metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m706-m707

Tris[6-meth­­oxy-2-(phenyl­iminiometh­yl)phenolato]-κ4O,O′;κO1-tris­­(thio­cyanato-κN)samarium(III)

aCollege of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China, and bCollege of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and, Zhejiang Normal University Xingzhi College, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: sky53@zjnu.cn

(Received 19 April 2011; accepted 28 April 2011; online 7 May 2011)

In the crystal structure of title compound, [Sm(NCS)3(C14H13NO2)3], two of the zwitterionic Schiff base 6-meth­oxy-2-(phenyl­iminiometh­yl)phenolate ligands coordinate to the SmIII atom in a bidentate fashion via the phenolate and meth­oxy O atoms. The third Schiff base ligand is monodentate, binding only through the phenolate O atom. The coordination sphere of the eight-coordinate Sm atom is completed by the three independent thio­cyanate ions binding through their N atoms, affording a square-anti­prismatic geometry. An S atom of one of the thio­cyanate anions is disordered over two sites in a 0.85:0.15 ratio. In the phenolate ligands, the proton of the phenolic hy­droxy group transfers to the imine N atom. This proton is also involved in an intra­molecular N—H⋯O hydrogen bond that imposes a nearly planar conformation on each ligand, with dihedral angles of 1.75 (4), 3.68 (5) and 3.86 (4)° between the aromatic rings of each ligand.

Related literature

For related La(III) and Tb(III) complexes, see: Liu et al. (2009[Liu, J.-F., Shen, J.-B., Liu, J.-L. & Zhao, G.-L. (2009). Acta Cryst. E65, m1650.]); Zhao et al. (2007[Zhao, G.-L., Shi, X. & Ng, S. W. (2007). Acta Cryst. E63, m267-m268.]). For a coordination polymer derived from the same ligand, see: Li et al. (2008[Li, H.-Q., Xian, H.-D., Liu, J.-F. & Zhao, G.-L. (2008). Acta Cryst. E64, m1593-m1594.]). For other complexes of N-salicyl­idene­amino acids, see: Burrows & Bailar (1966[Burrows, R. C. & Bailar, J. C. (1966). J. Am. Chem. Soc. 88, 4150-4152.]). For the synthesis of rare earth complexes with Schiff bases derived from o-vanillin and adamantane­amine, see: Zhao et al. (2005[Zhao, G.-L., Zhang, P.-H. & Feng, Y.-L. (2005). Chin. J. Inorg. Chem. 21, 421-424.]) and for chiral lanthanide La(III), Ce(III), Eu(III) complexes with macrocyclic Schiff bases, see: Mazurek & Lisowski (2003[Mazurek, J. & Lisowski, J. (2003). Polyhedron, 22, 2877-2883.]).

[Scheme 1]

Experimental

Crystal data
  • [Sm(NCS)3(C14H13NO2)3]

  • Mr = 1006.35

  • Orthorhombic, P b c a

  • a = 19.5821 (13) Å

  • b = 20.3531 (14) Å

  • c = 22.4764 (16) Å

  • V = 8958.1 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.51 mm−1

  • T = 296 K

  • 0.19 × 0.11 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.820, Tmax = 0.879

  • 44977 measured reflections

  • 10202 independent reflections

  • 5925 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.077

  • S = 0.99

  • 10202 reflections

  • 562 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Selected bond lengths (Å)

Sm1—O4 2.305 (2)
Sm1—O6 2.358 (2)
Sm1—O1 2.391 (2)
Sm1—N3 2.447 (3)
Sm1—N2 2.487 (3)
Sm1—N1 2.499 (3)
Sm1—O5 2.653 (2)
Sm1—O2 2.745 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯O1 0.86 1.83 2.543 (4) 139
N5—H5N⋯O6 0.86 1.87 2.573 (3) 131
N6—H6N⋯O4 0.86 1.92 2.610 (3) 137

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Rare earth complexes with Schiff bases are important in a number of fields such as chemistry and biochemistry owing to their varied characteristics (Zhao et al., 2005; Mazurek & Lisowski, 2003). The complexes prepared by ligands derived from o-vanillin have attracted considerable attention for a number of years due to the intriguing biological activities of o- vanillin and the convenience of the synthesis of related Schiff bases (Burrows & Bailar, 1966). For these reasons, we have been engaged in the syntheses of new analogous Schiff bases derived from o-vanillin and their rare metal complexes (Liu et al. 2009; Zhao et al., 2007; Li et al.., 2008). Herein, we describe a new SmIII Schiff base complex.

The structure of the title complex is shown in Fig.1, and the coordination environment of SmIII is shown in Fig. 2. The structure of [Sm(NCS)3. (C14H13O2N)3] (1) contains three (HL) ligands and three independent thiocyanate ions. In this complex, the S3 atom of one thiocyanate anion is disordered over two sites (fixed in a 0.85: 0.15 ratio). The SmIII is eight-coordinated by three terminal N atoms from three thiocyanate ions and five O atoms from the HL ligands in a distorted square antiprismatic geometry. One of the HL ligands coordinates in a monodentate fashion to the SmIII ion using oxygen atoms from a deprotonated phenolic hydroxyl group. The other HL ligands chelate the SmIII ion through the methoxy O atoms and the deprotonated phenolic hydroxyl O atom. The Sm—O and Sm–N bond distances are listed in Table 1. The Sm—O (phenolic) bond lengths are in the range 2.305 (2) Å - 2.391 (2) Å, and are shorter than those between SmIII and the methoxy O atoms (2.653 (2) Å-2.745 (2) Å), while the Sm—N bonds are 2.447 (3) Å-2.499 (3) Å. The Sm—O (phenolic) and Sm—N bonds are shorter than in the related La(III) complex (Liu et al. 2009), which can be attribute to the ionic radii decrease from La(III) to SmIII due to the lanthanide contraction. The HL ligands are zwitterionic, with the proton of the phenolic hydroxyl group transferred to the imine N atom. This forms an intramolecular N—H···O hydrogen bond and causes the ligands to assume nearly planar conformations. In the crystal, In the crystal structure, molecules are linked by intermolecular C—H···O and C—H···S hydrogen bonds, Fig 3.

Related literature top

For related La(III) and Tb(III) complexes, see: Liu et al. (2009); Zhao et al. (2007). For a coordination polymer derived from the same ligand, see: Li et al. (2008). For other complexes of N -salicylideneamino acids, see: Burrows & Bailar (1966). For the synthesis of rare earth complexes with Schiff bases derived from o-vanillin and adamantaneamine, see: Zhao et al. 2005) and for chiral lanthanide La(III), Ce(III), Eu(III) complexes with macrocyclic Schiff bases, see: Mazurek & Lisowski (2003).

Experimental top

Reagents and solvents used were of commercially available quality and were used without further purification. The Schiff base ligand 2-(phenyliminomethyl)-6- methoxyphenol was synthesized by condensation of o-vanillin and aniline. The title compound was synthesized by a traditional method. First, 0.5 mmol Sm(NO3)3.6H2O (dissolved in ethanol) was added dropwise into an ethanol solution with 1.5 mmol HLligand with stirring at room temperature for 2 h to obtain a red solution. 1.5 mmol KNCS (dissolved in ethanol) was then added. The mixture was stirred again for 8 h at room temperature. The resulting solid was filtered out and the solution evaporated yielding red crystals of compound (1) after several days.

Refinement top

The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aliphatic C—H =0.96 Å (Uiso(H) = 1.2U eq(C)), aromatic C—H = 0.93 Å (Uiso(H) = 1.2Ueq(C)) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(N)]. The S3 atom of one thiocyanate anion is disordered over two sites and, in the final refinement cycle the occupancies were fixed at 0.85:0.15.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The coordination environment of the samarium(III) atom, showing the square antiprism.
[Figure 3] Fig. 3. The packing plot of the title compound, showing H-bond interactions (dashed lines).
Tris[6-methoxy-2-(phenyliminiomethyl)phenolato]- κ4O,O';κO1-tris(thiocyanato-κN)samarium(III) top
Crystal data top
[Sm(NCS)3(C14H13NO2)3]F(000) = 4072
Mr = 1006.35Dx = 1.492 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8408 reflections
a = 19.5821 (13) Åθ = 1.7–27.4°
b = 20.3531 (14) ŵ = 1.51 mm1
c = 22.4764 (16) ÅT = 296 K
V = 8958.1 (11) Å3Block, red
Z = 80.19 × 0.11 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
10202 independent reflections
Radiation source: fine-focus sealed tube5925 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 27.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2517
Tmin = 0.820, Tmax = 0.879k = 1726
44977 measured reflectionsl = 2919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0276P)2P]
where P = (Fo2 + 2Fc2)/3
10202 reflections(Δ/σ)max = 0.002
562 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Sm(NCS)3(C14H13NO2)3]V = 8958.1 (11) Å3
Mr = 1006.35Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 19.5821 (13) ŵ = 1.51 mm1
b = 20.3531 (14) ÅT = 296 K
c = 22.4764 (16) Å0.19 × 0.11 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
10202 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5925 reflections with I > 2σ(I)
Tmin = 0.820, Tmax = 0.879Rint = 0.046
44977 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 0.99Δρmax = 0.60 e Å3
10202 reflectionsΔρmin = 0.48 e Å3
562 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sm10.386756 (8)0.065497 (8)0.674038 (7)0.04009 (7)
C10.38840 (17)0.1108 (2)0.69993 (17)0.0559 (10)
C20.38077 (16)0.18885 (17)0.55898 (17)0.0472 (9)
C30.2424 (2)0.01245 (19)0.58901 (18)0.0649 (12)
C40.23106 (19)0.17975 (19)0.67437 (17)0.0808 (13)
H4A0.18550.16930.68690.121*
H4B0.23650.16840.63320.121*
H4C0.23910.22590.67950.121*
C50.27647 (16)0.14943 (18)0.77058 (17)0.0470 (9)
C60.24777 (16)0.20102 (18)0.8016 (2)0.0601 (11)
H60.22490.23430.78150.072*
C70.25349 (19)0.2027 (2)0.8639 (2)0.0636 (12)
H70.23450.23760.88490.076*
C80.28607 (19)0.1547 (2)0.89360 (19)0.0645 (11)
H80.28980.15710.93480.077*
C90.31460 (17)0.10066 (19)0.86309 (17)0.0494 (9)
C100.30971 (15)0.09743 (18)0.80081 (17)0.0435 (9)
C110.35044 (19)0.0510 (2)0.89350 (18)0.0596 (11)
H110.35500.05460.93460.072*
C120.4210 (2)0.0509 (2)0.8890 (2)0.0647 (11)
C130.4511 (2)0.0488 (2)0.9441 (2)0.0906 (14)
H130.44180.01490.97060.109*
C140.4343 (3)0.1015 (3)0.8512 (2)0.0960 (15)
H140.41250.10340.81440.115*
C180.5674 (2)0.16708 (17)0.65924 (17)0.0792 (13)
H18A0.53780.19740.67940.119*
H18B0.58860.18870.62610.119*
H18C0.60190.15180.68630.119*
C190.56142 (17)0.06593 (17)0.60434 (15)0.0441 (8)
C200.62817 (16)0.06757 (17)0.58762 (16)0.0523 (10)
H200.65590.10210.59980.063*
C210.65513 (17)0.01726 (19)0.55211 (16)0.0569 (10)
H210.70060.01900.54020.068*
C220.61540 (16)0.03382 (19)0.53513 (16)0.0523 (9)
H220.63360.06700.51150.063*
C230.54599 (16)0.03695 (17)0.55328 (14)0.0414 (8)
C240.51804 (16)0.01387 (17)0.58791 (15)0.0428 (9)
C250.50616 (16)0.09166 (17)0.53564 (14)0.0452 (9)
H250.52630.12310.51130.054*
C260.53626 (17)0.02210 (17)0.73674 (17)0.0710 (12)
H26A0.53460.05000.77120.106*
H26B0.58180.00550.73180.106*
H26C0.52340.04690.70210.106*
C270.50429 (16)0.07603 (17)0.78924 (16)0.0442 (9)
C280.47831 (17)0.18348 (17)0.82938 (16)0.0473 (9)
C290.54684 (18)0.06406 (19)0.83630 (17)0.0602 (11)
H290.56980.02420.83880.072*
C300.5558 (2)0.1110 (2)0.88003 (18)0.0734 (12)
H300.58520.10250.91160.088*
C310.5223 (2)0.1691 (2)0.87766 (17)0.0712 (12)
H310.52820.19980.90790.085*
C320.46979 (15)0.13687 (17)0.78335 (15)0.0408 (8)
C330.44407 (19)0.24441 (18)0.82642 (17)0.0592 (10)
H330.44990.27400.85750.071*
C340.36501 (17)0.31872 (19)0.7765 (2)0.0561 (10)
C350.3451 (2)0.3563 (2)0.8245 (2)0.0721 (12)
H350.35880.34530.86280.086*
C360.34359 (19)0.33435 (19)0.7203 (2)0.0698 (12)
H360.35750.30890.68810.084*
C370.3013 (2)0.3878 (2)0.7112 (2)0.0921 (15)
H370.28550.39770.67320.111*
C380.39794 (16)0.15331 (17)0.53783 (14)0.0436 (9)
C390.41983 (17)0.20829 (17)0.50737 (15)0.0523 (10)
H390.46470.21170.49420.063*
C400.33179 (17)0.14836 (18)0.55728 (15)0.0553 (10)
H400.31750.11100.57770.066*
C410.2829 (2)0.4263 (2)0.7592 (3)0.0990 (19)
H410.25570.46320.75350.119*
C420.3046 (2)0.4104 (2)0.8146 (3)0.0956 (17)
H420.29190.43660.84660.115*
C430.28665 (18)0.1986 (2)0.54662 (17)0.0650 (11)
H430.24180.19550.55990.078*
C440.3076 (2)0.2534 (2)0.51645 (17)0.0627 (11)
H440.27710.28750.50930.075*
C450.37362 (19)0.25807 (18)0.49683 (17)0.0619 (11)
H450.38750.29530.47610.074*
N10.37935 (14)0.05526 (14)0.69309 (14)0.0592 (9)
N20.38159 (15)0.15884 (15)0.60278 (15)0.0626 (9)
N30.28872 (16)0.03283 (15)0.61340 (14)0.0638 (9)
N40.37735 (15)0.00056 (16)0.86737 (14)0.0589 (9)
H4N0.36720.00280.83030.071*
N50.40494 (13)0.26107 (13)0.78251 (13)0.0496 (8)
H5N0.40290.23370.75340.059*
N60.44248 (13)0.10033 (13)0.55171 (11)0.0451 (7)
H6N0.42530.06990.57360.054*
O10.33589 (11)0.04926 (10)0.76964 (9)0.0477 (6)
O20.27958 (11)0.14291 (12)0.70981 (11)0.0606 (7)
O30.52826 (11)0.11233 (12)0.63829 (11)0.0593 (7)
O40.45412 (10)0.01339 (10)0.60439 (10)0.0506 (6)
O50.48975 (11)0.03197 (11)0.74444 (11)0.0536 (6)
O60.43125 (10)0.14810 (9)0.73654 (9)0.0413 (5)
S10.40327 (6)0.18882 (5)0.70832 (6)0.0935 (4)
S20.37988 (5)0.23007 (5)0.49660 (5)0.0640 (3)
S30.17603 (7)0.02499 (10)0.55935 (7)0.0962 (5)0.85
S3'0.1863 (4)0.0303 (5)0.5308 (4)0.081 (3)0.15
C170.4967 (3)0.0997 (3)0.9590 (3)0.1057 (18)
H170.51710.09990.99630.127*
C160.5111 (3)0.1476 (3)0.9205 (3)0.112 (2)
H160.54280.17970.93050.134*
C150.4796 (3)0.1498 (3)0.8670 (3)0.118 (2)
H150.48880.18410.84090.142*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.04677 (11)0.04036 (12)0.03315 (11)0.00306 (9)0.00068 (9)0.00664 (9)
C10.057 (2)0.057 (3)0.054 (3)0.002 (2)0.001 (2)0.011 (2)
C20.043 (2)0.048 (2)0.051 (3)0.0075 (18)0.0031 (19)0.010 (2)
C30.057 (3)0.077 (3)0.060 (3)0.015 (2)0.004 (2)0.023 (2)
C40.072 (3)0.094 (3)0.077 (3)0.024 (3)0.020 (2)0.003 (3)
C50.040 (2)0.053 (2)0.048 (3)0.0033 (19)0.0100 (18)0.006 (2)
C60.048 (2)0.056 (3)0.076 (3)0.000 (2)0.018 (2)0.005 (2)
C70.060 (3)0.059 (3)0.072 (4)0.008 (2)0.030 (2)0.026 (3)
C80.060 (3)0.078 (3)0.055 (3)0.016 (2)0.015 (2)0.022 (3)
C90.050 (2)0.058 (3)0.041 (3)0.006 (2)0.0101 (19)0.004 (2)
C100.040 (2)0.047 (2)0.044 (2)0.0097 (18)0.0076 (17)0.009 (2)
C110.060 (2)0.075 (3)0.043 (3)0.012 (2)0.010 (2)0.007 (2)
C120.069 (3)0.078 (3)0.048 (3)0.009 (3)0.000 (2)0.021 (3)
C130.086 (3)0.117 (4)0.069 (4)0.003 (3)0.008 (3)0.006 (3)
C140.144 (5)0.076 (4)0.069 (4)0.017 (4)0.001 (3)0.001 (3)
C180.099 (3)0.056 (3)0.083 (3)0.028 (2)0.024 (3)0.019 (2)
C190.049 (2)0.045 (2)0.038 (2)0.001 (2)0.0007 (17)0.0071 (19)
C200.045 (2)0.061 (3)0.051 (3)0.0131 (19)0.0001 (17)0.005 (2)
C210.039 (2)0.071 (3)0.061 (3)0.003 (2)0.0064 (19)0.002 (2)
C220.044 (2)0.057 (2)0.056 (3)0.003 (2)0.0033 (19)0.008 (2)
C230.0390 (19)0.049 (2)0.036 (2)0.0021 (18)0.0006 (16)0.0018 (19)
C240.042 (2)0.051 (2)0.035 (2)0.0018 (19)0.0049 (17)0.0018 (19)
C250.045 (2)0.050 (2)0.040 (2)0.0088 (19)0.0064 (17)0.0029 (19)
C260.072 (3)0.064 (3)0.077 (3)0.028 (2)0.001 (2)0.000 (2)
C270.0412 (19)0.050 (2)0.042 (2)0.0030 (18)0.0001 (17)0.003 (2)
C280.055 (2)0.046 (2)0.041 (2)0.0047 (19)0.0063 (19)0.000 (2)
C290.057 (2)0.064 (3)0.060 (3)0.000 (2)0.012 (2)0.009 (2)
C300.079 (3)0.082 (3)0.059 (3)0.002 (3)0.029 (2)0.009 (3)
C310.093 (3)0.074 (3)0.046 (3)0.003 (3)0.029 (2)0.013 (2)
C320.0366 (19)0.046 (2)0.039 (2)0.0080 (17)0.0003 (17)0.0024 (19)
C330.069 (3)0.055 (3)0.053 (3)0.008 (2)0.008 (2)0.008 (2)
C340.051 (2)0.041 (2)0.076 (3)0.0066 (19)0.003 (2)0.007 (2)
C350.072 (3)0.057 (3)0.087 (3)0.007 (2)0.001 (2)0.024 (3)
C360.067 (3)0.062 (3)0.080 (4)0.010 (2)0.008 (3)0.006 (3)
C370.083 (3)0.079 (4)0.115 (5)0.011 (3)0.036 (3)0.000 (3)
C380.044 (2)0.048 (2)0.038 (2)0.0058 (18)0.0022 (16)0.0033 (18)
C390.049 (2)0.048 (2)0.060 (3)0.0038 (19)0.0063 (19)0.006 (2)
C400.048 (2)0.063 (3)0.055 (3)0.005 (2)0.0050 (19)0.011 (2)
C410.067 (3)0.061 (3)0.169 (6)0.012 (2)0.027 (4)0.024 (4)
C420.073 (3)0.071 (4)0.142 (6)0.006 (3)0.005 (3)0.044 (4)
C430.049 (2)0.084 (3)0.062 (3)0.014 (2)0.003 (2)0.006 (3)
C440.062 (3)0.067 (3)0.059 (3)0.017 (2)0.019 (2)0.003 (2)
C450.067 (3)0.049 (3)0.069 (3)0.001 (2)0.009 (2)0.007 (2)
N10.069 (2)0.046 (2)0.063 (2)0.0055 (17)0.0125 (16)0.0055 (17)
N20.070 (2)0.066 (2)0.052 (2)0.0013 (17)0.0009 (18)0.0064 (19)
N30.063 (2)0.069 (2)0.059 (2)0.0020 (19)0.0075 (18)0.0119 (19)
N40.067 (2)0.070 (2)0.040 (2)0.0049 (19)0.0010 (17)0.0039 (19)
N50.0502 (18)0.0411 (19)0.057 (2)0.0014 (15)0.0027 (16)0.0063 (16)
N60.0447 (16)0.0482 (18)0.0425 (19)0.0017 (15)0.0058 (14)0.0098 (15)
O10.0552 (14)0.0450 (14)0.0430 (15)0.0002 (12)0.0069 (12)0.0081 (12)
O20.0634 (16)0.0774 (18)0.0409 (17)0.0180 (14)0.0021 (13)0.0037 (14)
O30.0580 (15)0.0552 (16)0.0645 (18)0.0069 (14)0.0082 (13)0.0191 (14)
O40.0408 (13)0.0598 (16)0.0513 (16)0.0045 (12)0.0109 (11)0.0150 (13)
O50.0544 (14)0.0504 (15)0.0559 (17)0.0158 (13)0.0083 (13)0.0085 (14)
O60.0449 (13)0.0418 (13)0.0371 (14)0.0018 (11)0.0036 (11)0.0021 (12)
S10.1156 (10)0.0449 (7)0.1200 (11)0.0103 (6)0.0151 (8)0.0014 (7)
S20.0645 (6)0.0674 (7)0.0601 (7)0.0146 (5)0.0041 (5)0.0142 (6)
S30.0590 (9)0.1447 (15)0.0849 (13)0.0049 (11)0.0177 (8)0.0495 (12)
S3'0.057 (5)0.120 (7)0.067 (6)0.022 (5)0.031 (4)0.042 (6)
C170.088 (4)0.134 (5)0.095 (5)0.009 (4)0.019 (3)0.049 (4)
C160.113 (4)0.103 (5)0.120 (6)0.024 (4)0.029 (4)0.049 (4)
C150.163 (6)0.088 (4)0.104 (5)0.037 (4)0.006 (4)0.025 (4)
Geometric parameters (Å, º) top
Sm1—O42.305 (2)C23—C251.416 (4)
Sm1—O62.358 (2)C24—O41.306 (3)
Sm1—O12.391 (2)C25—N61.310 (3)
Sm1—N32.447 (3)C25—H250.9300
Sm1—N22.487 (3)C26—O51.439 (3)
Sm1—N12.499 (3)C26—H26A0.9600
Sm1—O52.653 (2)C26—H26B0.9600
Sm1—O22.745 (2)C26—H26C0.9600
C1—N11.155 (4)C27—C291.368 (4)
C1—S11.625 (4)C27—O51.378 (4)
C2—N21.159 (4)C27—C321.417 (4)
C2—S21.634 (4)C28—C331.411 (4)
C3—N31.139 (4)C28—C321.414 (4)
C3—S31.647 (4)C28—C311.415 (4)
C3—S3'1.746 (8)C29—C301.381 (5)
C4—O21.449 (4)C29—H290.9300
C4—H4A0.9600C30—C311.355 (5)
C4—H4B0.9600C30—H300.9300
C4—H4C0.9600C31—H310.9300
C5—O21.374 (4)C32—O61.315 (3)
C5—C61.380 (4)C33—N51.295 (4)
C5—C101.416 (4)C33—H330.9300
C6—C71.405 (5)C34—C361.367 (5)
C6—H60.9300C34—C351.379 (5)
C7—C81.345 (5)C34—N51.416 (4)
C7—H70.9300C35—C421.374 (5)
C8—C91.411 (5)C35—H350.9300
C8—H80.9300C36—C371.382 (5)
C9—C101.405 (4)C36—H360.9300
C9—C111.407 (5)C37—C411.382 (6)
C10—O11.310 (4)C37—H370.9300
C11—N41.295 (4)C38—C401.371 (4)
C11—H110.9300C38—C391.380 (4)
C12—C141.361 (5)C38—N61.422 (4)
C12—C131.372 (5)C39—C451.379 (4)
C12—N41.436 (5)C39—H390.9300
C13—C171.408 (6)C40—C431.373 (4)
C13—H130.9300C40—H400.9300
C14—C151.371 (6)C41—C421.355 (6)
C14—H140.9300C41—H410.9300
C18—O31.432 (4)C42—H420.9300
C18—H18A0.9600C43—C441.369 (5)
C18—H18B0.9600C43—H430.9300
C18—H18C0.9600C44—C451.369 (4)
C19—C201.360 (4)C44—H440.9300
C19—O31.377 (3)C45—H450.9300
C19—C241.407 (4)N4—H4N0.8600
C20—C211.402 (4)N5—H5N0.8600
C20—H200.9300N6—H6N0.8600
C21—C221.354 (4)C17—C161.333 (6)
C21—H210.9300C17—H170.9300
C22—C231.421 (4)C16—C151.351 (7)
C22—H220.9300C16—H160.9300
C23—C241.405 (4)C15—H150.9300
O4—Sm1—O6121.41 (7)C23—C25—H25118.2
O4—Sm1—O1141.71 (7)O5—C26—H26A109.5
O6—Sm1—O173.57 (7)O5—C26—H26B109.5
O4—Sm1—N386.89 (9)H26A—C26—H26B109.5
O6—Sm1—N3144.66 (9)O5—C26—H26C109.5
O1—Sm1—N397.83 (9)H26A—C26—H26C109.5
O4—Sm1—N286.41 (9)H26B—C26—H26C109.5
O6—Sm1—N281.60 (9)C29—C27—O5125.1 (3)
O1—Sm1—N2131.86 (9)C29—C27—C32121.2 (4)
N3—Sm1—N279.45 (10)O5—C27—C32113.7 (3)
O4—Sm1—N172.37 (9)C33—C28—C32119.9 (3)
O6—Sm1—N1128.36 (9)C33—C28—C31120.4 (4)
O1—Sm1—N171.69 (8)C32—C28—C31119.6 (3)
N3—Sm1—N177.45 (10)C27—C29—C30120.3 (4)
N2—Sm1—N1149.24 (10)C27—C29—H29119.9
O4—Sm1—O581.47 (7)C30—C29—H29119.9
O6—Sm1—O563.07 (7)C31—C30—C29121.0 (4)
O1—Sm1—O575.23 (7)C31—C30—H30119.5
N3—Sm1—O5149.21 (9)C29—C30—H30119.5
N2—Sm1—O5127.70 (8)C30—C31—C28120.3 (4)
N1—Sm1—O571.88 (9)C30—C31—H31119.8
O4—Sm1—O2154.22 (8)C28—C31—H31119.8
O6—Sm1—O272.46 (7)O6—C32—C28122.5 (3)
O1—Sm1—O259.84 (7)O6—C32—C27120.0 (3)
N3—Sm1—O273.69 (9)C28—C32—C27117.5 (3)
N2—Sm1—O273.68 (9)N5—C33—C28123.2 (3)
N1—Sm1—O2118.03 (8)N5—C33—H33118.4
O5—Sm1—O2123.66 (7)C28—C33—H33118.4
N1—C1—S1178.2 (4)C36—C34—C35120.4 (4)
N2—C2—S2179.1 (3)C36—C34—N5116.8 (4)
N3—C3—S3172.8 (4)C35—C34—N5122.7 (4)
N3—C3—S3'141.8 (5)C42—C35—C34118.8 (4)
S3—C3—S3'45.4 (3)C42—C35—H35120.6
O2—C4—H4A109.5C34—C35—H35120.6
O2—C4—H4B109.5C34—C36—C37120.3 (4)
H4A—C4—H4B109.5C34—C36—H36119.9
O2—C4—H4C109.5C37—C36—H36119.9
H4A—C4—H4C109.5C41—C37—C36119.1 (5)
H4B—C4—H4C109.5C41—C37—H37120.4
O2—C5—C6126.4 (4)C36—C37—H37120.4
O2—C5—C10112.6 (3)C40—C38—C39120.7 (3)
C6—C5—C10120.9 (4)C40—C38—N6117.0 (3)
C5—C6—C7119.3 (4)C39—C38—N6122.2 (3)
C5—C6—H6120.3C45—C39—C38118.5 (3)
C7—C6—H6120.3C45—C39—H39120.7
C8—C7—C6121.0 (4)C38—C39—H39120.7
C8—C7—H7119.5C38—C40—C43119.9 (3)
C6—C7—H7119.5C38—C40—H40120.1
C7—C8—C9120.9 (4)C43—C40—H40120.1
C7—C8—H8119.6C42—C41—C37120.0 (5)
C9—C8—H8119.6C42—C41—H41120.0
C10—C9—C11119.0 (4)C37—C41—H41120.0
C10—C9—C8119.6 (4)C41—C42—C35121.4 (5)
C11—C9—C8121.4 (4)C41—C42—H42119.3
O1—C10—C9122.8 (4)C35—C42—H42119.3
O1—C10—C5118.9 (3)C44—C43—C40120.0 (4)
C9—C10—C5118.3 (4)C44—C43—H43120.0
N4—C11—C9123.5 (4)C40—C43—H43120.0
N4—C11—H11118.2C43—C44—C45120.0 (4)
C9—C11—H11118.2C43—C44—H44120.0
C14—C12—C13120.3 (5)C45—C44—H44120.0
C14—C12—N4117.0 (4)C44—C45—C39120.9 (4)
C13—C12—N4122.6 (5)C44—C45—H45119.5
C12—C13—C17117.6 (5)C39—C45—H45119.5
C12—C13—H13121.2C1—N1—Sm1167.7 (3)
C17—C13—H13121.2C2—N2—Sm1161.9 (3)
C12—C14—C15120.3 (5)C3—N3—Sm1173.1 (3)
C12—C14—H14119.9C11—N4—C12131.8 (4)
C15—C14—H14119.9C11—N4—H4N114.1
O3—C18—H18A109.5C12—N4—H4N114.1
O3—C18—H18B109.5C33—N5—C34128.1 (3)
H18A—C18—H18B109.5C33—N5—H5N116.0
O3—C18—H18C109.5C34—N5—H5N116.0
H18A—C18—H18C109.5C25—N6—C38128.7 (3)
H18B—C18—H18C109.5C25—N6—H6N115.6
C20—C19—O3126.1 (3)C38—N6—H6N115.6
C20—C19—C24121.7 (3)C10—O1—Sm1122.7 (2)
O3—C19—C24112.2 (3)C5—O2—C4117.9 (3)
C19—C20—C21120.1 (3)C5—O2—Sm1112.4 (2)
C19—C20—H20120.0C4—O2—Sm1129.6 (2)
C21—C20—H20120.0C19—O3—C18117.6 (3)
C22—C21—C20120.4 (3)C24—O4—Sm1137.6 (2)
C22—C21—H21119.8C27—O5—C26117.1 (3)
C20—C21—H21119.8C27—O5—Sm1115.19 (18)
C21—C22—C23120.2 (3)C26—O5—Sm1127.3 (2)
C21—C22—H22119.9C32—O6—Sm1124.4 (2)
C23—C22—H22119.9C16—C17—C13121.2 (6)
C24—C23—C25121.3 (3)C16—C17—H17119.4
C24—C23—C22119.9 (3)C13—C17—H17119.4
C25—C23—C22118.8 (3)C17—C16—C15120.3 (6)
O4—C24—C23121.7 (3)C17—C16—H16119.9
O4—C24—C19120.7 (3)C15—C16—H16119.9
C23—C24—C19117.7 (3)C16—C15—C14120.2 (6)
N6—C25—C23123.6 (3)C16—C15—H15119.9
N6—C25—H25118.2C14—C15—H15119.9
O2—C5—C6—C7175.1 (3)O5—Sm1—N2—C2106.9 (9)
C10—C5—C6—C71.9 (5)O2—Sm1—N2—C2132.8 (9)
C5—C6—C7—C80.4 (5)C9—C11—N4—C12172.7 (3)
C6—C7—C8—C90.9 (5)C14—C12—N4—C11172.7 (4)
C7—C8—C9—C100.8 (5)C13—C12—N4—C1110.2 (6)
C7—C8—C9—C11178.2 (3)C28—C33—N5—C34175.8 (3)
C11—C9—C10—O11.5 (5)C36—C34—N5—C33161.9 (4)
C8—C9—C10—O1179.0 (3)C35—C34—N5—C3321.3 (5)
C11—C9—C10—C5176.9 (3)C23—C25—N6—C38178.8 (3)
C8—C9—C10—C50.6 (5)C40—C38—N6—C25175.9 (3)
O2—C5—C10—O13.0 (4)C39—C38—N6—C255.5 (5)
C6—C5—C10—O1179.6 (3)C9—C10—O1—Sm1143.4 (2)
O2—C5—C10—C9175.4 (3)C5—C10—O1—Sm135.0 (4)
C6—C5—C10—C91.9 (5)O4—Sm1—O1—C10166.8 (2)
C10—C9—C11—N42.7 (5)O6—Sm1—O1—C1046.5 (2)
C8—C9—C11—N4179.9 (3)N3—Sm1—O1—C1098.3 (2)
C14—C12—C13—C171.3 (6)N2—Sm1—O1—C1015.5 (3)
N4—C12—C13—C17175.7 (4)N1—Sm1—O1—C10172.3 (2)
C13—C12—C14—C152.1 (7)O5—Sm1—O1—C10112.3 (2)
N4—C12—C14—C15175.0 (4)O2—Sm1—O1—C1032.4 (2)
O3—C19—C20—C21179.1 (3)C6—C5—O2—C421.7 (5)
C24—C19—C20—C211.3 (5)C10—C5—O2—C4161.1 (3)
C19—C20—C21—C221.2 (5)C6—C5—O2—Sm1154.3 (3)
C20—C21—C22—C230.1 (5)C10—C5—O2—Sm122.9 (3)
C21—C22—C23—C241.4 (5)O4—Sm1—O2—C5179.93 (19)
C21—C22—C23—C25178.9 (3)O6—Sm1—O2—C553.0 (2)
C25—C23—C24—O41.2 (5)O1—Sm1—O2—C527.8 (2)
C22—C23—C24—O4178.6 (3)N3—Sm1—O2—C5137.3 (2)
C25—C23—C24—C19179.0 (3)N2—Sm1—O2—C5139.2 (2)
C22—C23—C24—C191.3 (5)N1—Sm1—O2—C571.7 (2)
C20—C19—C24—O4179.9 (3)O5—Sm1—O2—C514.4 (2)
O3—C19—C24—O40.4 (4)O4—Sm1—O2—C44.7 (4)
C20—C19—C24—C230.0 (5)O6—Sm1—O2—C4122.3 (3)
O3—C19—C24—C23179.7 (3)O1—Sm1—O2—C4156.8 (3)
C24—C23—C25—N62.7 (5)N3—Sm1—O2—C447.3 (3)
C22—C23—C25—N6177.6 (3)N2—Sm1—O2—C436.2 (3)
O5—C27—C29—C30177.5 (3)N1—Sm1—O2—C4113.0 (3)
C32—C27—C29—C301.5 (5)O5—Sm1—O2—C4161.0 (3)
C27—C29—C30—C310.7 (6)C20—C19—O3—C181.3 (5)
C29—C30—C31—C281.3 (6)C24—C19—O3—C18178.4 (3)
C33—C28—C31—C30179.1 (4)C23—C24—O4—Sm1163.2 (2)
C32—C28—C31—C300.4 (5)C19—C24—O4—Sm116.9 (5)
C33—C28—C32—O60.8 (5)O6—Sm1—O4—C243.3 (3)
C31—C28—C32—O6178.0 (3)O1—Sm1—O4—C24100.5 (3)
C33—C28—C32—C27178.8 (3)N3—Sm1—O4—C24160.8 (3)
C31—C28—C32—C272.5 (5)N2—Sm1—O4—C2481.2 (3)
C29—C27—C32—O6177.4 (3)N1—Sm1—O4—C24121.4 (3)
O5—C27—C32—O63.5 (4)O5—Sm1—O4—C2447.8 (3)
C29—C27—C32—C283.1 (5)O2—Sm1—O4—C24120.2 (3)
O5—C27—C32—C28176.1 (3)C29—C27—O5—C2618.8 (5)
C32—C28—C33—N51.0 (5)C32—C27—O5—C26162.1 (3)
C31—C28—C33—N5177.8 (3)C29—C27—O5—Sm1168.3 (3)
C36—C34—C35—C421.4 (6)C32—C27—O5—Sm110.7 (3)
N5—C34—C35—C42178.0 (3)O4—Sm1—O5—C27145.8 (2)
C35—C34—C36—C370.4 (6)O6—Sm1—O5—C2713.97 (19)
N5—C34—C36—C37176.4 (3)O1—Sm1—O5—C2764.8 (2)
C34—C36—C37—C412.1 (6)N3—Sm1—O5—C27145.2 (2)
C40—C38—C39—C450.1 (5)N2—Sm1—O5—C2767.1 (2)
N6—C38—C39—C45178.6 (3)N1—Sm1—O5—C27140.0 (2)
C39—C38—C40—C430.2 (5)O2—Sm1—O5—C2727.9 (2)
N6—C38—C40—C43178.4 (3)O4—Sm1—O5—C2626.2 (2)
C36—C37—C41—C421.9 (7)O6—Sm1—O5—C26158.1 (3)
C37—C41—C42—C350.1 (8)O1—Sm1—O5—C26123.1 (2)
C34—C35—C42—C411.5 (7)N3—Sm1—O5—C2642.8 (3)
C38—C40—C43—C440.2 (5)N2—Sm1—O5—C26104.9 (3)
C40—C43—C44—C450.1 (6)N1—Sm1—O5—C2647.9 (2)
C43—C44—C45—C390.5 (6)O2—Sm1—O5—C26160.0 (2)
C38—C39—C45—C440.5 (5)C28—C32—O6—Sm1160.2 (2)
O4—Sm1—N1—C141.7 (14)C27—C32—O6—Sm119.3 (4)
O6—Sm1—N1—C174.8 (14)O4—Sm1—O6—C3276.9 (2)
O1—Sm1—N1—C1124.8 (14)O1—Sm1—O6—C3264.2 (2)
N3—Sm1—N1—C1132.4 (14)N3—Sm1—O6—C32144.4 (2)
N2—Sm1—N1—C190.2 (14)N2—Sm1—O6—C32157.5 (2)
O5—Sm1—N1—C144.9 (14)N1—Sm1—O6—C3214.9 (2)
O2—Sm1—N1—C1164.0 (14)O5—Sm1—O6—C3217.2 (2)
O4—Sm1—N2—C230.6 (9)O2—Sm1—O6—C32127.1 (2)
O6—Sm1—N2—C2153.1 (9)C12—C13—C17—C161.2 (7)
O1—Sm1—N2—C2148.0 (9)C13—C17—C16—C152.9 (9)
N3—Sm1—N2—C256.9 (9)C17—C16—C15—C142.0 (9)
N1—Sm1—N2—C215.1 (10)C12—C14—C15—C160.5 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O10.861.832.543 (4)139
N5—H5N···O60.861.872.573 (3)131
N6—H6N···O40.861.922.610 (3)137

Experimental details

Crystal data
Chemical formula[Sm(NCS)3(C14H13NO2)3]
Mr1006.35
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)19.5821 (13), 20.3531 (14), 22.4764 (16)
V3)8958.1 (11)
Z8
Radiation typeMo Kα
µ (mm1)1.51
Crystal size (mm)0.19 × 0.11 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.820, 0.879
No. of measured, independent and
observed [I > 2σ(I)] reflections
44977, 10202, 5925
Rint0.046
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.077, 0.99
No. of reflections10202
No. of parameters562
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.48

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Sm1—O42.305 (2)Sm1—N22.487 (3)
Sm1—O62.358 (2)Sm1—N12.499 (3)
Sm1—O12.391 (2)Sm1—O52.653 (2)
Sm1—N32.447 (3)Sm1—O22.745 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O10.861.832.543 (4)139
N5—H5N···O60.861.872.573 (3)131
N6—H6N···O40.861.922.610 (3)137
 

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurrows, R. C. & Bailar, J. C. (1966). J. Am. Chem. Soc. 88, 4150–4152.  CrossRef CAS Web of Science Google Scholar
First citationLi, H.-Q., Xian, H.-D., Liu, J.-F. & Zhao, G.-L. (2008). Acta Cryst. E64, m1593–m1594.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiu, J.-F., Shen, J.-B., Liu, J.-L. & Zhao, G.-L. (2009). Acta Cryst. E65, m1650.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMazurek, J. & Lisowski, J. (2003). Polyhedron, 22, 2877–2883.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, G.-L., Shi, X. & Ng, S. W. (2007). Acta Cryst. E63, m267–m268.  CSD CrossRef IUCr Journals Google Scholar
First citationZhao, G.-L., Zhang, P.-H. & Feng, Y.-L. (2005). Chin. J. Inorg. Chem. 21, 421–424.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m706-m707
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds