organic compounds
1,1′-(Piperazine-1,4-diyl)dipropan-2-ol
aDepartment of Chemistry, Faculty of Science, Trakya University, 22030-Edirne, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, 17020-Çanakkale, Turkey, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139-Samsun, Turkey
*Correspondence e-mail: namiko@omu.edu.tr
The 10H22N2O2, with the centre of the piperazine ring located at a site of 2/m symmetry. The piperazine ring adopts a chair conformation. The methine and methylene C atoms of the 2-hydroxypropyl groups show symmetry-imposed disorder over two equally occupied and mutually exclusive sets of positions. Only intramolecular O—H⋯N contacts are observed.
of the crystal contains one-fourth of the title compound, CRelated literature
For the biological properties of piperazine compounds, see: Foroumadi et al. (2007); Upadhayaya et al. (2004); Chen et al. (2006); Cunico et al. (2009); Smits et al. (2008); Penjišević et al. (2007); Becker et al. (2006). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995). For ring puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection
|
Refinement
|
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811023397/fy2011sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811023397/fy2011Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811023397/fy2011Isup3.cml
Piperazine (1.50 g, 17.40 mmol) was dissolved in 50 ml argon saturated methanol. Methanol solution of 2.88 g (50.00 mmol) propylene oxide was added to the piperazine solution at room temperature. The solution was left under magnetic stirrer for 24 h. The solution volume was reduced by rotary evaporator and the oily product was left for crystallization.
H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.82, 0.93, 0.97 and 0.96 Å for OH, CH, CH2 and CH3 groups, respectively. The isotropic displacement parameters of the H atoms were constrained at 1.2 Ueq of their parent atom (1.5 Ueq for methyl and OH groups). Atoms C2 and C3 showed symmetry-imposed disorder and were refined anisotropically using ADP restraints (SIMU and DELU) and half occupancy.
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).C10H22N2O2 | F(000) = 224 |
Mr = 202.30 | Dx = 1.133 Mg m−3 |
Monoclinic, C2/m | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2y | Cell parameters from 3092 reflections |
a = 13.838 (10) Å | θ = 3.0–30.0° |
b = 7.791 (5) Å | µ = 0.08 mm−1 |
c = 5.543 (4) Å | T = 273 K |
β = 97.26 (3)° | Prism, colourless |
V = 592.8 (7) Å3 | 0.40 × 0.25 × 0.10 mm |
Z = 2 |
Rigaku R-AXIS RAPID diffractometer | 441 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.139 |
Graphite monochromator | θmax = 25.5°, θmin = 3.0° |
Detector resolution: 10.00 pixels mm-1 | h = −16→16 |
ω scans | k = −9→9 |
2493 measured reflections | l = −5→6 |
604 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0375P)2 + 0.2898P] where P = (Fo2 + 2Fc2)/3 |
604 reflections | (Δ/σ)max < 0.001 |
46 parameters | Δρmax = 0.28 e Å−3 |
14 restraints | Δρmin = −0.34 e Å−3 |
C10H22N2O2 | V = 592.8 (7) Å3 |
Mr = 202.30 | Z = 2 |
Monoclinic, C2/m | Mo Kα radiation |
a = 13.838 (10) Å | µ = 0.08 mm−1 |
b = 7.791 (5) Å | T = 273 K |
c = 5.543 (4) Å | 0.40 × 0.25 × 0.10 mm |
β = 97.26 (3)° |
Rigaku R-AXIS RAPID diffractometer | 441 reflections with I > 2σ(I) |
2493 measured reflections | Rint = 0.139 |
604 independent reflections |
R[F2 > 2σ(F2)] = 0.052 | 14 restraints |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.28 e Å−3 |
604 reflections | Δρmin = −0.34 e Å−3 |
46 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.78313 (12) | 0.5000 | 0.4674 (3) | 0.0706 (7) | |
H1 | 0.7297 | 0.5197 | 0.3907 | 0.106* | 0.50 |
N1 | 0.60084 (15) | 0.5000 | 0.5912 (4) | 0.0715 (7) | |
C1 | 0.86326 (18) | 0.5000 | 0.8733 (5) | 0.0754 (9) | |
H1A | 0.9169 | 0.4390 | 0.8197 | 0.113* | 0.50 |
H1B | 0.8573 | 0.4690 | 1.0384 | 0.113* | 0.50 |
H1C | 0.8746 | 0.6213 | 0.8640 | 0.113* | 0.50 |
C2 | 0.7712 (2) | 0.4545 (5) | 0.7137 (5) | 0.0603 (12) | 0.50 |
H2 | 0.7597 | 0.3307 | 0.7233 | 0.072* | 0.50 |
C3 | 0.6841 (2) | 0.5495 (5) | 0.7803 (6) | 0.0609 (11) | 0.50 |
H3A | 0.6952 | 0.6724 | 0.7782 | 0.073* | 0.50 |
H3B | 0.6705 | 0.5166 | 0.9413 | 0.073* | 0.50 |
C4 | 0.54111 (14) | 0.6506 (3) | 0.6021 (3) | 0.0751 (7) | |
H4A | 0.5806 | 0.7526 | 0.5917 | 0.090* | |
H4B | 0.5150 | 0.6533 | 0.7565 | 0.090* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0609 (11) | 0.0975 (15) | 0.0541 (11) | 0.000 | 0.0103 (8) | 0.000 |
N1 | 0.0463 (11) | 0.118 (2) | 0.0498 (12) | 0.000 | 0.0031 (9) | 0.000 |
C1 | 0.0527 (15) | 0.103 (2) | 0.0677 (17) | 0.000 | −0.0030 (13) | 0.000 |
C2 | 0.0519 (15) | 0.075 (3) | 0.0533 (16) | 0.0024 (15) | 0.0027 (13) | −0.0010 (15) |
C3 | 0.0483 (14) | 0.084 (3) | 0.0490 (14) | 0.0021 (14) | 0.0016 (12) | −0.0047 (14) |
C4 | 0.0807 (13) | 0.0883 (15) | 0.0563 (11) | −0.0195 (11) | 0.0084 (9) | −0.0038 (11) |
O1—C2i | 1.440 (4) | C1—H1B | 0.9600 |
O1—C2 | 1.440 (4) | C1—H1C | 0.9600 |
O1—H1 | 0.8200 | C2—C3 | 1.499 (4) |
N1—C4i | 1.441 (3) | C2—H2 | 0.9800 |
N1—C4 | 1.441 (3) | C3—H3A | 0.9700 |
N1—C3 | 1.507 (3) | C3—H3B | 0.9700 |
N1—C3i | 1.507 (3) | C4—C4ii | 1.500 (4) |
C1—C2 | 1.499 (4) | C4—H4A | 0.9700 |
C1—C2i | 1.499 (4) | C4—H4B | 0.9700 |
C1—H1A | 0.9600 | ||
C2i—O1—H1 | 103.9 | O1—C2—C3 | 107.7 (2) |
C2—O1—H1 | 109.5 | C1—C2—C3 | 112.8 (3) |
C4i—N1—C4 | 109.0 (2) | O1—C2—H2 | 109.4 |
C4i—N1—C3 | 124.8 (2) | C1—C2—H2 | 109.4 |
C4—N1—C3 | 98.90 (17) | C3—C2—H2 | 109.4 |
C4i—N1—C3i | 98.90 (17) | C2—C3—N1 | 105.7 (2) |
C4—N1—C3i | 124.8 (2) | C2—C3—H3A | 110.6 |
C2—C1—H1A | 109.5 | N1—C3—H3A | 110.6 |
C2i—C1—H1A | 124.6 | C2—C3—H3B | 110.6 |
C2—C1—H1B | 109.5 | N1—C3—H3B | 110.6 |
C2i—C1—H1B | 116.9 | H3A—C3—H3B | 108.7 |
H1A—C1—H1B | 109.5 | N1—C4—C4ii | 110.64 (15) |
C2—C1—H1C | 109.5 | N1—C4—H4A | 109.5 |
C2i—C1—H1C | 82.4 | C4ii—C4—H4A | 109.5 |
H1A—C1—H1C | 109.5 | N1—C4—H4B | 109.5 |
H1B—C1—H1C | 109.5 | C4ii—C4—H4B | 109.5 |
O1—C2—C1 | 108.1 (2) | H4A—C4—H4B | 108.1 |
C2i—O1—C2—C1 | −70.1 (2) | C4i—N1—C3—C2 | 85.4 (3) |
C2i—O1—C2—C3 | 52.0 (2) | C4—N1—C3—C2 | −153.8 (2) |
C2i—C1—C2—O1 | 69.7 (2) | C3i—N1—C3—C2 | 52.8 (3) |
C2i—C1—C2—C3 | −49.2 (3) | C4i—N1—C4—C4ii | −58.1 (3) |
O1—C2—C3—N1 | 56.3 (3) | C3—N1—C4—C4ii | 170.2 (2) |
C1—C2—C3—N1 | 175.4 (2) | C3i—N1—C4—C4ii | −174.2 (2) |
Symmetry codes: (i) x, −y+1, z; (ii) −x+1, y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C10H22N2O2 |
Mr | 202.30 |
Crystal system, space group | Monoclinic, C2/m |
Temperature (K) | 273 |
a, b, c (Å) | 13.838 (10), 7.791 (5), 5.543 (4) |
β (°) | 97.26 (3) |
V (Å3) | 592.8 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.40 × 0.25 × 0.10 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2493, 604, 441 |
Rint | 0.139 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.119, 1.05 |
No. of reflections | 604 |
No. of parameters | 46 |
No. of restraints | 14 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.34 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Acknowledgements
Financial support from the Scientific and Technological Research Council of Turkey research program 1001 grant for 104 T389 is gratefully acknowledged.
References
Becker, O. M., Dhanoa, D. S., Marantz, Y., Chen, D., Shacham, S., Cheruku, S., Heifetz, A., Mohanty, P., Fichman, M., Sharadendu, A., Nudelman, R., Kauffman, M. & Noiman, S. (2006). J. Med. Chem. 49, 3116–3135. Web of Science CrossRef PubMed CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Chen, J. J., Lu, M., Jing, Y. K. & Dong, J. H. (2006). Bioorg. Med. Chem. 14, 6539–6547. Web of Science CrossRef PubMed CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Cunico, W., Gomes, C. R. B., Moreth, M., Manhanini, D. P., Figueiredo, I. H., Penido, C., Henriques, M. G. M. O., Varotti, F. P. & Krettli, A. U. (2009). Eur. J. Med. Chem. 44, 1363–1368. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Foroumadi, A., Emami, S., Mansouri, S., Javidnia, A., Saeid-Adeli, N., Shirazi, F. H. & Shafiee, A. (2007). Eur. J. Med. Chem. 42, 985–992. Web of Science CrossRef PubMed CAS Google Scholar
Penjišević, J., Šukalović, V., Andrić, D., Kostić-Rajačić, S., Šoškić, V. & Roglić, G. (2007). Arch. Pharm. Chem. Life Sci. 340, 456–465. Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smits, R. A., Lim, H. D., Hanzer, A., Zuiderveld, O. P., Guaita, E., Adami, M., Coruzzi, G., Leurs, R. & Esch, I. J. P. (2008). J. Med. Chem. 51, 2457–2467. Web of Science CrossRef PubMed CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Upadhayaya, R. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225–2238. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Piperazine-based research has attracted considerable attention in recent years. A broad range of compounds displaying antibacterial (Foroumadi et al., 2007), antifungal (Upadhayaya et al., 2004), anticancer (Chen et al., 2006), antiparasitic (Cunico et al., 2009), antihistamin (Smits et al., 2008), psychotolytic (Penjišević et al., 2007), and antidepressive activities (Becker et al., 2006) have been found to contain this versatile core. In view of these important properties, we have undertaken the X-ray diffraction study of the title compound.
The structure of the title compound is shown in Fig. 1. The structure contains one central piperazine ring (N1/C4/C4i/N1i/C4ii/C4iii) with two propanol moieties substituted at the two N atoms of the piperazine ring. The centre of the ring located at a site of 2/m symmetry. The N, O and methyl C atoms are located on the mirror plane, while atoms C2 and C3 show symmetry-imposed disorder.
The interatomic distances and angles in the compound show no anomalies. The piperazine ring adopts a chair conformation, as is evident from the puckering parameters (Cremer & Pople, 1975): QT = 1.0333 (10) Å, q2 = 0.8812 (9) Å, q3 = 0.5396 (6) Å, θ = 58.52 (2)° and ϕ2 = 30.00 (5)° for the atom sequence N1/C4/C4i/N1i/C4ii/C4iii. Atoms N1 and N1i are on opposite sides of the C4/C4i/C4ii/C4iii plane and are both displaced from it by 0.2424 (30) Å.
The molecular structure of the title compound contains two intramolecular O—H···N contacts, which form a five-membered ring with graph-set descriptor S(5) (Bernstein et al., 1995). No intermolecular hydrogen bonds are observed in the crystal structure. Van der Waals forces stabilize the packing.