4—C5—C10124.15 (17)N4—C17—H17A108.8
C6—C5—C10116.83 (17)C18—C17—H17A108.8
C7—C6—C1122.28 (17)N4—C17—H17B108.8
C7—C6—C5120.10 (17)C18—C17—H17B108.8
C1—C6—C5117.58 (17)H17A—C17—H17B107.7
C8—C7—C6120.58 (19)O3—C18—C17110.29 (18)
C8—C7—H7119.7O3—C18—H18A109.6
C6—C7—H7119.7C17—C18—H18A109.6
C7—C8—C9120.46 (19)O3—C18—H18B109.6
C7—C8—H8119.8C17—C18—H18B109.6
C9—C8—H8119.8H18A—C18—H18B108.1
C10—C9—C8120.36 (19)C11—N1—S1124.79 (14)
C10—C9—H9119.8C11—N1—H1116.8 (17)
C8—C9—H9119.8S1—N1—H1114.3 (17)
C9—C10—C5121.65 (18)C13—N2—N4104.68 (15)
C9—C10—S1116.49 (15)C16—N3—C15113.93 (16)
C5—C10—S1121.66 (15)C16—N3—H3A108.8
N4—C11—C12106.69 (16)C15—N3—H3A108.8
N4—C11—N1122.70 (16)C16—N3—H3B108.8
C12—C11—N1130.33 (17)C15—N3—H3B108.8
C11—C12—C13105.04 (16)H3A—N3—H3B107.7
C11—C12—C16130.83 (17)N2—N4—C11111.59 (15)
C13—C12—C16124.09 (17)N2—N4—C17119.05 (15)
N2—C13—C12111.99 (17)C11—N4—C17129.32 (17)
N2—C13—C14124.74 (18)C18—O3—H3C109.5
C12—C13—C14123.26 (17)O2—S1—O1120.15 (10)
C13—C14—C15108.30 (17)O2—S1—N1107.08 (9)
C13—C14—H14A110.0O1—S1—N1104.36 (10)
C15—C14—H14A110.0O2—S1—C10106.63 (10)
C13—C14—H14B110.0O1—S1—C10109.08 (9)
C15—C14—H14B110.0N1—S1—C10109.19 (9)
H14A—C14—H14B108.4
C6—C1—C2—C32.1 (3)C16—C12—C13—C141.7 (3)
Cl1—C1—C2—C3178.14 (16)N2—C13—C14—C15159.55 (19)
C1—C2—C3—C41.7 (3)C12—C13—C14—C1520.4 (3)
C2—C3—C4—C50.3 (3)C13—C14—C15—N350.1 (2)
C3—C4—C5—C61.9 (3)C11—C12—C16—N3170.03 (19)
C3—C4—C5—C10177.03 (19)C13—C12—C16—N312.4 (3)
C2—C1—C6—C7177.47 (19)N4—C17—C18—O367.3 (2)
Cl1—C1—C6—C72.3 (3)N4—C11—N1—S180.5 (2)
C2—C1—C6—C50.4 (3)C12—C11—N1—S1106.4 (2)
Cl1—C1—C6—C5179.77 (14)C12—C13—N2—N40.2 (2)
C4—C5—C6—C7179.49 (18)C14—C13—N2—N4179.75 (18)
C10—C5—C6—C70.5 (3)C12—C16—N3—C1543.7 (2)
C4—C5—C6—C11.5 (3)C14—C15—N3—C1666.5 (2)
C10—C5—C6—C1177.46 (16)C13—N2—N4—C110.2 (2)
C1—C6—C7—C8177.31 (19)C13—N2—N4—C17177.76 (17)
C5—C6—C7—C80.5 (3)C12—C11—N4—N20.1 (2)
C6—C7—C8—C90.3 (3)N1—C11—N4—N2174.68 (17)
C7—C8—C9—C101.3 (3)C12—C11—N4—C17177.55 (19)
C8—C9—C10—C51.3 (3)N1—C11—N4—C173.0 (3)
C8—C9—C10—S1176.29 (16)C18—C17—N4—N2102.0 (2)
C4—C5—C10—C9178.50 (19)C18—C17—N4—C1175.5 (3)
C6—C5—C10—C90.4 (3)C11—N1—S1—O250.79 (18)
C4—C5—C10—S13.8 (3)C11—N1—S1—O1179.18 (15)
C6—C5—C10—S1175.13 (13)C11—N1—S1—C1064.30 (17)
N4—C11—C12—C130.0 (2)C9—C10—S1—O23.30 (18)
N1—C11—C12—C13174.01 (19)C5—C10—S1—O2178.24 (15)
N4—C11—C12—C16177.9 (2)C9—C10—S1—O1127.85 (16)
N1—C11—C12—C163.9 (4)C5—C10—S1—O147.09 (18)
C11—C12—C13—N20.1 (2)C9—C10—S1—N1118.67 (16)
C16—C12—C13—N2178.22 (18)C5—C10—S1—N166.39 (17)
C11—C12—C13—C14179.82 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl20.80 (2)2.47 (2)3.261 (2)170 (2)
N3—H3B···O3i0.901.972.814 (3)155
N3—H3A···Cl2ii0.902.263.1060 (19)156
O3—H3C···Cl2iii0.822.303.1151 (18)172
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H20ClN4O3S+·Cl
Mr443.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)14.790 (3), 10.432 (2), 13.155 (3)
β (°) 103.84 (3)
V3)1970.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19975, 4511, 3748
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.097, 1.08
No. of reflections4511
No. of parameters258
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.33

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl20.80 (2)2.47 (2)3.261 (2)170 (2)
N3—H3B···O3i0.901.972.814 (3)155
N3—H3A···Cl2ii0.902.263.1060 (19)156
O3—H3C···Cl2iii0.822.303.1151 (18)172
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x, y+3/2, z1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation (81072577).

References

First citationBrehm, L. (1982). Acta Cryst. B38, 2741–2744.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFancelli, D., Berta, D., Bindi, S., Cameron, A., Cappella, P., Carpinelli, P., Catana, C., Forte, B., Giordano, P., Giorgini, M. L., Mantegani, S., Marsiglio, A., Meroni, M., Moll, J., Pittalá, V., Roletto, F., Severino, D., Soncini, C., Storici, P., Tonani, R., et al. (2005). J. Med. Chem. 48, 3080–3084.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGadekar, S. M., Johnson, B. D. & Cohen, E. (1968). J. Med. Chem. 11, 616–618.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1103
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds