organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1346-o1347

4,6-Bis(4-fluoro­phen­yl)-2-phenyl-1H-indazol-3(2H)-one

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 26 March 2011; accepted 29 April 2011; online 7 May 2011)

In the title compound, C25H16F2N2O, the pyrazole ring is almost planar (r.m.s. deviation = 0.028 Å) and makes a dihedral angle of 5.86 (11)° with the indazole benzene ring. The dihedral angle between the pyrazole ring and the unsubstituted phenyl ring is 28.19 (11)°. The dihedral angles between the unsubstituted phenyl and the two fluoro­phenyl groups are 57.69 (10) and 18.01 (10)°. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯F inter­actions, forming infinite chains along the b axis with graph-set motif R32(19). The crystal structure is further consolidated by ππ stacking [centroid–centroid distances = 3.5916 (13) and 3.6890 (13) Å] and C—H⋯π inter­actions.

Related literature

For the pharmacological activity of indazole derivatives, see: Beylin et al. (1991[Beylin, V. G., Colbry, N. L., Giordani, A. B., Goel, O. P., Johnson, D. R., Leeds, R. L., Leja, B., Lewis, E. P., Lustgarten, D. M., Showalter, H. D. H., Sercel, A. D., Reily, M. D., Uhlendorf, S. E. & Zisek, K. A. (1991). J. Heterocycl. Chem. 28, 517-527.]); George et al. (1998[George, V. D., Kim, U. T., Liang, J., Cordova, B., Klabe, R. M., Garber, S., Bacheler, L. T., Lam, G. N., Wright, M. R., Logue, K. A., Viitanen, S. E., Ko, S. S. & Trainor, G. L. (1998). J. Med. Chem. 41, 2411-2423.]); Jain et al. (1987[Jain, A. C., Mehta, A. & Arya, P. (1987). Indian J. Chem. Sect. B, 26, 150-153.]); Palazzo et al. (1966[Palazzo, G., Corsi, G., Baiocchi, L. & Silnerstrini, B. (1966). J. Med. Chem. 9, 38-41.]); Popat et al. (2003[Popat, K. H., Nimavat, K. S., Vasoya, S. L. & Joshi, H. S. (2003). Indian J. Chem. Sect. B, 42, 1497-1501.]); Roman (1990[Roman, B. (1990). Pharmazie, 45, 214-217.]). For related structures, see: van der Helm et al. (1979[Helm, D. van der, Wu, K. K., Ealick, S. E., Berlin, K. D. & Ramalingam, K. (1979). Acta Cryst. B35, 2804-2806.]); Fun et al. (2010[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o864-o865.]). For hybridization and electron delocalization around N atoms, see: Susindran et al. (2010[Susindran, V., Athimoolam, S., Bahadur, S. A., Manikannan, R. & Muthusubramanian, S. (2010). Acta Cryst. E66, o2594-o2595.]); Jin et al. (2004[Jin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642-o643.]). For graph-set analysis, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C25H16F2N2O

  • Mr = 398.40

  • Orthorhombic, P b c n

  • a = 15.2947 (4) Å

  • b = 11.6259 (2) Å

  • c = 20.9388 (5) Å

  • V = 3723.23 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 123 K

  • 0.49 × 0.38 × 0.23 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.895, Tmax = 0.977

  • 19870 measured reflections

  • 3827 independent reflections

  • 3416 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.135

  • S = 1.09

  • 3827 reflections

  • 275 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg5 is the centroid of the C20–C25 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—HN2⋯O1i 0.86 (2) 2.00 (2) 2.830 (2) 162 (2)
C6—H6⋯F1ii 0.93 2.49 3.362 (2) 156
C15—H15⋯Cg5iii 0.93 2.85 3.656 (2) 145
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (ii) x, y+1, z; (iii) [x, -y, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339-340.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In last few decades, much attention has been paid to the synthesis of heterocycles containing 1,2-diazole systems like indazole mainly due to their broad spectrum of pharmacological properties. Indazole derivatives possess variety of pharmacological activities such as analgesic, anti inflammatory, antidepressant, antihypertensive, antiviral and anticancer activities (Jain et al., 1987; Palazzo et al., 1966; Popat et al., 2003; Beylin et al., 1991; George et al., 1998; Roman, 1990).

The crystal structure of indazole derivative, viz., 1,2,4,5-tetrahydro-7-methoxy-3H-benz[g]indazol-3-one monohydrate (van der Helm et al., 1979) has been reported. Also the crystal structure of methyl 4,6-bis(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate, the precursor of the title compound, has been reported (Fun et al., 2010). In view of the importance of indazole derivatives, the title compound (I) is synthesized and its crystal structure is reported here.

The pyrazole ring (N1/N2/C1/C2/C7) in (I), (Fig. 1), is almost planar with the largest deviations from the mean plane being 0.039 (2) Å for C7 and -0.035 (2) Å for N2. The sum of the surrounding angles around N1 in the pyrazole ring is 358.15 (15)°, in accordance with the sp2 hybridization of the N1 atom (Susindran et al., 2010). The C1—N1 and C7—N2 bond lengths in the pyrazole ring are 1.390 (2) and 1.367 (3) Å, respectively. The values of these distances are shorter than the pertinent single bond length of 1.443 Å and are longer than the double bond length of 1.269 Å (Jin et al., 2004). This case indicates electron delocalization.

The dihedral angle between the pyrazole ring and the indazole benzene ring in (I), (Fig. 1), is 5.86 (11)°. The dihedral angle between the two fluorophenyl groups is 42.56 (11)°, and the dihedral angle between the five-membered pyrazole ring and the unsubstituted phenyl ring is 28.19 (11)°. The unsubstituted phenyl ring and the two fluorophenyl groups make dihedral angles of 57.69 (10) and 18.01 (10)°, respectively, with each other.

In the crystal structure, molecules are linked by intermolecular N—H···O and C—H···F interactions, forming R23(19) graph-set motifs (Etter, 1990; Bernstein et al., 1995) along the b axis of the unit cell (Table 1, Fig. 2). In addition, the crystal structure is consolidated by C—H···π and π-π stacking [Cg1···Cg3(3/2 - x, 1/2 + y, z) = 3.5916 (13) Å and Cg3···Cg3(1 - x, y, 1/2 - z) = 3.6890 (13) Å; Cg1 and Cg3 are the centroids of the N1/N2/C1/C2/C7 pyrazole ring and C8—C13 benzene ring, respectively] interactions.

Related literature top

For the pharmacological activity of indazole derivatives, see: Beylin et al. (1991); George et al. (1998); Jain et al. (1987); Palazzo et al. (1966); Popat et al. (2003); Roman (1990). For related structures, see: van der Helm et al. (1979); Fun et al. (2010). For hybridization and electron delocalization around N atoms, see: Susindran et al. (2010); Jin et al. (2004). For graph-set analysis, see: Etter (1990); Bernstein et al. (1995).

Experimental top

A mixture of methyl 4,6-bis(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate (3.42 g, 0.01 mol) and phenyl hydrazine (1.08 g, 0.01 mol) in 50 ml e thanol containing 1 ml glacial acetic acid was refluxed for 10 h. The reaction mixture was cooled and poured into 50 ml ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol. Yellow prisms of (I) were grown from DMF by slow evaporation (m.p.: > 523 K, yield: 58%).

Refinement top

All H atoms attached to C atoms were placed in their calculated positions (aromatic C—H = 0.93 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C). The N-bound H atom was located from a difference map and refined with a distance restraint N—H = 0.86±0.01 Å, and with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title structure viewed down the c axis. N—H···O and C—H···F hydrogen bondings (dashed lines) link the molecules, forming R23(19) graph-set motifs along the b axis of the unit cell. H atoms not involved in hydrogen bonds have been omitted for clarity.
4,6-Bis(4-fluorophenyl)-2-phenyl-1H-indazol-3(2H)-one top
Crystal data top
C25H16F2N2OF(000) = 1648
Mr = 398.40Dx = 1.421 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 11209 reflections
a = 15.2947 (4) Åθ = 5.2–37.5°
b = 11.6259 (2) ŵ = 0.10 mm1
c = 20.9388 (5) ÅT = 123 K
V = 3723.23 (15) Å3Prism, colourless
Z = 80.49 × 0.38 × 0.23 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3827 independent reflections
Radiation source: Enhance (Mo) X-ray Source3416 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 10.5081 pixels mm-1θmax = 26.5°, θmin = 5.2°
ω scansh = 1919
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 1414
Tmin = 0.895, Tmax = 0.977l = 2626
19870 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0462P)2 + 4.0317P]
where P = (Fo2 + 2Fc2)/3
3827 reflections(Δ/σ)max < 0.001
275 parametersΔρmax = 0.65 e Å3
1 restraintΔρmin = 0.35 e Å3
Crystal data top
C25H16F2N2OV = 3723.23 (15) Å3
Mr = 398.40Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 15.2947 (4) ŵ = 0.10 mm1
b = 11.6259 (2) ÅT = 123 K
c = 20.9388 (5) Å0.49 × 0.38 × 0.23 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3827 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
3416 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.977Rint = 0.029
19870 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0571 restraint
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.65 e Å3
3827 reflectionsΔρmin = 0.35 e Å3
275 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.60370 (13)0.57691 (11)0.22016 (9)0.0656 (6)
F20.48986 (10)0.29173 (14)0.53611 (7)0.0525 (5)
O10.73203 (11)0.14990 (12)0.11749 (7)0.0351 (5)
N10.72290 (11)0.04878 (13)0.11220 (7)0.0239 (5)
N20.68782 (11)0.13815 (13)0.14893 (8)0.0241 (5)
C10.70924 (15)0.05733 (16)0.14107 (9)0.0269 (6)
C20.66455 (14)0.03003 (16)0.20027 (9)0.0272 (6)
C30.63295 (16)0.10034 (17)0.25063 (10)0.0323 (6)
C40.60213 (13)0.04532 (16)0.30476 (9)0.0246 (5)
C50.60116 (12)0.07752 (16)0.31012 (9)0.0230 (5)
C60.62766 (13)0.14448 (16)0.25935 (9)0.0248 (6)
C70.65858 (13)0.08914 (16)0.20431 (9)0.0241 (5)
C80.62753 (14)0.22733 (16)0.24316 (9)0.0257 (6)
C90.58886 (14)0.27250 (18)0.18834 (10)0.0291 (6)
C100.57996 (15)0.3901 (2)0.18045 (11)0.0355 (7)
C110.61074 (16)0.46066 (17)0.22766 (12)0.0382 (7)
C120.64919 (16)0.42035 (19)0.28203 (12)0.0391 (7)
C130.65705 (15)0.30264 (18)0.28970 (10)0.0315 (6)
C140.57027 (12)0.13239 (17)0.37010 (9)0.0246 (6)
C150.58997 (14)0.08541 (18)0.42973 (10)0.0302 (6)
C160.56348 (15)0.1384 (2)0.48586 (10)0.0365 (7)
C170.51680 (14)0.2389 (2)0.48129 (10)0.0355 (7)
C180.49559 (14)0.28874 (19)0.42389 (11)0.0338 (6)
C190.52226 (13)0.23481 (18)0.36821 (10)0.0280 (6)
C200.74707 (13)0.07083 (15)0.04813 (9)0.0216 (5)
C210.71378 (14)0.16740 (16)0.01763 (9)0.0257 (6)
C220.73814 (15)0.19020 (17)0.04494 (9)0.0303 (6)
C230.79396 (15)0.11777 (17)0.07719 (10)0.0303 (6)
C240.82668 (15)0.02163 (18)0.04644 (10)0.0320 (6)
C250.80400 (13)0.00225 (17)0.01629 (10)0.0279 (6)
HN20.7174 (14)0.2009 (14)0.1477 (12)0.038 (7)*
H40.581400.089400.338600.0300*
H60.625100.224300.261500.0300*
H90.568800.223000.156700.0350*
H100.553800.420300.144000.0430*
H120.669600.470700.313100.0470*
H130.682500.273600.326700.0380*
H150.621500.017100.431900.0360*
H160.577000.106700.525400.0440*
H180.464100.357100.422400.0400*
H190.508000.267200.328900.0340*
H210.675500.216300.038900.0310*
H220.716500.255300.065400.0360*
H230.809600.133300.119200.0360*
H240.864300.027600.068100.0380*
H250.826700.066600.036800.0330*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0954 (13)0.0186 (7)0.0829 (12)0.0145 (7)0.0149 (10)0.0064 (7)
F20.0579 (9)0.0652 (10)0.0345 (7)0.0125 (8)0.0096 (7)0.0210 (7)
O10.0646 (11)0.0155 (7)0.0251 (7)0.0055 (7)0.0088 (7)0.0007 (6)
N10.0364 (9)0.0141 (7)0.0213 (8)0.0030 (7)0.0009 (7)0.0001 (6)
N20.0366 (9)0.0142 (7)0.0216 (8)0.0004 (7)0.0023 (7)0.0007 (6)
C10.0440 (12)0.0172 (9)0.0195 (9)0.0009 (8)0.0002 (8)0.0024 (7)
C20.0421 (11)0.0179 (9)0.0216 (9)0.0008 (8)0.0008 (8)0.0011 (7)
C30.0489 (13)0.0216 (10)0.0265 (10)0.0039 (9)0.0052 (9)0.0002 (8)
C40.0311 (10)0.0216 (9)0.0210 (9)0.0026 (8)0.0005 (8)0.0014 (7)
C50.0253 (9)0.0225 (9)0.0213 (9)0.0023 (7)0.0030 (8)0.0027 (7)
C60.0344 (11)0.0149 (8)0.0250 (10)0.0026 (7)0.0019 (8)0.0011 (7)
C70.0326 (10)0.0177 (9)0.0220 (9)0.0008 (8)0.0024 (8)0.0011 (7)
C80.0365 (11)0.0184 (9)0.0222 (9)0.0025 (8)0.0058 (8)0.0002 (7)
C90.0345 (11)0.0292 (10)0.0237 (10)0.0015 (9)0.0011 (9)0.0034 (8)
C100.0384 (12)0.0360 (12)0.0321 (11)0.0130 (10)0.0035 (9)0.0104 (9)
C110.0496 (14)0.0153 (9)0.0496 (14)0.0070 (9)0.0130 (11)0.0019 (9)
C120.0503 (14)0.0262 (11)0.0407 (13)0.0018 (10)0.0019 (11)0.0134 (10)
C130.0417 (12)0.0291 (11)0.0238 (10)0.0061 (9)0.0023 (9)0.0046 (8)
C140.0247 (9)0.0246 (10)0.0244 (10)0.0009 (7)0.0005 (8)0.0038 (8)
C150.0351 (11)0.0303 (10)0.0253 (10)0.0051 (9)0.0007 (9)0.0019 (8)
C160.0419 (13)0.0449 (13)0.0228 (10)0.0039 (10)0.0002 (9)0.0021 (9)
C170.0329 (11)0.0451 (13)0.0284 (11)0.0006 (10)0.0059 (9)0.0150 (10)
C180.0283 (10)0.0330 (11)0.0400 (12)0.0068 (9)0.0025 (9)0.0083 (10)
C190.0261 (10)0.0292 (10)0.0287 (10)0.0027 (8)0.0029 (8)0.0039 (8)
C200.0276 (9)0.0180 (9)0.0191 (9)0.0041 (7)0.0018 (7)0.0010 (7)
C210.0368 (11)0.0191 (9)0.0213 (9)0.0043 (8)0.0013 (8)0.0022 (7)
C220.0479 (13)0.0206 (9)0.0223 (10)0.0003 (9)0.0040 (9)0.0026 (8)
C230.0452 (12)0.0243 (10)0.0215 (9)0.0072 (9)0.0054 (9)0.0021 (8)
C240.0370 (11)0.0273 (11)0.0318 (11)0.0024 (9)0.0095 (9)0.0007 (9)
C250.0317 (10)0.0221 (9)0.0298 (10)0.0028 (8)0.0011 (8)0.0037 (8)
Geometric parameters (Å, º) top
F1—C111.365 (2)C15—C161.387 (3)
F2—C171.366 (3)C16—C171.373 (3)
O1—C11.234 (2)C17—C181.373 (3)
N1—N21.400 (2)C18—C191.385 (3)
N1—C11.390 (2)C20—C251.387 (3)
N1—C201.415 (2)C20—C211.388 (3)
N2—C71.367 (3)C21—C221.388 (3)
N2—HN20.859 (18)C22—C231.376 (3)
C1—C21.451 (3)C23—C241.384 (3)
C2—C31.419 (3)C24—C251.387 (3)
C2—C71.391 (3)C4—H40.9300
C3—C41.384 (3)C6—H60.9300
C3—C81.487 (3)C9—H90.9300
C4—C51.433 (3)C10—H100.9300
C5—C141.486 (3)C12—H120.9300
C5—C61.379 (3)C13—H130.9300
C6—C71.402 (3)C15—H150.9300
C8—C131.386 (3)C16—H160.9300
C8—C91.394 (3)C18—H180.9300
C9—C101.384 (3)C19—H190.9300
C10—C111.368 (3)C21—H210.9300
C11—C121.364 (3)C22—H220.9300
C12—C131.383 (3)C23—H230.9300
C14—C151.396 (3)C24—H240.9300
C14—C191.400 (3)C25—H250.9300
N2—N1—C1111.25 (15)C17—C18—C19118.4 (2)
N2—N1—C20119.12 (14)C14—C19—C18121.05 (19)
C1—N1—C20127.78 (15)N1—C20—C21119.13 (17)
N1—N2—C7106.38 (14)C21—C20—C25120.29 (18)
C7—N2—HN2123.5 (17)N1—C20—C25120.58 (17)
N1—N2—HN2114.3 (15)C20—C21—C22119.36 (18)
N1—C1—C2104.38 (15)C21—C22—C23120.86 (19)
O1—C1—C2131.73 (18)C22—C23—C24119.36 (19)
O1—C1—N1123.89 (18)C23—C24—C25120.8 (2)
C1—C2—C3132.02 (18)C20—C25—C24119.32 (18)
C1—C2—C7107.51 (16)C3—C4—H4119.00
C3—C2—C7120.41 (18)C5—C4—H4119.00
C2—C3—C4117.28 (18)C5—C6—H6121.00
C4—C3—C8121.73 (18)C7—C6—H6121.00
C2—C3—C8120.85 (18)C8—C9—H9120.00
C3—C4—C5121.89 (18)C10—C9—H9120.00
C4—C5—C6119.97 (17)C9—C10—H10121.00
C4—C5—C14119.84 (17)C11—C10—H10121.00
C6—C5—C14120.19 (17)C11—C12—H12121.00
C5—C6—C7118.29 (17)C13—C12—H12121.00
C2—C7—C6121.95 (17)C8—C13—H13120.00
N2—C7—C6128.04 (17)C12—C13—H13119.00
N2—C7—C2110.00 (16)C14—C15—H15119.00
C3—C8—C13122.36 (18)C16—C15—H15119.00
C9—C8—C13118.64 (18)C15—C16—H16121.00
C3—C8—C9118.97 (18)C17—C16—H16121.00
C8—C9—C10120.81 (19)C17—C18—H18121.00
C9—C10—C11118.2 (2)C19—C18—H18121.00
F1—C11—C10118.9 (2)C14—C19—H19119.00
C10—C11—C12123.0 (2)C18—C19—H19119.00
F1—C11—C12118.0 (2)C20—C21—H21120.00
C11—C12—C13118.3 (2)C22—C21—H21120.00
C8—C13—C12121.0 (2)C21—C22—H22120.00
C15—C14—C19118.13 (18)C23—C22—H22119.00
C5—C14—C15121.30 (18)C22—C23—H23120.00
C5—C14—C19120.55 (17)C24—C23—H23120.00
C14—C15—C16121.40 (19)C23—C24—H24120.00
C15—C16—C17118.1 (2)C25—C24—H24120.00
F2—C17—C18118.3 (2)C20—C25—H25120.00
C16—C17—C18122.9 (2)C24—C25—H25120.00
F2—C17—C16118.77 (19)
C1—N1—N2—C75.3 (2)C6—C5—C14—C1935.8 (3)
C20—N1—N2—C7171.01 (17)C4—C5—C14—C19143.24 (19)
N2—N1—C1—O1178.1 (2)C4—C5—C6—C72.7 (3)
C20—N1—C1—O114.0 (3)C4—C5—C14—C1538.4 (3)
N2—N1—C1—C21.4 (2)C5—C6—C7—N2179.9 (2)
C20—N1—C1—C2165.57 (19)C5—C6—C7—C21.2 (3)
C1—N1—C20—C2535.8 (3)C3—C8—C9—C10177.9 (2)
N2—N1—C20—C2118.2 (3)C3—C8—C13—C12178.4 (2)
C1—N1—C20—C21144.9 (2)C9—C8—C13—C120.5 (3)
N2—N1—C20—C25161.15 (18)C13—C8—C9—C100.1 (3)
N1—N2—C7—C6171.78 (19)C8—C9—C10—C110.5 (3)
N1—N2—C7—C27.2 (2)C9—C10—C11—F1179.0 (2)
N1—C1—C2—C3180.0 (2)C9—C10—C11—C120.4 (4)
N1—C1—C2—C73.0 (2)C10—C11—C12—C130.2 (4)
O1—C1—C2—C30.5 (4)F1—C11—C12—C13179.6 (2)
O1—C1—C2—C7177.5 (2)C11—C12—C13—C80.7 (4)
C1—C2—C7—C6172.62 (19)C19—C14—C15—C160.4 (3)
C1—C2—C7—N26.4 (2)C5—C14—C19—C18177.86 (19)
C1—C2—C3—C4172.4 (2)C5—C14—C15—C16178.00 (19)
C3—C2—C7—N2176.14 (19)C15—C14—C19—C180.5 (3)
C3—C2—C7—C64.8 (3)C14—C15—C16—C170.2 (3)
C7—C2—C3—C8171.4 (2)C15—C16—C17—F2179.7 (2)
C1—C2—C3—C811.9 (4)C15—C16—C17—C180.1 (3)
C7—C2—C3—C44.3 (3)C16—C17—C18—C190.3 (3)
C4—C3—C8—C9127.1 (2)F2—C17—C18—C19179.50 (19)
C2—C3—C4—C50.5 (3)C17—C18—C19—C140.5 (3)
C4—C3—C8—C1350.8 (3)N1—C20—C21—C22179.20 (18)
C2—C3—C8—C13133.7 (2)C25—C20—C21—C220.1 (3)
C2—C3—C8—C948.4 (3)N1—C20—C25—C24179.86 (18)
C8—C3—C4—C5175.18 (19)C21—C20—C25—C240.6 (3)
C3—C4—C5—C63.0 (3)C20—C21—C22—C230.7 (3)
C3—C4—C5—C14177.90 (19)C21—C22—C23—C240.6 (3)
C6—C5—C14—C15142.5 (2)C22—C23—C24—C250.1 (3)
C14—C5—C6—C7178.28 (17)C23—C24—C25—C200.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg5 is the centroid of the C20–C25 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N2—HN2···O1i0.86 (2)2.00 (2)2.830 (2)162 (2)
C6—H6···F1ii0.932.493.362 (2)156
C21—H21···N20.932.482.799 (3)100
C25—H25···O10.932.432.941 (3)115
C15—H15···Cg5iii0.932.853.656 (2)145
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x, y+1, z; (iii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC25H16F2N2O
Mr398.40
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)123
a, b, c (Å)15.2947 (4), 11.6259 (2), 20.9388 (5)
V3)3723.23 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.49 × 0.38 × 0.23
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.895, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
19870, 3827, 3416
Rint0.029
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.135, 1.09
No. of reflections3827
No. of parameters275
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 0.35

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg5 is the centroid of the C20–C25 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N2—HN2···O1i0.859 (18)2.002 (18)2.830 (2)162 (2)
C6—H6···F1ii0.932.49003.362 (2)156
C15—H15···Cg5iii0.932.853.656 (2)145
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x, y+1, z; (iii) x, y, z+1/2.
 

Acknowledgements

SS and BN thank Mangalore University and the UGC SAP for financial assistance for the purchase of chemicals. HSY thanks the UOM for sabbatical leave.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339–340.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBeylin, V. G., Colbry, N. L., Giordani, A. B., Goel, O. P., Johnson, D. R., Leeds, R. L., Leja, B., Lewis, E. P., Lustgarten, D. M., Showalter, H. D. H., Sercel, A. D., Reily, M. D., Uhlendorf, S. E. & Zisek, K. A. (1991). J. Heterocycl. Chem. 28, 517–527.  CrossRef CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o864–o865.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGeorge, V. D., Kim, U. T., Liang, J., Cordova, B., Klabe, R. M., Garber, S., Bacheler, L. T., Lam, G. N., Wright, M. R., Logue, K. A., Viitanen, S. E., Ko, S. S. & Trainor, G. L. (1998). J. Med. Chem. 41, 2411–2423.  Web of Science PubMed Google Scholar
First citationHelm, D. van der, Wu, K. K., Ealick, S. E., Berlin, K. D. & Ramalingam, K. (1979). Acta Cryst. B35, 2804–2806.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationJain, A. C., Mehta, A. & Arya, P. (1987). Indian J. Chem. Sect. B, 26, 150–153.  Google Scholar
First citationJin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642–o643.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPalazzo, G., Corsi, G., Baiocchi, L. & Silnerstrini, B. (1966). J. Med. Chem. 9, 38–41.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPopat, K. H., Nimavat, K. S., Vasoya, S. L. & Joshi, H. S. (2003). Indian J. Chem. Sect. B, 42, 1497–1501.  Google Scholar
First citationRoman, B. (1990). Pharmazie, 45, 214–217.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSusindran, V., Athimoolam, S., Bahadur, S. A., Manikannan, R. & Muthusubramanian, S. (2010). Acta Cryst. E66, o2594–o2595.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1346-o1347
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds