organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1087

3-[2-Hy­dr­oxy-3-(2,4,6-tri­methyl­phen­yl)prop­yl]-3-methyl-1-phenyl­thio­urea

aDepartment of Organic Chemistry, Baku State University, Baku, Azerbaijan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 29 March 2011; accepted 6 April 2011; online 13 April 2011)

In the title compound, C20H26N2OS, four non-H atoms of the thio­urea unit are approximately planar (r.m.s. deviation = 0.005 Å); the phenyl and benzene rings are twisted out of this plane by 28.55 (7) and 60.00 (7)°, respectively. An intra­molecular N—H⋯O hydrogen bond occurs. The hy­droxy group is hydrogen bonded to the double-bond S atom of an inversion-related mol­ecule, generating a hydrogen-bonded dimer in the crystal structure.

Related literature

The title compund was prepared by a reaction of 1-methyl­amino-3-(2,4,6-trimethyl­phen­yl)propan-2-ol and phenyl iso­thio­cyanate; for the structure of the reactant 1-methyl­amino-3-(2,4,6-trimethyl­phen­yl)propan-2-ol, see: Maharramov et al. (2011[Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V., Allahverdiyev, M. A. & Ng, S. W. (2011). Acta Cryst. E67, o784.]).

[Scheme 1]

Experimental

Crystal data
  • C20H26N2OS

  • Mr = 342.49

  • Monoclinic, P 21 /c

  • a = 14.6313 (11) Å

  • b = 8.1579 (6) Å

  • c = 16.4455 (12) Å

  • β = 109.040 (1)°

  • V = 1855.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.947, Tmax = 0.964

  • 10052 measured reflections

  • 4160 independent reflections

  • 3542 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.112

  • S = 1.04

  • 4160 reflections

  • 229 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯S1i 0.83 (1) 2.50 (1) 3.219 (1) 146 (2)
N2—H2⋯O1 0.88 (1) 1.89 (1) 2.739 (2) 165 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have recently reported the synthesis and crystal structure of 1-methylamino-3-(2,4,6-trimethylphenyl)propan-2-ol (Maharramov et al., 2011). This secondary amine behaves like a conventional secondary amine in its reaction with phenyl isothiocyanate to furnish a thiourea (Scheme I). The four-atoms N–C(S)–N unit of C20H26N2OS is planar [r.m.s. deviation 0.005 Å]; the phenyl ring connected to one of the two flanking N atoms is twisted out of this plane 28.6 (1)° (Fig. 1). The propyl chain connected to the other N atom bears a hydroxy substituent; this serves as hydrogen-bond donor acceptor to the double-bond S atom of an inversion-related molecule to generate a hydrogen-bonded dimer.

Related literature top

The title compund was prepared by a reaction of 1-methylamino-3-(2,4,6-trimethylphenyl)propan-2-ol and phenyl isothiocyanate; for the structure of the reactant 1-methylamino-3-(2,4,6-trimethylphenyl)propan-2-ol, see: Maharramov et al. (2011).

Experimental top

1-Methylamino-3-(2,4,6-trimethylphenyl)propan-2-ol was synthesized as reported (Maharramov et al., 2011). The compound (10 mmol) and phenyl isothiocyanate (10 mmol) were heated in benzene (50 mol) for 10 h. The solvent was removed and the product recrystallized from ethanol to yield colorless crystals, m.p. 413–414 K; yield 90%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 1.00 Å; U(H) 1.2 to 1.5U(C)] and were included in the refinement in the riding model approximation.

The hydroxy and amino H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H 0.84±0.01 and N–H 0.88±0.01 Å; their temperature factors were refined.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C20H26N2OS at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
3-[2-Hydroxy-3-(2,4,6-trimethylphenyl)propyl]-3-methyl-1-phenylthiourea top
Crystal data top
C20H26N2OSF(000) = 736
Mr = 342.49Dx = 1.226 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4968 reflections
a = 14.6313 (11) Åθ = 2.6–29.2°
b = 8.1579 (6) ŵ = 0.18 mm1
c = 16.4455 (12) ÅT = 100 K
β = 109.040 (1)°Prism, colorless
V = 1855.6 (2) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
4160 independent reflections
Radiation source: fine-focus sealed tube3542 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.947, Tmax = 0.964k = 1010
10052 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0617P)2 + 0.4837P]
where P = (Fo2 + 2Fc2)/3
4160 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 0.38 e Å3
2 restraintsΔρmin = 0.24 e Å3
Crystal data top
C20H26N2OSV = 1855.6 (2) Å3
Mr = 342.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.6313 (11) ŵ = 0.18 mm1
b = 8.1579 (6) ÅT = 100 K
c = 16.4455 (12) Å0.30 × 0.20 × 0.20 mm
β = 109.040 (1)°
Data collection top
Bruker SMART APEX
diffractometer
4160 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3542 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.964Rint = 0.028
10052 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0392 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.38 e Å3
4160 reflectionsΔρmin = 0.24 e Å3
229 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.35275 (3)0.49063 (4)0.61941 (2)0.02172 (11)
O10.61082 (7)0.26588 (12)0.52099 (7)0.0223 (2)
H10.6434 (13)0.330 (2)0.5027 (12)0.041 (6)*
N10.51088 (8)0.30365 (14)0.65553 (7)0.0197 (3)
N20.42327 (8)0.31882 (14)0.51317 (8)0.0196 (2)
H20.4785 (9)0.292 (2)0.5069 (12)0.032 (5)*
C10.81508 (10)0.13935 (16)0.59751 (10)0.0216 (3)
C20.89199 (11)0.21843 (18)0.65953 (10)0.0260 (3)
C30.97052 (11)0.2735 (2)0.63719 (12)0.0320 (4)
H31.02150.32930.67900.038*
C40.97654 (12)0.2495 (2)0.55560 (12)0.0340 (4)
C50.90094 (12)0.1692 (2)0.49568 (11)0.0319 (4)
H50.90430.15080.43970.038*
C60.82014 (11)0.11434 (18)0.51461 (10)0.0254 (3)
C70.89290 (13)0.2418 (2)0.75097 (11)0.0364 (4)
H7A0.94840.30980.78240.055*
H7B0.89790.13480.77920.055*
H7C0.83300.29610.75060.055*
C81.06343 (14)0.3063 (2)0.53256 (16)0.0496 (5)
H8A1.04230.38130.48340.074*
H8B1.09560.21120.51740.074*
H8C1.10870.36300.58190.074*
C90.74118 (12)0.0268 (2)0.44548 (11)0.0327 (4)
H9A0.75780.02330.39240.049*
H9B0.68000.08560.43480.049*
H9C0.73450.08520.46430.049*
C100.72773 (10)0.08517 (17)0.62059 (10)0.0223 (3)
H10A0.74910.04650.68100.027*
H10B0.69640.00800.58340.027*
C110.65378 (10)0.22347 (17)0.61007 (9)0.0195 (3)
H110.68610.32180.64350.023*
C120.57030 (10)0.16888 (16)0.64028 (9)0.0195 (3)
H12A0.52800.09430.59650.023*
H12B0.59710.10570.69420.023*
C130.54069 (11)0.36552 (19)0.74324 (9)0.0253 (3)
H13A0.52390.48190.74270.038*
H13B0.61070.35230.76970.038*
H13C0.50750.30400.77650.038*
C140.43142 (10)0.36483 (16)0.59459 (9)0.0175 (3)
C150.34745 (10)0.33743 (15)0.43473 (9)0.0177 (3)
C160.25039 (10)0.36157 (17)0.42568 (10)0.0228 (3)
H160.23070.37450.47490.027*
C170.18274 (11)0.36650 (18)0.34365 (10)0.0274 (3)
H170.11660.38410.33740.033*
C180.20929 (11)0.34643 (19)0.27106 (10)0.0280 (3)
H180.16190.34970.21550.034*
C190.30580 (11)0.32148 (18)0.28011 (9)0.0251 (3)
H190.32490.30650.23070.030*
C200.37432 (10)0.31839 (16)0.36127 (9)0.0212 (3)
H200.44050.30310.36710.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0242 (2)0.02255 (18)0.0209 (2)0.00347 (13)0.01083 (14)0.00010 (13)
O10.0211 (5)0.0255 (5)0.0227 (5)0.0022 (4)0.0102 (4)0.0086 (4)
N10.0209 (6)0.0219 (6)0.0169 (6)0.0021 (4)0.0072 (5)0.0012 (4)
N20.0176 (6)0.0247 (6)0.0176 (6)0.0025 (5)0.0074 (5)0.0004 (5)
C10.0210 (7)0.0185 (6)0.0264 (7)0.0061 (5)0.0092 (6)0.0057 (5)
C20.0215 (7)0.0253 (7)0.0294 (8)0.0078 (6)0.0056 (6)0.0039 (6)
C30.0195 (7)0.0279 (8)0.0450 (10)0.0049 (6)0.0057 (7)0.0036 (7)
C40.0255 (8)0.0285 (8)0.0531 (11)0.0098 (6)0.0196 (7)0.0149 (7)
C50.0342 (9)0.0333 (8)0.0348 (9)0.0116 (7)0.0203 (7)0.0108 (7)
C60.0267 (8)0.0221 (7)0.0285 (8)0.0090 (6)0.0105 (6)0.0062 (6)
C70.0317 (9)0.0433 (10)0.0289 (9)0.0076 (7)0.0029 (7)0.0013 (7)
C80.0328 (10)0.0438 (11)0.0815 (16)0.0091 (8)0.0315 (10)0.0224 (10)
C90.0361 (9)0.0370 (9)0.0247 (8)0.0071 (7)0.0096 (7)0.0018 (7)
C100.0236 (7)0.0190 (6)0.0257 (7)0.0040 (5)0.0101 (6)0.0064 (5)
C110.0198 (7)0.0193 (6)0.0201 (7)0.0017 (5)0.0074 (5)0.0045 (5)
C120.0197 (7)0.0186 (6)0.0211 (7)0.0013 (5)0.0080 (5)0.0039 (5)
C130.0280 (8)0.0306 (8)0.0167 (7)0.0006 (6)0.0064 (6)0.0002 (6)
C140.0192 (7)0.0162 (6)0.0188 (7)0.0029 (5)0.0086 (5)0.0009 (5)
C150.0200 (7)0.0148 (6)0.0183 (7)0.0014 (5)0.0061 (5)0.0005 (5)
C160.0215 (7)0.0233 (7)0.0246 (7)0.0015 (5)0.0089 (6)0.0005 (6)
C170.0185 (7)0.0290 (8)0.0315 (8)0.0016 (6)0.0039 (6)0.0005 (6)
C180.0272 (8)0.0293 (8)0.0218 (8)0.0048 (6)0.0000 (6)0.0012 (6)
C190.0311 (8)0.0259 (7)0.0177 (7)0.0043 (6)0.0070 (6)0.0006 (6)
C200.0220 (7)0.0207 (6)0.0220 (7)0.0019 (5)0.0086 (6)0.0011 (5)
Geometric parameters (Å, º) top
S1—C141.6885 (14)C8—H8C0.9800
O1—C111.4353 (17)C9—H9A0.9800
O1—H10.826 (9)C9—H9B0.9800
N1—C141.3583 (17)C9—H9C0.9800
N1—C131.4544 (18)C10—C111.5333 (19)
N1—C121.4730 (17)C10—H10A0.9900
N2—C141.3578 (18)C10—H10B0.9900
N2—C151.4086 (17)C11—C121.5275 (19)
N2—H20.875 (9)C11—H111.0000
C1—C61.404 (2)C12—H12A0.9900
C1—C21.405 (2)C12—H12B0.9900
C1—C101.5130 (19)C13—H13A0.9800
C2—C31.390 (2)C13—H13B0.9800
C2—C71.512 (2)C13—H13C0.9800
C3—C41.387 (3)C15—C161.393 (2)
C3—H30.9500C15—C201.396 (2)
C4—C51.383 (3)C16—C171.389 (2)
C4—C81.513 (2)C16—H160.9500
C5—C61.391 (2)C17—C181.380 (2)
C5—H50.9500C17—H170.9500
C6—C91.510 (2)C18—C191.386 (2)
C7—H7A0.9800C18—H180.9500
C7—H7B0.9800C19—C201.3835 (19)
C7—H7C0.9800C19—H190.9500
C8—H8A0.9800C20—H200.9500
C8—H8B0.9800
C11—O1—H1114.3 (14)C1—C10—H10A109.1
C14—N1—C13120.79 (12)C11—C10—H10A109.1
C14—N1—C12124.00 (12)C1—C10—H10B109.1
C13—N1—C12115.16 (11)C11—C10—H10B109.1
C14—N2—C15131.51 (12)H10A—C10—H10B107.9
C14—N2—H2113.4 (12)O1—C11—C12105.77 (11)
C15—N2—H2113.7 (12)O1—C11—C10110.52 (11)
C6—C1—C2119.22 (14)C12—C11—C10111.01 (11)
C6—C1—C10121.17 (13)O1—C11—H11109.8
C2—C1—C10119.61 (13)C12—C11—H11109.8
C3—C2—C1119.47 (15)C10—C11—H11109.8
C3—C2—C7118.83 (15)N1—C12—C11114.64 (11)
C1—C2—C7121.68 (14)N1—C12—H12A108.6
C4—C3—C2121.91 (16)C11—C12—H12A108.6
C4—C3—H3119.0N1—C12—H12B108.6
C2—C3—H3119.0C11—C12—H12B108.6
C5—C4—C3117.90 (15)H12A—C12—H12B107.6
C5—C4—C8120.58 (17)N1—C13—H13A109.5
C3—C4—C8121.51 (18)N1—C13—H13B109.5
C4—C5—C6122.24 (16)H13A—C13—H13B109.5
C4—C5—H5118.9N1—C13—H13C109.5
C6—C5—H5118.9H13A—C13—H13C109.5
C5—C6—C1119.24 (15)H13B—C13—H13C109.5
C5—C6—C9118.75 (15)N2—C14—N1113.87 (12)
C1—C6—C9122.01 (14)N2—C14—S1123.98 (10)
C2—C7—H7A109.5N1—C14—S1122.12 (10)
C2—C7—H7B109.5C16—C15—C20119.25 (13)
H7A—C7—H7B109.5C16—C15—N2125.74 (13)
C2—C7—H7C109.5C20—C15—N2114.87 (12)
H7A—C7—H7C109.5C17—C16—C15119.10 (14)
H7B—C7—H7C109.5C17—C16—H16120.4
C4—C8—H8A109.5C15—C16—H16120.4
C4—C8—H8B109.5C18—C17—C16121.61 (14)
H8A—C8—H8B109.5C18—C17—H17119.2
C4—C8—H8C109.5C16—C17—H17119.2
H8A—C8—H8C109.5C17—C18—C19119.26 (14)
H8B—C8—H8C109.5C17—C18—H18120.4
C6—C9—H9A109.5C19—C18—H18120.4
C6—C9—H9B109.5C20—C19—C18119.91 (14)
H9A—C9—H9B109.5C20—C19—H19120.0
C6—C9—H9C109.5C18—C19—H19120.0
H9A—C9—H9C109.5C19—C20—C15120.85 (13)
H9B—C9—H9C109.5C19—C20—H20119.6
C1—C10—C11112.30 (11)C15—C20—H20119.6
C6—C1—C2—C31.4 (2)C14—N1—C12—C1190.19 (16)
C10—C1—C2—C3177.61 (13)C13—N1—C12—C1192.18 (14)
C6—C1—C2—C7177.09 (13)O1—C11—C12—N176.40 (14)
C10—C1—C2—C73.9 (2)C10—C11—C12—N1163.70 (12)
C1—C2—C3—C41.5 (2)C15—N2—C14—N1170.80 (13)
C7—C2—C3—C4177.01 (14)C15—N2—C14—S110.8 (2)
C2—C3—C4—C50.5 (2)C13—N1—C14—N2167.94 (12)
C2—C3—C4—C8178.50 (15)C12—N1—C14—N214.56 (18)
C3—C4—C5—C60.6 (2)C13—N1—C14—S110.48 (18)
C8—C4—C5—C6179.65 (15)C12—N1—C14—S1167.02 (10)
C4—C5—C6—C10.7 (2)C14—N2—C15—C1622.3 (2)
C4—C5—C6—C9179.63 (14)C14—N2—C15—C20162.14 (13)
C2—C1—C6—C50.3 (2)C20—C15—C16—C170.2 (2)
C10—C1—C6—C5178.68 (13)N2—C15—C16—C17175.56 (13)
C2—C1—C6—C9178.57 (13)C15—C16—C17—C180.7 (2)
C10—C1—C6—C92.4 (2)C16—C17—C18—C190.3 (2)
C6—C1—C10—C1194.33 (16)C17—C18—C19—C200.6 (2)
C2—C1—C10—C1184.66 (16)C18—C19—C20—C151.1 (2)
C1—C10—C11—O167.26 (15)C16—C15—C20—C190.7 (2)
C1—C10—C11—C12175.70 (12)N2—C15—C20—C19175.19 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···S1i0.83 (1)2.50 (1)3.219 (1)146 (2)
N2—H2···O10.88 (1)1.89 (1)2.739 (2)165 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC20H26N2OS
Mr342.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.6313 (11), 8.1579 (6), 16.4455 (12)
β (°) 109.040 (1)
V3)1855.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.947, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
10052, 4160, 3542
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.112, 1.04
No. of reflections4160
No. of parameters229
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···S1i0.83 (1)2.50 (1)3.219 (1)146 (2)
N2—H2···O10.88 (1)1.89 (1)2.739 (2)165 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank Baku State University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMaharramov, A. M., Khalilov, A. N., Gurbanov, A. V., Allahverdiyev, M. A. & Ng, S. W. (2011). Acta Cryst. E67, o784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1087
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds