metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tri­benzyl­tin(IV)]-μ-4-formyl-2-meth­­oxy-6-nitro­phenolato-κ2O1:O4]

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 25 April 2011; accepted 30 April 2011; online 7 May 2011)

The formyl­meth­oxy­nitro­phenoxide ions in the polymeric title compound, [Sn(C7H7)3(C8H6NO5)]n, link adjacent triorganotin(IV) cations into linear chains lying close to (101) [Sn—O = 2.1227 (12) Å and Sn← O = 2.4936 (13) Å]. The SnIV atom is displaced out of the C3Sn girdle of the trans-C3SnO2 trigonal-bipyramidal polyhedron in the direction of the covalently-bonded O atom [Sn—O—C = 137.63 (11)°] by 0.247 (1) Å; the geometry is distorted towards an octa­hedron by a remote O atom of the meth­oxy subsituent [Sn⋯O = 3.019 (1) Å]

Related literature

For a related structure, see: James et al. (1998[James, B. D., Kivlinghon, L. M., Skelton, B. W. & White, A. H. (1998). Appl. Organomet. Chem. 12, 13-23.]). For a description of triorganotin phenoxides, see: Poller (1970[Poller, R. C. (1970). In The Chemistry of Organotin Compounds. London: Academic Press.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C7H7)3(C8H6NO5)]

  • Mr = 588.21

  • Monoclinic, P 21 /n

  • a = 12.1241 (1) Å

  • b = 16.5829 (2) Å

  • c = 13.3893 (2) Å

  • β = 106.3701 (6)°

  • V = 2582.83 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 100 K

  • 0.25 × 0.25 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.783, Tmax = 0.904

  • 25760 measured reflections

  • 6372 independent reflections

  • 5545 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.063

  • S = 1.01

  • 6372 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Triorganotin alkoxides are compounds, unlike triorganotin phenoxides, which are generally not stable in air, as stated in a textbook on organotin chemistry (Poller, 1970). As such, there are few reports on phenoxides. Vanillin and its derivatives possess a hydroxy group that can be deprotonated; the 5-nitrovallinate anion in polymeric [Sn(C7H7)3(C8H7NO5)]n (Scheme I) links adjacent triorganotin(IV) cations to form a linear chain running along the ac diagonal of the monoclinic unit cell (Fig. 1). The dative Sn–O bond is significantly longer than the covalent Sn–O bond [Sn–O 2.123 (1), SnO 2.494 (1) Å], so that the SnIV atom is displaced out of the C3Sn girdle of the trans-C3SnO2 trigonal bipyramidal polyhedron in the direction of the covalently-bonded O atom [Sn–O–C 137.6 (1) Å] by 0.247 (1) Å. The geometry is distorted towards an octahedron by the O atom of the methoxy subsituent [Sn···O 3.019 (1) Å]. There are few examples of triorganotin systems having SnOaromatic aldehdye bond; one example is triphenyltin salicylaldehydate, which features a long SnO bond (James et al., 1998).

Related literature top

For a related structure, see: James et al. (1998). For a description of triorganotin phenoxides, see: Poller (1970).

Experimental top

Tribenzyltin hydroxide was prepared by the base hydrolysis of tribenzyl)tin chloride with 10% sodium hydroxide solution. The compound (0.41 g, 1 mmol) hydroxide and 4-hydroxy-3-methoxy-5-nitrobenzaldehyde (5-nitrovanillin) (0.2 g, 1 mmol) were dissolved in ethanol (100 ml) and the mixture was heated for an hour. The solution was filtered and the solvent allowed to evaporate for a few days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 times Ueq(C). The final difference Fourier map had a peak in the vicinity of Sn1.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of a portion of the chain structure of Sn(C7H7)3(C8H6NO5) at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
catena-Poly[[tribenzyltin(IV)]-µ-4-formyl-2-methoxy-6- nitrophenolato-κ2O1:O4] top
Crystal data top
[Sn(C7H7)3(C8H6NO5)]F(000) = 1192
Mr = 588.21Dx = 1.513 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9964 reflections
a = 12.1241 (1) Åθ = 2.4–28.2°
b = 16.5829 (2) ŵ = 1.03 mm1
c = 13.3893 (2) ÅT = 100 K
β = 106.3701 (6)°Block, colorless
V = 2582.83 (5) Å30.25 × 0.25 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
6372 independent reflections
Radiation source: fine-focus sealed tube5545 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.783, Tmax = 0.904k = 2221
25760 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0349P)2 + 0.888P]
where P = (Fo2 + 2Fc2)/3
6372 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Sn(C7H7)3(C8H6NO5)]V = 2582.83 (5) Å3
Mr = 588.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.1241 (1) ŵ = 1.03 mm1
b = 16.5829 (2) ÅT = 100 K
c = 13.3893 (2) Å0.25 × 0.25 × 0.10 mm
β = 106.3701 (6)°
Data collection top
Bruker SMART APEX
diffractometer
6372 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5545 reflections with I > 2σ(I)
Tmin = 0.783, Tmax = 0.904Rint = 0.028
25760 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.01Δρmax = 1.02 e Å3
6372 reflectionsΔρmin = 0.25 e Å3
325 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.368458 (10)0.189545 (7)0.722727 (9)0.01643 (5)
O10.27411 (11)0.13103 (7)0.81338 (10)0.0204 (3)
O20.28459 (11)0.27891 (8)0.88378 (11)0.0218 (3)
O30.01389 (12)0.27479 (8)1.10347 (11)0.0262 (3)
O40.04948 (13)0.03179 (8)0.87527 (11)0.0296 (3)
O50.15153 (15)0.00208 (10)0.77303 (13)0.0426 (4)
N10.10833 (14)0.01628 (9)0.84212 (12)0.0218 (3)
C10.38886 (16)0.07215 (11)0.66076 (14)0.0209 (4)
H1A0.47020.06450.66190.025*
H1B0.36910.03000.70520.025*
C20.31382 (16)0.06304 (11)0.55183 (14)0.0215 (4)
C30.3568 (2)0.07057 (14)0.46631 (17)0.0343 (5)
H30.43680.07900.47680.041*
C40.2842 (2)0.06586 (17)0.36588 (18)0.0449 (6)
H40.31500.07140.30840.054*
C50.1676 (2)0.05316 (15)0.34835 (18)0.0411 (6)
H50.11830.05010.27930.049*
C60.12380 (18)0.04503 (12)0.43205 (18)0.0315 (5)
H60.04380.03610.42080.038*
C70.19544 (17)0.04974 (11)0.53232 (16)0.0245 (4)
H70.16390.04390.58930.029*
C80.23785 (17)0.26471 (12)0.62210 (16)0.0250 (4)
H8A0.27160.31880.61930.030*
H8B0.21910.24190.55100.030*
C90.12731 (16)0.27558 (12)0.65014 (14)0.0215 (4)
C100.05093 (18)0.21194 (12)0.64538 (16)0.0263 (4)
H100.06880.16030.62360.032*
C110.05074 (17)0.22273 (14)0.67194 (17)0.0305 (4)
H110.10130.17850.66890.037*
C120.07859 (19)0.29776 (14)0.70286 (18)0.0350 (5)
H120.14830.30530.72090.042*
C130.00443 (18)0.36165 (13)0.70734 (18)0.0325 (5)
H130.02330.41330.72850.039*
C140.09776 (17)0.35095 (12)0.68101 (15)0.0259 (4)
H140.14790.39550.68410.031*
C150.51642 (16)0.22724 (12)0.84500 (15)0.0242 (4)
H15A0.55020.27660.82400.029*
H15B0.49430.23910.90920.029*
C160.60161 (16)0.15935 (12)0.86363 (14)0.0221 (4)
C170.59103 (17)0.09386 (12)0.92531 (15)0.0264 (4)
H170.53170.09370.95890.032*
C180.66561 (18)0.02880 (13)0.93860 (16)0.0305 (4)
H180.65740.01520.98140.037*
C190.75189 (19)0.02786 (15)0.88964 (17)0.0346 (5)
H190.80270.01690.89810.042*
C200.76353 (18)0.09220 (15)0.82865 (17)0.0368 (5)
H200.82270.09170.79490.044*
C210.69000 (17)0.15770 (14)0.81585 (17)0.0303 (4)
H210.69990.20190.77410.036*
C220.20411 (15)0.15092 (11)0.86575 (13)0.0170 (3)
C230.20697 (15)0.23057 (11)0.91021 (14)0.0186 (3)
C240.13811 (15)0.25138 (11)0.97130 (14)0.0198 (4)
H240.14280.30391.00070.024*
C250.05980 (16)0.19419 (11)0.99044 (14)0.0204 (4)
C260.05257 (16)0.11815 (11)0.94786 (14)0.0202 (4)
H260.00050.08020.96070.024*
C270.12282 (15)0.09688 (10)0.88604 (14)0.0180 (3)
C280.01506 (17)0.21211 (12)1.05483 (16)0.0246 (4)
H280.06940.17211.05970.030*
C290.28924 (18)0.36164 (11)0.91567 (16)0.0258 (4)
H29A0.34820.39000.89200.039*
H29B0.30830.36450.99170.039*
H29C0.21430.38710.88510.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01783 (7)0.01555 (7)0.01806 (7)0.00019 (4)0.00854 (5)0.00098 (4)
O10.0242 (7)0.0177 (6)0.0241 (7)0.0014 (5)0.0149 (5)0.0016 (5)
O20.0257 (7)0.0157 (6)0.0285 (7)0.0025 (5)0.0148 (6)0.0009 (5)
O30.0320 (8)0.0237 (7)0.0289 (7)0.0005 (6)0.0183 (6)0.0035 (6)
O40.0402 (8)0.0228 (7)0.0312 (8)0.0108 (6)0.0186 (6)0.0012 (6)
O50.0593 (11)0.0319 (9)0.0528 (11)0.0168 (7)0.0424 (9)0.0188 (7)
N10.0243 (8)0.0199 (8)0.0224 (8)0.0030 (6)0.0088 (6)0.0005 (6)
C10.0230 (9)0.0198 (9)0.0219 (9)0.0019 (7)0.0098 (7)0.0002 (7)
C20.0256 (9)0.0164 (8)0.0234 (9)0.0004 (7)0.0087 (7)0.0003 (7)
C30.0347 (12)0.0426 (13)0.0299 (11)0.0121 (10)0.0160 (9)0.0065 (10)
C40.0574 (16)0.0559 (16)0.0255 (11)0.0199 (13)0.0183 (11)0.0060 (11)
C50.0479 (14)0.0404 (13)0.0281 (11)0.0067 (11)0.0004 (10)0.0039 (10)
C60.0280 (11)0.0240 (10)0.0402 (12)0.0007 (8)0.0056 (9)0.0034 (9)
C70.0276 (10)0.0176 (9)0.0309 (10)0.0012 (7)0.0125 (8)0.0024 (8)
C80.0273 (10)0.0257 (10)0.0260 (10)0.0064 (8)0.0138 (8)0.0070 (8)
C90.0225 (9)0.0246 (9)0.0184 (9)0.0054 (7)0.0076 (7)0.0040 (7)
C100.0304 (11)0.0248 (10)0.0231 (10)0.0025 (8)0.0066 (8)0.0007 (8)
C110.0239 (10)0.0359 (11)0.0307 (11)0.0049 (9)0.0060 (8)0.0004 (9)
C120.0213 (10)0.0457 (13)0.0403 (13)0.0029 (9)0.0125 (9)0.0038 (10)
C130.0292 (11)0.0290 (11)0.0409 (12)0.0078 (9)0.0125 (9)0.0032 (9)
C140.0258 (10)0.0240 (10)0.0284 (10)0.0040 (8)0.0086 (8)0.0021 (8)
C150.0236 (10)0.0229 (9)0.0271 (10)0.0038 (8)0.0089 (8)0.0062 (8)
C160.0178 (9)0.0262 (9)0.0211 (9)0.0029 (7)0.0036 (7)0.0053 (8)
C170.0224 (10)0.0328 (11)0.0234 (10)0.0047 (8)0.0059 (7)0.0014 (8)
C180.0272 (10)0.0323 (11)0.0279 (10)0.0001 (8)0.0009 (8)0.0028 (9)
C190.0285 (11)0.0413 (13)0.0297 (11)0.0103 (9)0.0013 (9)0.0015 (10)
C200.0227 (10)0.0572 (15)0.0321 (11)0.0088 (10)0.0106 (9)0.0027 (11)
C210.0227 (10)0.0398 (12)0.0299 (11)0.0001 (9)0.0096 (8)0.0061 (9)
C220.0193 (9)0.0181 (9)0.0143 (8)0.0024 (7)0.0056 (6)0.0027 (7)
C230.0197 (9)0.0172 (8)0.0197 (9)0.0003 (7)0.0071 (7)0.0035 (7)
C240.0244 (9)0.0172 (8)0.0191 (9)0.0011 (7)0.0084 (7)0.0003 (7)
C250.0227 (9)0.0221 (9)0.0194 (9)0.0015 (7)0.0110 (7)0.0015 (7)
C260.0209 (9)0.0206 (9)0.0220 (9)0.0010 (7)0.0106 (7)0.0025 (7)
C270.0213 (9)0.0155 (8)0.0182 (8)0.0000 (7)0.0072 (7)0.0004 (7)
C280.0274 (10)0.0223 (9)0.0291 (10)0.0002 (8)0.0159 (8)0.0017 (8)
C290.0318 (11)0.0165 (9)0.0313 (10)0.0043 (8)0.0125 (8)0.0019 (8)
Geometric parameters (Å, º) top
Sn1—O12.1227 (12)C11—C121.383 (3)
Sn1—C152.1526 (19)C11—H110.9500
Sn1—C12.1576 (18)C12—C131.380 (3)
Sn1—C82.1619 (19)C12—H120.9500
Sn1—O3i2.4936 (13)C13—C141.392 (3)
O1—C221.287 (2)C13—H130.9500
O2—C231.357 (2)C14—H140.9500
O2—C291.433 (2)C15—C161.500 (3)
O3—C281.225 (2)C15—H15A0.9900
O3—Sn1ii2.4936 (13)C15—H15B0.9900
O4—N11.233 (2)C16—C171.392 (3)
O5—N11.223 (2)C16—C211.395 (3)
N1—C271.451 (2)C17—C181.387 (3)
C1—C21.493 (3)C17—H170.9500
C1—H1A0.9900C18—C191.382 (3)
C1—H1B0.9900C18—H180.9500
C2—C31.391 (3)C19—C201.375 (3)
C2—C71.402 (3)C19—H190.9500
C3—C41.386 (3)C20—C211.385 (3)
C3—H30.9500C20—H200.9500
C4—C51.382 (4)C21—H210.9500
C4—H40.9500C22—C271.414 (2)
C5—C61.375 (3)C22—C231.445 (3)
C5—H50.9500C23—C241.367 (2)
C6—C71.380 (3)C24—C251.416 (2)
C6—H60.9500C24—H240.9500
C7—H70.9500C25—C261.377 (3)
C8—C91.501 (3)C25—C281.448 (3)
C8—H8A0.9900C26—C271.390 (2)
C8—H8B0.9900C26—H260.9500
C9—C101.394 (3)C28—H280.9500
C9—C141.395 (3)C29—H29A0.9800
C10—C111.387 (3)C29—H29B0.9800
C10—H100.9500C29—H29C0.9800
O1—Sn1—C1599.54 (6)C12—C13—C14120.5 (2)
O1—Sn1—C186.91 (6)C12—C13—H13119.8
C15—Sn1—C1113.15 (7)C14—C13—H13119.8
O1—Sn1—C8101.64 (6)C13—C14—C9120.71 (19)
C15—Sn1—C8127.85 (8)C13—C14—H14119.6
C1—Sn1—C8115.07 (8)C9—C14—H14119.6
O1—Sn1—O3i166.47 (5)C16—C15—Sn1107.19 (12)
C15—Sn1—O3i85.05 (6)C16—C15—H15A110.3
C1—Sn1—O3i79.60 (6)Sn1—C15—H15A110.3
C8—Sn1—O3i85.12 (6)C16—C15—H15B110.3
C22—O1—Sn1137.63 (11)Sn1—C15—H15B110.3
C23—O2—C29117.37 (14)H15A—C15—H15B108.5
C28—O3—Sn1ii128.23 (13)C17—C16—C21117.91 (19)
O5—N1—O4121.74 (16)C17—C16—C15120.65 (17)
O5—N1—C27120.47 (15)C21—C16—C15121.36 (18)
O4—N1—C27117.77 (15)C16—C17—C18121.16 (19)
C2—C1—Sn1111.26 (12)C16—C17—H17119.4
C2—C1—H1A109.4C18—C17—H17119.4
Sn1—C1—H1A109.4C19—C18—C17120.1 (2)
C2—C1—H1B109.4C19—C18—H18120.0
Sn1—C1—H1B109.4C17—C18—H18120.0
H1A—C1—H1B108.0C20—C19—C18119.4 (2)
C3—C2—C7117.52 (18)C20—C19—H19120.3
C3—C2—C1121.91 (17)C18—C19—H19120.3
C7—C2—C1120.52 (17)C19—C20—C21120.8 (2)
C4—C3—C2120.7 (2)C19—C20—H20119.6
C4—C3—H3119.6C21—C20—H20119.6
C2—C3—H3119.6C20—C21—C16120.6 (2)
C5—C4—C3120.8 (2)C20—C21—H21119.7
C5—C4—H4119.6C16—C21—H21119.7
C3—C4—H4119.6O1—C22—C27123.00 (16)
C6—C5—C4119.2 (2)O1—C22—C23121.05 (16)
C6—C5—H5120.4C27—C22—C23115.93 (15)
C4—C5—H5120.4O2—C23—C24126.31 (17)
C5—C6—C7120.4 (2)O2—C23—C22111.73 (15)
C5—C6—H6119.8C24—C23—C22121.95 (16)
C7—C6—H6119.8C23—C24—C25119.54 (17)
C6—C7—C2121.38 (19)C23—C24—H24120.2
C6—C7—H7119.3C25—C24—H24120.2
C2—C7—H7119.3C26—C25—C24120.43 (17)
C9—C8—Sn1117.52 (13)C26—C25—C28117.20 (17)
C9—C8—H8A107.9C24—C25—C28122.37 (17)
Sn1—C8—H8A107.9C25—C26—C27120.06 (17)
C9—C8—H8B107.9C25—C26—H26120.0
Sn1—C8—H8B107.9C27—C26—H26120.0
H8A—C8—H8B107.2C26—C27—C22122.06 (16)
C10—C9—C14118.00 (18)C26—C27—N1116.78 (16)
C10—C9—C8121.76 (18)C22—C27—N1121.16 (15)
C14—C9—C8120.25 (18)O3—C28—C25125.14 (18)
C11—C10—C9121.16 (19)O3—C28—H28117.4
C11—C10—H10119.4C25—C28—H28117.4
C9—C10—H10119.4O2—C29—H29A109.5
C12—C11—C10120.2 (2)O2—C29—H29B109.5
C12—C11—H11119.9H29A—C29—H29B109.5
C10—C11—H11119.9O2—C29—H29C109.5
C13—C12—C11119.5 (2)H29A—C29—H29C109.5
C13—C12—H12120.2H29B—C29—H29C109.5
C11—C12—H12120.2
C15—Sn1—O1—C2283.51 (18)Sn1—C15—C16—C2195.27 (19)
C1—Sn1—O1—C22163.52 (18)C21—C16—C17—C180.3 (3)
C8—Sn1—O1—C2248.54 (18)C15—C16—C17—C18176.55 (18)
O3i—Sn1—O1—C22167.57 (18)C16—C17—C18—C190.5 (3)
O1—Sn1—C1—C2105.81 (13)C17—C18—C19—C200.6 (3)
C15—Sn1—C1—C2155.13 (12)C18—C19—C20—C210.0 (3)
C8—Sn1—C1—C24.40 (15)C19—C20—C21—C160.8 (3)
O3i—Sn1—C1—C275.15 (13)C17—C16—C21—C200.9 (3)
Sn1—C1—C2—C3101.24 (19)C15—C16—C21—C20175.92 (19)
Sn1—C1—C2—C776.10 (19)Sn1—O1—C22—C27155.51 (14)
C7—C2—C3—C40.7 (3)Sn1—O1—C22—C2326.3 (3)
C1—C2—C3—C4176.7 (2)C29—O2—C23—C245.3 (3)
C2—C3—C4—C50.3 (4)C29—O2—C23—C22174.93 (15)
C3—C4—C5—C60.1 (4)O1—C22—C23—O23.8 (2)
C4—C5—C6—C70.2 (4)C27—C22—C23—O2177.92 (15)
C5—C6—C7—C20.2 (3)O1—C22—C23—C24176.01 (16)
C3—C2—C7—C60.6 (3)C27—C22—C23—C242.3 (3)
C1—C2—C7—C6176.85 (17)O2—C23—C24—C25178.99 (17)
O1—Sn1—C8—C913.55 (16)C22—C23—C24—C251.2 (3)
C15—Sn1—C8—C998.44 (16)C23—C24—C25—C260.1 (3)
C1—Sn1—C8—C9105.59 (16)C23—C24—C25—C28179.63 (18)
O3i—Sn1—C8—C9178.30 (16)C24—C25—C26—C270.3 (3)
Sn1—C8—C9—C1067.3 (2)C28—C25—C26—C27179.43 (17)
Sn1—C8—C9—C14113.34 (18)C25—C26—C27—C220.8 (3)
C14—C9—C10—C110.9 (3)C25—C26—C27—N1178.67 (16)
C8—C9—C10—C11179.72 (19)O1—C22—C27—C26176.18 (17)
C9—C10—C11—C120.6 (3)C23—C22—C27—C262.1 (3)
C10—C11—C12—C130.2 (3)O1—C22—C27—N14.3 (3)
C11—C12—C13—C140.0 (3)C23—C22—C27—N1177.42 (15)
C12—C13—C14—C90.3 (3)O5—N1—C27—C26167.06 (18)
C10—C9—C14—C130.7 (3)O4—N1—C27—C2611.5 (2)
C8—C9—C14—C13179.89 (19)O5—N1—C27—C2212.4 (3)
O1—Sn1—C15—C1688.15 (13)O4—N1—C27—C22169.03 (17)
C1—Sn1—C15—C162.56 (15)Sn1ii—O3—C28—C25177.02 (14)
C8—Sn1—C15—C16158.91 (12)C26—C25—C28—O3175.07 (19)
O3i—Sn1—C15—C1679.02 (13)C24—C25—C28—O34.7 (3)
Sn1—C15—C16—C1781.43 (19)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Sn(C7H7)3(C8H6NO5)]
Mr588.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)12.1241 (1), 16.5829 (2), 13.3893 (2)
β (°) 106.3701 (6)
V3)2582.83 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.25 × 0.25 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.783, 0.904
No. of measured, independent and
observed [I > 2σ(I)] reflections
25760, 6372, 5545
Rint0.028
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.063, 1.01
No. of reflections6372
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.02, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank the University of Malaya (grant No. RG020/09AFR) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJames, B. D., Kivlinghon, L. M., Skelton, B. W. & White, A. H. (1998). Appl. Organomet. Chem. 12, 13–23.  CrossRef CAS Google Scholar
First citationPoller, R. C. (1970). In The Chemistry of Organotin Compounds. London: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds