organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1397-o1398

N-Benzoyl-N′-(1,10-phenanthrolin-5-yl)thio­urea di­chloro­methane hemisolvate monohydrate

aSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi Selangor, Malaysia, and bLaboratoire de Chimie de Coordination, UPR-CNRS 8241, 205 Route de Narbonne, F-31077 Toulouse CEDEX, France
*Correspondence e-mail: mbkassim@ukm.my

(Received 1 March 2011; accepted 8 May 2011; online 14 May 2011)

The title compound, C20H14N4OS·0.5CH2Cl2·H2O, contains 1,10-phenanthroline and benzoyl fragments that adopt cisoid and transoid conformations respectively, with respect to the S atom. In the crystal, mol­ecules are linked by inter­molecular O—H⋯O, O—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds, forming chains along [011]. Weak C—H⋯π and slipped ππ stacking inter­actions [centroid–centroid distances = 3.715 (3), 3.684 (3) and 3.574 (2) Å] are also observed. In addition to an ordered water mol­ecule of solvation, there is a disordered dichloro­methane solvent mol­ecule which was difficult to model correctly. The contributions to the electron density for this mol­ecule was removed using the SQUEEZE procedure in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155].

Related literature

For related structures, see: Al-abbasi & Kassim (2011[Al-abbasi, A. A. & Kassim, M. B. (2011). Acta Cryst. E67, o611.]); Hassan et al. (2008[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008). Acta Cryst. E64, o1727.]); Yamin & Hassan (2004[Yamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513-o2514.]); Yamin & Yusof (2003[Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o151-o152.]); Yunus et al. (2008[Yunus, U., Tahir, M. K., Bhatti, M. H., Ali, S. & Wong, W.-Y. (2008). Acta Cryst. E64, o20.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H14N4OS·0.5CH2Cl2·H2O

  • Mr = 418.89

  • Triclinic, [P \overline 1]

  • a = 9.385 (5) Å

  • b = 10.863 (5) Å

  • c = 10.927 (5) Å

  • α = 112.949 (5)°

  • β = 103.984 (5)°

  • γ = 96.641 (5)°

  • V = 967.6 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 298 K

  • 0.47 × 0.19 × 0.14 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.916, Tmax = 0.974

  • 4400 measured reflections

  • 3254 independent reflections

  • 2450 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.139

  • S = 1.08

  • 3254 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the N4,C9–C12,C20 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.86 1.96 2.636 (3) 135
N2—H2A⋯O2W 0.86 2.07 2.910 (3) 165
O2W—H1W⋯N3i 0.85 2.08 2.889 (3) 160
O2W—H2W⋯O1ii 0.85 2.46 3.187 (3) 144
C9—H9⋯O1iii 0.93 2.56 3.140 (4) 121
C2—H2⋯Cg2iv 0.93 2.99 3.806 (4) 147
C13—H13⋯Cg3ii 0.93 2.88 3.796 (3) 168
Symmetry codes: (i) x, y-1, z-1; (ii) -x, -y+1, -z; (iii) -x, -y+2, -z+1; (iv) x, y-1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title molecule maintains the cis-trans configuration with respect to the positions of the 1,10-phenanthrolin-5-amine and benzoyl groups, respectively, relative to the S atom across the C–N bonds (Fig 1). The bond lengths and angles in the molecules are in normal ranges (Allen et al., 1987).

The phenyl and phenanthroline rings are twisted with relative to the central thiourea fragment dihedral angles of 29.46 (12)° and 74.06 (8)°, respectively. The phenyl and phenantroline rings are almost perpendicular to each other with dihedral angle of 83.15 (10)°.

An intramolecular N1—H1A···O1 (Fig. 1 and Table 2) stabilize the conformation and forms a pseudo six-membered ring (N1/H1A/O1/C7/N2/C8). The crystal packing is stabilized by fours intermolecular O2W—H2W···O1, O2W—H1W···N3, N2—H2A···O2W and C9—H9···O1 hydrogen bonds,(Table 1), which link the molecules into an infinite one-dimensional chain along [0 1 1] direction (Fig 2). There also exist weak C—H···π and slippest π-π stacking interactions which result in a three dimensionnal network.

Related literature top

For related structures, see: Al-abbasi & Kassim (2011); Hassan et al. (2008); Yamin & Hassan et al. (2004); Yamin & Yusof et al. (2003); Yunus et al. (2008). For standard bond lengths, see: Allen et al. (1987);

Experimental top

The reaction scheme involved a reaction of benzoyl chloride (8.6 mmol) with ammonium thiocyanate (8.6 mmol) in acetone. The product, benzoyl isothiocyanate (7.7 mmol) was reacted with 1,10-phenanthrolin-5-amine (7.7 mmol) to give the title compound with a 70% yield. A slow evaporation dichloromethane solution of the product gave a colourless crystals suitable for X-ray diffraction.

Refinement top

All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C—H = 0.93 Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H= 0.85 (1)Å and H···H= 1.39 (2) Å) with Uiso(H) = 1.5Ueq(O). In the last cycles of refinement, they were treated as riding on their parent O atom.

Some residual electron density were difficult to model and therefore, the SQUEEZE function of PLATON (Spek, 2009) was used to eliminate the contribution of the electron density in the solvent region from the intensity data, and the solvent-free model was employed for the final refinement. There is one cavity of 122.9 Å3 per unit cell. PLATON estimated that the cavity contains 38.4 electrons which may correspond to a solvent molecule of dichloromethane as suggested by chemical analyses.

This dichloromethane solvent has been however included in the formula.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A partial packing view of (I) showing the O—H···O, O—H···N, N—H···O and C—H···O Hydrogen bonds whiwh are shown as dashed lines. H atoms attached to C atoms not involved in hydrogen bondings have been omitted for clarity.
N-Benzoyl-N'-(1,10-phenanthrolin-5-yl)thiourea dichloromethane hemisolvate monohydrate top
Crystal data top
C20H14N4OS·0.5CH2Cl2·H2OZ = 2
Mr = 418.89F(000) = 434
Triclinic, P1Dx = 1.438 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.385 (5) ÅCell parameters from 4905 reflections
b = 10.863 (5) Åθ = 2.1–28.4°
c = 10.927 (5) ŵ = 0.33 mm1
α = 112.949 (5)°T = 298 K
β = 103.984 (5)°Block, colourless
γ = 96.641 (5)°0.47 × 0.19 × 0.14 mm
V = 967.6 (8) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3254 independent reflections
Radiation source: fine-focus sealed tube2450 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1110
Tmin = 0.916, Tmax = 0.974k = 712
4400 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0792P)2 + 0.0787P]
where P = (Fo2 + 2Fc2)/3
3254 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C20H14N4OS·0.5CH2Cl2·H2Oγ = 96.641 (5)°
Mr = 418.89V = 967.6 (8) Å3
Triclinic, P1Z = 2
a = 9.385 (5) ÅMo Kα radiation
b = 10.863 (5) ŵ = 0.33 mm1
c = 10.927 (5) ÅT = 298 K
α = 112.949 (5)°0.47 × 0.19 × 0.14 mm
β = 103.984 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3254 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2450 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.974Rint = 0.014
4400 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.08Δρmax = 0.28 e Å3
3254 reflectionsΔρmin = 0.19 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C80.1675 (2)0.7038 (2)0.1383 (2)0.0355 (5)
C70.1658 (3)0.4881 (2)0.1675 (2)0.0392 (6)
C140.0884 (3)0.8891 (2)0.3010 (2)0.0376 (5)
C130.0219 (3)0.9315 (2)0.2377 (2)0.0419 (6)
H130.08640.87150.14880.050*
C120.0432 (3)1.0675 (2)0.3038 (2)0.0384 (5)
C200.0499 (3)1.1569 (2)0.4405 (2)0.0359 (5)
C190.1718 (3)1.1125 (2)0.5081 (2)0.0366 (5)
C150.1916 (3)0.9784 (2)0.4377 (2)0.0386 (5)
C10.2387 (3)0.3698 (2)0.1377 (2)0.0374 (5)
C60.3666 (3)0.3676 (3)0.0951 (3)0.0444 (6)
H60.40460.43800.07510.053*
C50.4371 (3)0.2607 (3)0.0825 (3)0.0528 (7)
H50.52310.25930.05440.063*
C40.3802 (3)0.1559 (3)0.1116 (3)0.0521 (7)
H40.42840.08430.10340.063*
C30.2526 (3)0.1569 (3)0.1525 (3)0.0556 (7)
H30.21360.08530.17040.067*
C20.1833 (3)0.2638 (2)0.1669 (3)0.0472 (6)
H20.09830.26530.19650.057*
C110.1558 (3)1.1162 (3)0.2395 (3)0.0490 (6)
H110.21781.06120.14820.059*
C100.1746 (3)1.2442 (3)0.3108 (3)0.0533 (7)
H100.24791.27870.26890.064*
C90.0820 (3)1.3217 (3)0.4472 (3)0.0506 (7)
H90.09881.40740.49640.061*
C160.3117 (3)0.9399 (3)0.5063 (3)0.0470 (6)
H160.32760.85230.46380.056*
C170.4052 (3)1.0305 (3)0.6353 (3)0.0562 (7)
H170.48651.00670.68140.067*
C180.3767 (3)1.1599 (3)0.6968 (3)0.0550 (7)
H180.44111.22110.78520.066*
N10.1038 (2)0.75069 (19)0.2384 (2)0.0462 (5)
H1A0.06950.69400.26740.055*
N20.1897 (2)0.57097 (18)0.1030 (2)0.0384 (5)
H2A0.22210.53710.03250.046*
N30.2644 (2)1.2012 (2)0.6378 (2)0.0475 (5)
N40.0287 (2)1.2829 (2)0.5128 (2)0.0462 (5)
O10.0911 (2)0.51100 (18)0.2479 (2)0.0574 (5)
S10.22322 (8)0.79160 (7)0.05756 (7)0.0509 (2)
O2W0.2509 (2)0.46575 (19)0.1633 (2)0.0658 (6)
H1W0.25190.39760.23520.099*
H2W0.18230.50240.19090.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C80.0397 (12)0.0285 (11)0.0331 (12)0.0102 (9)0.0112 (10)0.0075 (9)
C70.0467 (14)0.0288 (12)0.0386 (13)0.0088 (10)0.0173 (11)0.0089 (10)
C140.0492 (14)0.0276 (11)0.0418 (13)0.0106 (10)0.0272 (11)0.0128 (10)
C130.0523 (15)0.0341 (12)0.0350 (13)0.0085 (11)0.0179 (11)0.0087 (10)
C120.0489 (14)0.0342 (12)0.0376 (13)0.0121 (10)0.0224 (11)0.0151 (11)
C200.0448 (13)0.0286 (11)0.0373 (13)0.0088 (10)0.0204 (10)0.0129 (10)
C190.0430 (13)0.0314 (11)0.0378 (13)0.0075 (10)0.0205 (10)0.0131 (10)
C150.0480 (14)0.0357 (12)0.0430 (13)0.0132 (10)0.0272 (11)0.0195 (11)
C10.0448 (13)0.0295 (11)0.0347 (12)0.0089 (10)0.0132 (10)0.0101 (10)
C60.0443 (14)0.0456 (14)0.0506 (15)0.0134 (11)0.0194 (12)0.0247 (12)
C50.0499 (15)0.0639 (17)0.0500 (15)0.0254 (13)0.0205 (12)0.0239 (14)
C40.0623 (17)0.0432 (14)0.0516 (16)0.0266 (12)0.0155 (13)0.0187 (12)
C30.0677 (18)0.0408 (14)0.0679 (18)0.0191 (13)0.0272 (15)0.0279 (14)
C20.0545 (15)0.0352 (13)0.0558 (16)0.0126 (11)0.0265 (13)0.0176 (12)
C110.0552 (16)0.0505 (15)0.0403 (14)0.0159 (12)0.0124 (12)0.0194 (12)
C100.0619 (17)0.0511 (16)0.0582 (17)0.0276 (13)0.0226 (14)0.0289 (14)
C90.0629 (17)0.0386 (13)0.0566 (17)0.0225 (12)0.0263 (14)0.0197 (13)
C160.0527 (15)0.0452 (14)0.0556 (16)0.0205 (12)0.0286 (13)0.0250 (13)
C170.0478 (15)0.0695 (19)0.0607 (18)0.0216 (14)0.0183 (13)0.0345 (16)
C180.0511 (16)0.0588 (17)0.0458 (15)0.0110 (13)0.0117 (12)0.0160 (13)
N10.0699 (14)0.0278 (10)0.0503 (12)0.0157 (9)0.0354 (11)0.0155 (9)
N20.0488 (12)0.0315 (10)0.0372 (11)0.0155 (8)0.0204 (9)0.0112 (9)
N30.0485 (12)0.0442 (12)0.0432 (12)0.0098 (10)0.0151 (10)0.0122 (10)
N40.0589 (13)0.0325 (10)0.0487 (12)0.0184 (9)0.0243 (10)0.0125 (9)
O10.0855 (13)0.0415 (10)0.0681 (13)0.0283 (9)0.0510 (11)0.0274 (9)
S10.0700 (5)0.0451 (4)0.0598 (4)0.0279 (3)0.0388 (4)0.0303 (3)
O2W0.0810 (14)0.0525 (11)0.0523 (11)0.0243 (10)0.0246 (10)0.0067 (9)
Geometric parameters (Å, º) top
C8—N11.329 (3)C5—H50.9300
C8—N21.395 (3)C4—C31.375 (4)
C8—S11.651 (2)C4—H40.9300
C7—O11.222 (3)C3—C21.371 (4)
C7—N21.372 (3)C3—H30.9300
C7—C11.486 (3)C2—H20.9300
C14—C131.331 (3)C11—C101.360 (4)
C14—N11.431 (3)C11—H110.9300
C14—C151.437 (3)C10—C91.383 (4)
C13—C121.432 (3)C10—H100.9300
C13—H130.9300C9—N41.322 (3)
C12—C111.397 (4)C9—H90.9300
C12—C201.407 (3)C16—C171.358 (4)
C20—N41.354 (3)C16—H160.9300
C20—C191.444 (3)C17—C181.391 (4)
C19—N31.355 (3)C17—H170.9300
C19—C151.416 (3)C18—N31.317 (3)
C15—C161.398 (3)C18—H180.9300
C1—C61.388 (3)N1—H1A0.8600
C1—C21.388 (3)N2—H2A0.8600
C6—C51.379 (4)O2W—H1W0.8472
C6—H60.9300O2W—H2W0.8513
C5—C41.381 (4)
N1—C8—N2116.0 (2)C5—C4—H4119.8
N1—C8—S1124.83 (17)C2—C3—C4119.8 (3)
N2—C8—S1119.18 (17)C2—C3—H3120.1
O1—C7—N2122.2 (2)C4—C3—H3120.1
O1—C7—C1121.1 (2)C3—C2—C1120.7 (2)
N2—C7—C1116.7 (2)C3—C2—H2119.7
C13—C14—N1121.2 (2)C1—C2—H2119.7
C13—C14—C15121.4 (2)C10—C11—C12119.8 (2)
N1—C14—C15117.4 (2)C10—C11—H11120.1
C14—C13—C12121.3 (2)C12—C11—H11120.1
C14—C13—H13119.3C11—C10—C9118.3 (2)
C12—C13—H13119.3C11—C10—H10120.8
C11—C12—C20117.5 (2)C9—C10—H10120.8
C11—C12—C13122.8 (2)N4—C9—C10124.8 (2)
C20—C12—C13119.7 (2)N4—C9—H9117.6
N4—C20—C12122.7 (2)C10—C9—H9117.6
N4—C20—C19118.2 (2)C17—C16—C15119.9 (2)
C12—C20—C19119.1 (2)C17—C16—H16120.0
N3—C19—C15121.9 (2)C15—C16—H16120.0
N3—C19—C20118.7 (2)C16—C17—C18118.5 (3)
C15—C19—C20119.4 (2)C16—C17—H17120.7
C16—C15—C19117.6 (2)C18—C17—H17120.7
C16—C15—C14123.4 (2)N3—C18—C17124.2 (3)
C19—C15—C14119.0 (2)N3—C18—H18117.9
C6—C1—C2119.3 (2)C17—C18—H18117.9
C6—C1—C7122.8 (2)C8—N1—C14124.39 (19)
C2—C1—C7117.6 (2)C8—N1—H1A117.8
C5—C6—C1119.9 (2)C14—N1—H1A117.8
C5—C6—H6120.1C7—N2—C8127.66 (19)
C1—C6—H6120.1C7—N2—H2A116.2
C6—C5—C4120.0 (2)C8—N2—H2A116.2
C6—C5—H5120.0C18—N3—C19117.9 (2)
C4—C5—H5120.0C9—N4—C20116.8 (2)
C3—C4—C5120.4 (2)H1W—O2W—H2W106.6
C3—C4—H4119.8
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the N4,C9–C12,C20 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.861.962.636 (3)135
N2—H2A···O2W0.862.072.910 (3)165
O2W—H1W···N3i0.852.082.889 (3)160
O2W—H2W···O1ii0.852.463.187 (3)144
C9—H9···O1iii0.932.563.140 (4)121
C2—H2···Cg2iv0.932.993.806 (4)147
C13—H13···Cg3ii0.932.883.796 (3)168
Symmetry codes: (i) x, y1, z1; (ii) x, y+1, z; (iii) x, y+2, z+1; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC20H14N4OS·0.5CH2Cl2·H2O
Mr418.89
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.385 (5), 10.863 (5), 10.927 (5)
α, β, γ (°)112.949 (5), 103.984 (5), 96.641 (5)
V3)967.6 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.47 × 0.19 × 0.14
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.916, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
4400, 3254, 2450
Rint0.014
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.139, 1.08
No. of reflections3254
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.19

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the N4,C9–C12,C20 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.861.962.636 (3)135
N2—H2A···O2W0.862.072.910 (3)165
O2W—H1W···N3i0.852.082.889 (3)160
O2W—H2W···O1ii0.852.463.187 (3)144
C9—H9···O1iii0.932.563.140 (4)121
C2—H2···Cg2iv0.932.993.806 (4)147
C13—H13···Cg3ii0.932.883.796 (3)168
Symmetry codes: (i) x, y1, z1; (ii) x, y+1, z; (iii) x, y+2, z+1; (iv) x, y1, z.
Table 2 π-π stacking interactions (Å,°) top
Cg1 is the centroid of the C12—C20 ring.

Cg2 is the centroid of the N4—C20 ring

Cg4 is the centroid of the N3—C19 ring
CgICgJCgI···CgJaαCgI···P(J)bCgJ···P(I)cSlippage
Cg1Cg2v3.715 (3)4.143.4383.3871.47 (mean value)
Cg1Cg4v3.684 (3)1.643.3953.3521.48 (mean value)
Cg4Cg4v3.574 (2)0.023.3593.3591.222
Symmetry codes: (v)-x,2-y,1-z

Notes:

a : Distance between centroids

b : Perpendicular distance of CgI on ring plan J

c : Perpendicular distance of CgJ on ring plan I

α = Dihedral Angle between the ring planes Slippage = vertical displacement between ring centroids.
 

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia for providing facilities and the Ministry of Science, Technology and Innovation for the research fund No. UKM-MGI-NBD0021–2007.

References

First citationAl-abbasi, A. A. & Kassim, M. B. (2011). Acta Cryst. E67, o611.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008). Acta Cryst. E64, o1727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513–o2514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o151–o152.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYunus, U., Tahir, M. K., Bhatti, M. H., Ali, S. & Wong, W.-Y. (2008). Acta Cryst. E64, o20.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1397-o1398
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds