organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(4-Chloro­phen­yl)diazen­yl]-3-meth­­oxy­aniline

aFaculty of Chemistry, Tarbiat Moallem University, Tehran, Iran, and bDipartimento di Chimica Inorganica, Universita di Messina, Messina, Italy
*Correspondence e-mail: rofouei_mk@yahoo.com

(Received 13 May 2011; accepted 23 June 2011; online 30 June 2011)

The title compound, C13H12ClN3O, exhibits a trans geometry about the N=N double bond in the solid state. The dihedral angle between the rings is 22.20 (8)°. Inter­molecular N—H⋯O hydrogen bonds between the amine and meth­oxy groups lead to the formation of a chain-like polymer along the c axis with a C(6) graph set. There is also weak non-classical C—H⋯N hydrogen bonds involving an aromatic C—H group and a diazenyl N atom, which connect the chains into a two-dimensional framework.

Related literature

For applications of diazo­nium compounds, see: Patai (1978[Patai, S. (1978). Chemistry of the Diazonium and Diazo Groups, Part 1. New York: Wiley-Blackwell.]); Hunger et al. (2005[Hunger, K., Mischke, P., Rieper, W., Raue, R., Kunde, K. & Engel, A. (2005). Azo Dyes, in Ullmann Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.]). For the synthesis and crystal structures of Hg(II) and Cd(II) complexes with [1,3-bis­(2-meth­oxy­phen­yl)]triazene, see: Rofouei, Hematyar et al. (2009[Rofouei, M. K., Hematyar, M., Ghoulipour, V. & Gharamaleki, J. A. (2009). Inorg. Chim. Acta, 362, 3777-3784.]); Rofouei, Melardi et al. (2009[Rofouei, M. K., Melardi, M. R., Khalili Ghaydari, H. R. & Barkhi, M. (2009). Acta Cryst. E65, m351.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12ClN3O

  • Mr = 261.71

  • Monoclinic, C 2/c

  • a = 15.398 (2) Å

  • b = 12.132 (2) Å

  • c = 14.276 (2) Å

  • β = 107.65 (1)°

  • V = 2541.3 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.30 × 0.17 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]) Tmin = 0.698, Tmax = 0.746

  • 42735 measured reflections

  • 2778 independent reflections

  • 2481 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.118

  • S = 1.04

  • 2778 reflections

  • 172 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Oi 0.85 (2) 2.47 (2) 3.222 (2) 147 (2)
C12—H12⋯N3ii 0.93 2.62 3.379 (2) 140
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [-x+1, y, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Diazonium ions are present in solutions such as benzenediazonium chloride solution. They contain an -N2+ group. For example in the case of benzenediazonium chloride, this is attached to a benzene ring. The most important application area of these compounds is organic synthesis of azo dyes (Patai, 1978; Hunger et al., 2005). Diazenyl compounds characterized by having a diazo group (—NN—) commonly adopt the trans configuration in the ground state. We have previously reported the synthesis of Hg(II) and Cd(II) complexes with [1,3-bis(2-methoxyphenyl)]triazene (Rofouei, Hematyar, Ghoulipour & Gharamaleki, 2009; Rofouei, Melardi, Khalili, Ghaydari & Barkhi, 2009).

When attempting to prepare an asymmetric triazene compound using p-chloroaniline and m-anizidine, we instead obtained the title diazo compound, C13H12ClN3O (Fig. 1). The molecule adopts the trans configuration and the C1—N3—N2—C7 dihedral angle is 175.50 (10)°. The C10—N1, C7—N2 and C1—N3 bond lengths are 1.3657 (19), 1.3985 (16) and 1.4206 (17) Å, respectively, consistent with single and double bonds between related C and N atoms. In the crystal lattice of the title compound, the molecules are linked into chain-like polymers along the c crystallographic axis, with C(6) graph set, through N1—H1A···O hydrogen bonds with D···A separations of 3.222 (2) Å (Fig. 2). There is also C12—H12···N3 non-classic hydrogen bonds with D···A distance of 3.379 (2) Å. The unit cell packing diagram of the title compound is shown in Fig. 3.

Related literature top

For applications of diazonium compounds, see: Patai (1978); Hunger et al. (2005). For the synthesis and crystal structures of Hg(II) and Cd(II) complexes with [1,3-bis(2-methoxyphenyl)]triazene, see: Rofouei, Hematyar et al. (2009); Rofouei, Melardi et al. (2009).

Experimental top

To a 1000 ml flask in ice bath, was added 6.36 g (0.05 mol) of p-chloroaniline and 4.68 g (0.13 mol) of HCl (d = 1.18 g.ml-1). To the obtained solution was added dropwise a solution of sodium nitrite (4.14 g in 25 ml H2O). Then, a diluted solution of m-anizidine (6.15 g, 0.05 mol) in 10 ml of methanol was added to the solution. The pH of the solution was adjusted at about 7–8 by adding a solution of 14.76 g of sodium acetate (0.18 mol) in 45 ml H2O as solvent. The solution was stirred for about 45 minutes, giving an orange precipitate. It was then filtered off and dried in vacuum. After dissolving in DMF and recrystallization, orange crystals of the title compound were obtained. M.p. 191–193 °C. Elemental Anal. calc. for C13H12ClN3O: C 59.66, H 4.62, N 16.06 %; ound: C 59.79, H 4.24, N 15.85 %. 1H-NMR (300 MHz, d6-DMSO) δ, ppm: 3.85 (3H, CH3), 6.19–7.69 (9H, aromatic and NH2 groups). 13C-NMR 100 MHz, DMSO) δ, ppm: 55.4 (O—CH3), 96.0–159.8 (C atoms of aromatic rings)

Refinement top

Methyl and aromatic H atoms were placed in idealized positions, with bond lengths fixed to 0.96 and 0.93 Å, respectively. Isotropic displacement parameters for these H atoms were calculated as Uiso(H) = 1.5Ueq(carrier C) in the case of the methyl group, and Uiso(H) = 1.2Ueq(carrier C) otherwise. Amine H atoms H1A and H1B were found in a difference map and refined isotropically, with free coordinates.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, displacement ellipsoids are drawn at 50% probability level.
[Figure 2] Fig. 2. N1—H1A···O hydrogen bonds between molecules, to produce chain-like polymers along the c crystallographic axis.
[Figure 3] Fig. 3. The crystal packing diagram of the title compound.
4-[(4-Chlorophenyl)diazenyl]-3-methoxyaniline top
Crystal data top
C13H12ClN3OF(000) = 1088
Mr = 261.71Dx = 1.368 Mg m3
Monoclinic, C2/cMelting point: 464 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 15.398 (2) ÅCell parameters from 9801 reflections
b = 12.132 (2) Åθ = 2.4–31.8°
c = 14.276 (2) ŵ = 0.29 mm1
β = 107.65 (1)°T = 293 K
V = 2541.3 (7) Å3Irregular, red
Z = 80.30 × 0.17 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
2778 independent reflections
Radiation source: fine-focus sealed tube2481 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1919
Tmin = 0.698, Tmax = 0.746k = 1515
42735 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.063P)2 + 1.2073P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2778 reflectionsΔρmax = 0.37 e Å3
172 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0021 (6)
Primary atom site location: structure-invariant direct methods
Crystal data top
C13H12ClN3OV = 2541.3 (7) Å3
Mr = 261.71Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.398 (2) ŵ = 0.29 mm1
b = 12.132 (2) ÅT = 293 K
c = 14.276 (2) Å0.30 × 0.17 × 0.11 mm
β = 107.65 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2778 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2481 reflections with I > 2σ(I)
Tmin = 0.698, Tmax = 0.746Rint = 0.019
42735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.37 e Å3
2778 reflectionsΔρmin = 0.39 e Å3
172 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.38256 (4)0.12838 (5)0.25280 (3)0.0899 (2)
N20.61207 (7)0.40377 (9)0.64610 (8)0.0428 (3)
O0.72867 (7)0.56731 (8)0.66289 (7)0.0538 (3)
N30.56583 (8)0.31792 (9)0.64438 (8)0.0450 (3)
C80.70965 (9)0.53992 (11)0.74685 (9)0.0425 (3)
C10.52338 (9)0.27653 (11)0.54826 (9)0.0435 (3)
C70.64918 (9)0.45106 (10)0.73903 (9)0.0401 (3)
C90.74743 (10)0.59254 (12)0.83601 (10)0.0478 (3)
H90.78690.65170.84030.057*
C110.66611 (10)0.46804 (12)0.91223 (10)0.0485 (3)
H110.65200.44360.96760.058*
C100.72618 (10)0.55670 (12)0.91959 (10)0.0484 (3)
C120.62817 (9)0.41745 (11)0.82355 (10)0.0437 (3)
H120.58760.35950.81930.052*
C60.51547 (11)0.33586 (13)0.46265 (11)0.0543 (4)
H60.53980.40650.46650.065*
N10.76334 (13)0.60746 (16)1.00811 (11)0.0723 (5)
C20.48455 (12)0.17279 (13)0.54185 (12)0.0590 (4)
H20.48790.13380.59890.071*
C30.44078 (12)0.12672 (14)0.45107 (13)0.0658 (4)
H30.41500.05690.44670.079*
C40.43604 (11)0.18557 (15)0.36754 (12)0.0589 (4)
C50.47166 (12)0.29024 (15)0.37226 (11)0.0619 (4)
H50.46620.32980.31500.074*
C130.78626 (14)0.65978 (16)0.66487 (13)0.0711 (5)
H13A0.79420.66930.60120.107*
H13B0.84450.64750.71280.107*
H13C0.75890.72480.68200.107*
H1A0.7476 (16)0.5869 (19)1.0576 (17)0.085 (7)*
H1B0.8002 (15)0.6559 (18)1.0126 (16)0.075 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0833 (4)0.1190 (5)0.0584 (3)0.0405 (3)0.0080 (2)0.0312 (3)
N20.0442 (6)0.0463 (6)0.0377 (5)0.0031 (5)0.0120 (4)0.0040 (4)
O0.0662 (6)0.0603 (6)0.0355 (5)0.0191 (5)0.0165 (4)0.0016 (4)
N30.0482 (6)0.0454 (6)0.0411 (6)0.0018 (5)0.0130 (5)0.0032 (5)
C80.0470 (7)0.0462 (7)0.0343 (6)0.0015 (5)0.0124 (5)0.0004 (5)
C10.0411 (6)0.0464 (7)0.0425 (7)0.0017 (5)0.0119 (5)0.0056 (5)
C70.0422 (6)0.0428 (6)0.0349 (6)0.0011 (5)0.0111 (5)0.0018 (5)
C90.0527 (7)0.0489 (7)0.0398 (7)0.0073 (6)0.0111 (6)0.0038 (5)
C110.0585 (8)0.0537 (7)0.0369 (6)0.0023 (6)0.0197 (6)0.0009 (5)
C100.0554 (8)0.0524 (7)0.0353 (6)0.0022 (6)0.0108 (6)0.0056 (5)
C120.0474 (7)0.0444 (6)0.0416 (6)0.0002 (5)0.0170 (5)0.0001 (5)
C60.0602 (8)0.0547 (8)0.0457 (7)0.0124 (7)0.0126 (6)0.0032 (6)
N10.0930 (12)0.0832 (11)0.0395 (7)0.0252 (9)0.0184 (7)0.0162 (7)
C20.0676 (9)0.0545 (8)0.0511 (8)0.0128 (7)0.0121 (7)0.0002 (6)
C30.0695 (10)0.0576 (9)0.0639 (10)0.0212 (8)0.0105 (8)0.0104 (8)
C40.0496 (8)0.0745 (10)0.0481 (8)0.0131 (7)0.0082 (6)0.0157 (7)
C50.0649 (9)0.0738 (10)0.0433 (7)0.0153 (8)0.0110 (7)0.0027 (7)
C130.0866 (12)0.0760 (11)0.0548 (9)0.0334 (10)0.0275 (9)0.0008 (8)
Geometric parameters (Å, º) top
Cl—C41.7391 (16)C10—N11.3657 (19)
N2—N31.2578 (16)C12—H120.9300
N2—C71.3985 (16)C6—C51.378 (2)
O—C81.3586 (16)C6—H60.9300
O—C131.4250 (18)N1—H1B0.81 (2)
N3—C11.4206 (17)N1—H1A0.85 (2)
C8—C91.3846 (18)C2—C31.384 (2)
C8—C71.4065 (18)C2—H20.9300
C1—C21.384 (2)C3—C41.373 (2)
C1—C61.392 (2)C3—H30.9300
C7—C121.4014 (18)C4—C51.377 (2)
C9—C101.3987 (19)C5—H50.9300
C9—H90.9300C13—H13A0.9600
C11—C121.3683 (19)C13—H13B0.9600
C11—C101.402 (2)C13—H13C0.9600
C11—H110.9300
N3—N2—C7115.10 (11)C5—C6—C1120.16 (14)
C8—O—C13118.32 (11)C5—C6—H6119.9
N2—N3—C1113.79 (11)C1—C6—H6119.9
O—C8—C9123.74 (12)C10—N1—H1B119.4 (16)
O—C8—C7115.59 (11)C10—N1—H1A119.5 (16)
C9—C8—C7120.65 (12)H1B—N1—H1A121 (2)
C2—C1—C6119.42 (13)C3—C2—C1120.45 (15)
C2—C1—N3116.62 (13)C3—C2—H2119.8
C6—C1—N3123.89 (12)C1—C2—H2119.8
N2—C7—C12124.25 (12)C4—C3—C2119.06 (15)
N2—C7—C8117.38 (11)C4—C3—H3120.5
C12—C7—C8118.34 (11)C2—C3—H3120.5
C8—C9—C10119.94 (13)C3—C4—C5121.45 (14)
C8—C9—H9120.0C3—C4—Cl119.73 (13)
C10—C9—H9120.0C5—C4—Cl118.81 (13)
C12—C11—C10120.03 (12)C4—C5—C6119.40 (15)
C12—C11—H11120.0C4—C5—H5120.3
C10—C11—H11120.0C6—C5—H5120.3
N1—C10—C9120.56 (15)O—C13—H13A109.5
N1—C10—C11119.81 (14)O—C13—H13B109.5
C9—C10—C11119.63 (12)H13A—C13—H13B109.5
C11—C12—C7121.39 (13)O—C13—H13C109.5
C11—C12—H12119.3H13A—C13—H13C109.5
C7—C12—H12119.3H13B—C13—H13C109.5
C7—N2—N3—C1175.50 (10)C12—C11—C10—N1179.51 (15)
C13—O—C8—C94.1 (2)C12—C11—C10—C90.4 (2)
C13—O—C8—C7177.23 (14)C10—C11—C12—C71.1 (2)
N2—N3—C1—C2169.37 (13)N2—C7—C12—C11179.24 (12)
N2—N3—C1—C613.7 (2)C8—C7—C12—C111.0 (2)
N3—N2—C7—C128.56 (19)C2—C1—C6—C51.9 (2)
N3—N2—C7—C8173.14 (11)N3—C1—C6—C5178.75 (14)
O—C8—C7—N22.78 (18)C6—C1—C2—C32.1 (2)
C9—C8—C7—N2178.49 (12)N3—C1—C2—C3179.20 (15)
O—C8—C7—C12178.82 (12)C1—C2—C3—C40.3 (3)
C9—C8—C7—C120.1 (2)C2—C3—C4—C51.7 (3)
O—C8—C9—C10178.02 (13)C2—C3—C4—Cl179.22 (14)
C7—C8—C9—C100.6 (2)C3—C4—C5—C62.0 (3)
C8—C9—C10—N1179.64 (15)Cl—C4—C5—C6178.99 (14)
C8—C9—C10—C110.5 (2)C1—C6—C5—C40.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Oi0.85 (2)2.47 (2)3.222 (2)147 (2)
C12—H12···N3ii0.932.623.379 (2)140
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC13H12ClN3O
Mr261.71
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)15.398 (2), 12.132 (2), 14.276 (2)
β (°) 107.65 (1)
V3)2541.3 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.30 × 0.17 × 0.11
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.698, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
42735, 2778, 2481
Rint0.019
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.118, 1.04
No. of reflections2778
No. of parameters172
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.39

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Oi0.85 (2)2.47 (2)3.222 (2)147 (2)
C12—H12···N3ii0.932.623.379 (2)140
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1, y, z+3/2.
 

References

First citationBruker (2005). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationHunger, K., Mischke, P., Rieper, W., Raue, R., Kunde, K. & Engel, A. (2005). Azo Dyes, in Ullmann Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.  Google Scholar
First citationPatai, S. (1978). Chemistry of the Diazonium and Diazo Groups, Part 1. New York: Wiley-Blackwell.  Google Scholar
First citationRofouei, M. K., Hematyar, M., Ghoulipour, V. & Gharamaleki, J. A. (2009). Inorg. Chim. Acta, 362, 3777–3784.  CrossRef CAS Google Scholar
First citationRofouei, M. K., Melardi, M. R., Khalili Ghaydari, H. R. & Barkhi, M. (2009). Acta Cryst. E65, m351.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds