organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1159

Redetermination of (E)-N,N′-bis­­(4-bromo­phen­yl)formamidine

aDepartment of Chemistry, Tongji University, Shanghai 200092, People's Republic of China
*Correspondence e-mail: 08hanlij@tongji.edu.cn

(Received 1 April 2011; accepted 10 April 2011; online 16 April 2011)

In comprison with the previous structural study [Anulewicz et al. (1991[Anulewicz, R., Krygowski, T. M., Jaroszewska-Manaj, J. & Pniewska, B. (1991). Pol. J. Chem. 65, 465-471.]). Pol. J. Chem. 65, 465–471], for which only the coordinates of all non-H atoms and of some H atoms were reported, the current redetermination of the title compound, C13H10Br2N2, additionally reports anisotropic displacement parameters for all non-H atoms and the coordinates of all H atoms, accompanied by higher accuracy of the geometric parameters. Two independent half-mol­ecules are present in the asymmetric unit, which are completed by a twofold rotation axis as symmetry element. In the crystal, inter­molecular N—H⋯N hydrogen bonds link the mol­ecules into dimers. Linear chains parallel to [102] are formed by inter­molecular Br⋯Br inter­actions of 3.4328 (7) Å between two Br atoms of adjacent mol­ecules. The dihedral angles between the benzene rings are 50.05 (15) and 75.61 (11)° in the two independent molecules. Owing to the twofold symmetry of the mol­ecules, H atoms attached to the N atoms are only half-occupied, leading to them being disordered over two positions of equal occupancy.

Related literature

For the previous structure determination, see: Anulewicz et al. (1991[Anulewicz, R., Krygowski, T. M., Jaroszewska-Manaj, J. & Pniewska, B. (1991). Pol. J. Chem. 65, 465-471.]). For Br⋯Br inter­actions, see: Fujiwara et al. (2006[Fujiwara, H., Hayashi, T., Sugimoto, T., Nakazumi, H., Noguchi, S., Li, L., Yokogawa, K., Yasuzuka, S., Murata, K. & Mori, T. (2006). Inorg. Chem. 45, 5712-5714.]); Reddy et al. (1996[Reddy, D. S., Craig, D. C. & Desiraju, G. R. (1996). J. Am. Chem. Soc. 118, 4090-4093.]). For N—H⋯N hydrogen bonds, see: Del Bene & Elguero (2006[Del Bene, J. E. & Elguero, J. (2006). J. Phys. Chem. A, 110, 7496-7502.]); Grotjahn et al. (2000[Grotjahn, D. B., Combs, D., Van, S., Aguirre, G. & Ortega, F. (2000). Inorg. Chem. 39, 2080-2086.]); Thar & Kirchner (2006[Thar, J. & Kirchner, B. (2006). J. Phys. Chem. A, 110, 4229-4237.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10Br2N2

  • Mr = 354.05

  • Monoclinic, C 2/c

  • a = 11.563 (2) Å

  • b = 23.447 (5) Å

  • c = 9.881 (2) Å

  • β = 95.43 (3)°

  • V = 2666.9 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.06 mm−1

  • T = 293 K

  • 0.15 × 0.07 × 0.06 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.403, Tmax = 0.695

  • 5954 measured reflections

  • 2611 independent reflections

  • 1715 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.114

  • S = 1.00

  • 2611 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.91 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2A⋯N2i 0.85 2.12 2.964 (4) 180
N2—H3A⋯N1ii 0.88 2.12 2.964 (4) 161
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker. (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker. (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR. Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

With the determination of reliable intermolecular distances, Br···Br interactions (Fujiwara et al., 2006; Reddy et al., 1996) and N–H···N hydrogen bonding (Del Bene & Elguero, 2006; Grotjahn et al. 2000; Thar & Kirchner, 2006) became important criteria in the description of supramolecular chemistry and in applied crystal engineering. The title compound C13H10Br2N2, (I), has been determined previously by Anulewicz et al. (1991). However, in that study only coordinates of all non-H atoms and of some H atoms were given. The present re-determination additionally reports anisotropic displacement parameters for all non-H atoms and the coordinates of all H atoms, accompanied by higher accuracy of all geometric parameters.

In (I) two independent half-molecules are present in the asymmetric unit which are completed by a twofold rotation axis as symmetry element that runs to the central C—H groups (C1—H1 and C2—H2, respectively). One molecule is displayed in Fig. 1. The dihedral angles between the two benzene rings in the individual molecules are 50.05 (15) ° for the first and and 75.61 (11) ° for the second molecule.

In the crystal, intermolecular N—H···N hydrogen bonds link the individual molecules into dimers (Fig. 2). Linear chains parallel to [102] are formed by intermolecular Br···Br interactions of 3.4328 (7) Å between two bromine atoms of adjacent molecules (Fig. 3). This interaction is significantly less than the van der Waals contact of 3.90 Å (Reddy et al., 1996; Fujiwara et al., 2006), hence making this interaction important for consolidation of the crystal packing.

Related literature top

For the previous structure determination, see: Anulewicz et al. (1991). For Br···Br interactions, see: Fujiwara et al. (2006); Reddy et al. (1996). For N—H···N hydrogen bonds, see: Del Bene & Elguero (2006); Grotjahn et al. (2000); Thar & Kirchner (2006).

Experimental top

The title compound was synthesized by the following reaction. 17.202 g (0.1 mol) of 4-bromobenzenamine and 8.33 ml (0.05 mol) of triethyl orthoformate were combined in a round-bottom flask equipped with a distillation tube and heated at 160 until the distillation of ethanol creased. The retained solid was washed with ether, and dried under a dynamic vacuum to yield 16.10 g of white solid, (91%). 0.04 g of the white solid was dissolved in THF (3 ml) and the solution was layered with hexane. Colourless needle-shaped crystals formed after several days. 1HNMR(CDCl3, p.p.m.): 8.08(s, 1H, –NCHN–), 7.43(d, 2H, aromatic), 7.40(d, 2H, aromatic), 6.93(d, 2H, aromatic), 6.91(d, 2H, aromatic). Anal. Calcd. C13H10Br2N2: C, 44.10; H, 2.85; N, 7.91; Found: C, 43.83; H, 2.69; N, 8.02.

Refinement top

H atoms attached to C atoms were positioned geometrically with C—H = 0.93 (CH), and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). H atoms attached to N atoms were found from difference Fourier maps and were fixed. They were refined with Uiso(H) = 1.2Ueq(N). Owing to the 2 symmetry of the molecules, the H atoms attached to the N atoms are only half-occupied, leading to being disordered over two positions of equal occupancy.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of one of the two molecules of (I) drawn with displacement ellipsoids at the 30% probability level. [Symmetry code A) -x+1, y. -z+1/2.]
[Figure 2] Fig. 2. A dimer formed by intermolecular N–H···N hydrogen bonds.
[Figure 3] Fig. 3. Part of an one-dimensional linear chain of the title compound, viewed along [010]. Br···Br interactions are drawn with blue dashed lines.
(E)-N,N'-bis(4-bromophenyl)formamidine top
Crystal data top
C13H10Br2N2F(000) = 1376
Mr = 354.05Dx = 1.764 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4303 reflections
a = 11.563 (2) Åθ = 2.5–26.7°
b = 23.447 (5) ŵ = 6.06 mm1
c = 9.881 (2) ÅT = 293 K
β = 95.43 (3)°Needle, colourless
V = 2666.9 (9) Å30.15 × 0.07 × 0.06 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
2611 independent reflections
Radiation source: fine-focus sealed tube1715 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1214
Tmin = 0.403, Tmax = 0.695k = 2628
5954 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0533P)2]
where P = (Fo2 + 2Fc2)/3
2611 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.91 e Å3
Crystal data top
C13H10Br2N2V = 2666.9 (9) Å3
Mr = 354.05Z = 8
Monoclinic, C2/cMo Kα radiation
a = 11.563 (2) ŵ = 6.06 mm1
b = 23.447 (5) ÅT = 293 K
c = 9.881 (2) Å0.15 × 0.07 × 0.06 mm
β = 95.43 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2611 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1715 reflections with I > 2σ(I)
Tmin = 0.403, Tmax = 0.695Rint = 0.061
5954 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.00Δρmax = 0.48 e Å3
2611 reflectionsΔρmin = 0.91 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.24399 (5)0.73912 (2)0.82770 (5)0.0708 (2)
N10.4449 (3)0.63281 (13)0.3396 (3)0.0429 (8)
H2A0.43520.59750.32710.052*0.50
C10.50000.6600 (2)0.25000.0428 (13)
H10.50000.69970.25000.051*
C110.3994 (4)0.65996 (16)0.4505 (4)0.0404 (9)
C120.4347 (4)0.71277 (17)0.4995 (4)0.0525 (11)
H12A0.49030.73290.45700.063*
C130.3885 (4)0.73617 (18)0.6108 (5)0.0569 (11)
H13A0.41310.77190.64280.068*
C140.3065 (4)0.70681 (17)0.6738 (4)0.0459 (10)
C150.2716 (4)0.65412 (19)0.6293 (4)0.0560 (11)
H15A0.21710.63400.67370.067*
C160.3177 (4)0.63066 (17)0.5178 (4)0.0546 (11)
H16A0.29350.59470.48730.066*
Br20.02928 (6)0.61567 (3)1.05388 (8)0.1036 (3)
N20.4121 (3)0.49146 (13)0.7963 (3)0.0507 (8)
H3A0.40850.45410.79360.061*0.50
C20.50000.5180 (2)0.75000.0520 (15)
H2B0.50000.55770.75000.062*
C210.3242 (4)0.52137 (16)0.8556 (4)0.0455 (10)
C220.2110 (4)0.50352 (19)0.8320 (5)0.0588 (12)
H32A0.19330.47230.77580.071*
C230.1229 (4)0.53143 (19)0.8908 (5)0.0635 (12)
H33A0.04660.51890.87460.076*
C240.1488 (4)0.57764 (18)0.9729 (5)0.0561 (11)
C250.2603 (4)0.59524 (19)0.9991 (4)0.0584 (12)
H35A0.27740.62641.05570.070*
C260.3483 (4)0.56719 (17)0.9422 (4)0.0561 (11)
H36A0.42470.57910.96210.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0872 (4)0.0873 (4)0.0409 (3)0.0246 (3)0.0215 (2)0.0074 (2)
N10.046 (2)0.0446 (17)0.0413 (18)0.0019 (15)0.0199 (15)0.0018 (14)
C10.040 (3)0.042 (3)0.047 (3)0.0000.006 (3)0.000
C110.044 (2)0.046 (2)0.033 (2)0.0046 (18)0.0111 (17)0.0051 (17)
C120.059 (3)0.056 (2)0.045 (2)0.014 (2)0.017 (2)0.001 (2)
C130.070 (3)0.056 (2)0.046 (3)0.009 (2)0.012 (2)0.007 (2)
C140.056 (3)0.055 (2)0.028 (2)0.010 (2)0.0129 (18)0.0038 (18)
C150.053 (3)0.073 (3)0.047 (2)0.005 (2)0.029 (2)0.000 (2)
C160.064 (3)0.051 (2)0.053 (3)0.009 (2)0.025 (2)0.003 (2)
Br20.0764 (5)0.0940 (5)0.1485 (7)0.0149 (3)0.0538 (4)0.0264 (4)
N20.046 (2)0.0459 (18)0.063 (2)0.0002 (16)0.0217 (17)0.0012 (17)
C20.055 (4)0.043 (3)0.059 (4)0.0000.011 (3)0.000
C210.047 (3)0.044 (2)0.047 (2)0.0014 (18)0.0127 (19)0.0011 (18)
C220.049 (3)0.061 (3)0.067 (3)0.010 (2)0.014 (2)0.019 (2)
C230.035 (3)0.078 (3)0.079 (3)0.006 (2)0.014 (2)0.016 (3)
C240.052 (3)0.057 (3)0.062 (3)0.011 (2)0.019 (2)0.000 (2)
C250.057 (3)0.053 (3)0.067 (3)0.000 (2)0.017 (2)0.014 (2)
C260.047 (3)0.059 (3)0.061 (3)0.007 (2)0.005 (2)0.010 (2)
Geometric parameters (Å, º) top
Br1—C141.901 (4)Br2—C241.886 (4)
N1—C11.305 (4)N2—C21.311 (4)
N1—C111.412 (5)N2—C211.407 (5)
N1—H2A0.8422N2—H3A0.8763
C1—N1i1.305 (4)C2—N2ii1.311 (4)
C1—H10.9300C2—H2B0.9300
C11—C121.377 (5)C21—C221.373 (6)
C11—C161.388 (6)C21—C261.385 (5)
C12—C131.381 (6)C22—C231.383 (6)
C12—H12A0.9300C22—H32A0.9300
C13—C141.369 (6)C23—C241.369 (6)
C13—H13A0.9300C23—H33A0.9300
C14—C151.360 (6)C24—C251.355 (6)
C15—C161.383 (6)C25—C261.375 (6)
C15—H15A0.9300C25—H35A0.9300
C16—H16A0.9300C26—H36A0.9300
C1—N1—C11123.2 (3)C2—N2—C21121.5 (3)
C1—N1—H2A116.6C2—N2—H3A120.0
C11—N1—H2A120.1C21—N2—H3A118.5
N1i—C1—N1121.4 (5)N2ii—C2—N2123.3 (5)
N1i—C1—H1119.3N2ii—C2—H2B118.4
N1—C1—H1119.3N2—C2—H2B118.4
C12—C11—C16118.0 (4)C22—C21—C26118.3 (4)
C12—C11—N1123.9 (4)C22—C21—N2119.4 (3)
C16—C11—N1118.0 (3)C26—C21—N2122.2 (4)
C11—C12—C13120.9 (4)C21—C22—C23120.8 (4)
C11—C12—H12A119.6C21—C22—H32A119.6
C13—C12—H12A119.6C23—C22—H32A119.6
C14—C13—C12120.0 (4)C24—C23—C22119.6 (4)
C14—C13—H13A120.0C24—C23—H33A120.2
C12—C13—H13A120.0C22—C23—H33A120.2
C15—C14—C13120.5 (4)C25—C24—C23120.3 (4)
C15—C14—Br1119.8 (3)C25—C24—Br2119.8 (3)
C13—C14—Br1119.7 (3)C23—C24—Br2119.8 (3)
C14—C15—C16119.6 (4)C24—C25—C26120.2 (4)
C14—C15—H15A120.2C24—C25—H35A119.9
C16—C15—H15A120.2C26—C25—H35A119.9
C15—C16—C11121.1 (4)C25—C26—C21120.7 (4)
C15—C16—H16A119.5C25—C26—H36A119.7
C11—C16—H16A119.5C21—C26—H36A119.7
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2A···N2iii0.852.122.964 (4)180
N2—H3A···N1iv0.882.122.964 (4)161
Symmetry codes: (iii) x, y+1, z1/2; (iv) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H10Br2N2
Mr354.05
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)11.563 (2), 23.447 (5), 9.881 (2)
β (°) 95.43 (3)
V3)2666.9 (9)
Z8
Radiation typeMo Kα
µ (mm1)6.06
Crystal size (mm)0.15 × 0.07 × 0.06
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.403, 0.695
No. of measured, independent and
observed [I > 2σ(I)] reflections
5954, 2611, 1715
Rint0.061
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.114, 1.00
No. of reflections2611
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.91

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2A···N2i0.852.122.964 (4)180
N2—H3A···N1ii0.882.122.964 (4)161
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+1, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Scientific Foundation of China (No.20741004/B010303).

References

First citationAnulewicz, R., Krygowski, T. M., Jaroszewska-Manaj, J. & Pniewska, B. (1991). Pol. J. Chem. 65, 465–471.  CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR. Bonn, Germany.  Google Scholar
First citationBruker. (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker. (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDel Bene, J. E. & Elguero, J. (2006). J. Phys. Chem. A, 110, 7496–7502.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFujiwara, H., Hayashi, T., Sugimoto, T., Nakazumi, H., Noguchi, S., Li, L., Yokogawa, K., Yasuzuka, S., Murata, K. & Mori, T. (2006). Inorg. Chem. 45, 5712–5714.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGrotjahn, D. B., Combs, D., Van, S., Aguirre, G. & Ortega, F. (2000). Inorg. Chem. 39, 2080–2086.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReddy, D. S., Craig, D. C. & Desiraju, G. R. (1996). J. Am. Chem. Soc. 118, 4090–4093.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThar, J. & Kirchner, B. (2006). J. Phys. Chem. A, 110, 4229–4237.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1159
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds