organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-(Piperazine-1,4-di­yl)dipropan-2-ol

aDepartment of Chemistry, Faculty of Science, Trakya University, 22030-Edirne, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, 17020-Çanakkale, Turkey, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139-Samsun, Turkey
*Correspondence e-mail: namiko@omu.edu.tr

(Received 21 April 2011; accepted 15 June 2011; online 22 June 2011)

The asymmetric unit of the crystal contains one-fourth of the title compound, C10H22N2O2, with the centre of the piperazine ring located at a site of 2/m symmetry. The piperazine ring adopts a chair conformation. The methine and methylene C atoms of the 2-hydroxypropyl groups show symmetry-imposed disorder over two equally occupied and mutually exclusive sets of positions. Only intra­molecular O—H⋯N contacts are observed.

Related literature

For the biological properties of piperazine compounds, see: Foroumadi et al. (2007[Foroumadi, A., Emami, S., Mansouri, S., Javidnia, A., Saeid-Adeli, N., Shirazi, F. H. & Shafiee, A. (2007). Eur. J. Med. Chem. 42, 985-992.]); Upadhayaya et al. (2004[Upadhayaya, R. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225-2238.]); Chen et al. (2006[Chen, J. J., Lu, M., Jing, Y. K. & Dong, J. H. (2006). Bioorg. Med. Chem. 14, 6539-6547.]); Cunico et al. (2009[Cunico, W., Gomes, C. R. B., Moreth, M., Manhanini, D. P., Figueiredo, I. H., Penido, C., Henriques, M. G. M. O., Varotti, F. P. & Krettli, A. U. (2009). Eur. J. Med. Chem. 44, 1363-1368.]); Smits et al. (2008[Smits, R. A., Lim, H. D., Hanzer, A., Zuiderveld, O. P., Guaita, E., Adami, M., Coruzzi, G., Leurs, R. & Esch, I. J. P. (2008). J. Med. Chem. 51, 2457-2467.]); Penjišević et al. (2007[Penjišević, J., Šukalović, V., Andrić, D., Kostić-Rajačić, S., Šoškić, V. & Roglić, G. (2007). Arch. Pharm. Chem. Life Sci. 340, 456-465.]); Becker et al. (2006[Becker, O. M., Dhanoa, D. S., Marantz, Y., Chen, D., Shacham, S., Cheruku, S., Heifetz, A., Mohanty, P., Fichman, M., Sharadendu, A., Nudelman, R., Kauffman, M. & Noiman, S. (2006). J. Med. Chem. 49, 3116-3135.]). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C10H22N2O2

  • Mr = 202.30

  • Monoclinic, C 2/m

  • a = 13.838 (10) Å

  • b = 7.791 (5) Å

  • c = 5.543 (4) Å

  • β = 97.26 (3)°

  • V = 592.8 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 273 K

  • 0.40 × 0.25 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • 2493 measured reflections

  • 604 independent reflections

  • 441 reflections with I > 2σ(I)

  • Rint = 0.139

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.119

  • S = 1.05

  • 604 reflections

  • 46 parameters

  • 14 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 2.22 2.696 (3) 117

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperazine-based research has attracted considerable attention in recent years. A broad range of compounds displaying antibacterial (Foroumadi et al., 2007), antifungal (Upadhayaya et al., 2004), anticancer (Chen et al., 2006), antiparasitic (Cunico et al., 2009), antihistamin (Smits et al., 2008), psychotolytic (Penjišević et al., 2007), and antidepressive activities (Becker et al., 2006) have been found to contain this versatile core. In view of these important properties, we have undertaken the X-ray diffraction study of the title compound.

The structure of the title compound is shown in Fig. 1. The structure contains one central piperazine ring (N1/C4/C4i/N1i/C4ii/C4iii) with two propanol moieties substituted at the two N atoms of the piperazine ring. The centre of the ring located at a site of 2/m symmetry. The N, O and methyl C atoms are located on the mirror plane, while atoms C2 and C3 show symmetry-imposed disorder.

The interatomic distances and angles in the compound show no anomalies. The piperazine ring adopts a chair conformation, as is evident from the puckering parameters (Cremer & Pople, 1975): QT = 1.0333 (10) Å, q2 = 0.8812 (9) Å, q3 = 0.5396 (6) Å, θ = 58.52 (2)° and ϕ2 = 30.00 (5)° for the atom sequence N1/C4/C4i/N1i/C4ii/C4iii. Atoms N1 and N1i are on opposite sides of the C4/C4i/C4ii/C4iii plane and are both displaced from it by 0.2424 (30) Å.

The molecular structure of the title compound contains two intramolecular O—H···N contacts, which form a five-membered ring with graph-set descriptor S(5) (Bernstein et al., 1995). No intermolecular hydrogen bonds are observed in the crystal structure. Van der Waals forces stabilize the packing.

Related literature top

For the biological properties of piperazine compounds, see: Foroumadi et al. (2007); Upadhayaya et al. (2004); Chen et al. (2006); Cunico et al. (2009); Smits et al. (2008); Penjišević et al. (2007); Becker et al. (2006). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

Piperazine (1.50 g, 17.40 mmol) was dissolved in 50 ml argon saturated methanol. Methanol solution of 2.88 g (50.00 mmol) propylene oxide was added to the piperazine solution at room temperature. The solution was left under magnetic stirrer for 24 h. The solution volume was reduced by rotary evaporator and the oily product was left for crystallization.

Refinement top

H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.82, 0.93, 0.97 and 0.96 Å for OH, CH, CH2 and CH3 groups, respectively. The isotropic displacement parameters of the H atoms were constrained at 1.2 Ueq of their parent atom (1.5 Ueq for methyl and OH groups). Atoms C2 and C3 showed symmetry-imposed disorder and were refined anisotropically using ADP restraints (SIMU and DELU) and half occupancy.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP-3 drawing of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering scheme. For the sake of clarity, H atoms have been omitted. One of the disorder components is drawn with dashed bonds. [Symmetry codes: (i) 1 - x, y, 1 - z; (ii) 1 - x, 1 - y, 1 - z; (iii) x, 1 - y, z.]
1,1'-(Piperazine-1,4-diyl)dipropan-2-ol top
Crystal data top
C10H22N2O2F(000) = 224
Mr = 202.30Dx = 1.133 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 3092 reflections
a = 13.838 (10) Åθ = 3.0–30.0°
b = 7.791 (5) ŵ = 0.08 mm1
c = 5.543 (4) ÅT = 273 K
β = 97.26 (3)°Prism, colourless
V = 592.8 (7) Å30.40 × 0.25 × 0.10 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
441 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.139
Graphite monochromatorθmax = 25.5°, θmin = 3.0°
Detector resolution: 10.00 pixels mm-1h = 1616
ω scansk = 99
2493 measured reflectionsl = 56
604 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0375P)2 + 0.2898P]
where P = (Fo2 + 2Fc2)/3
604 reflections(Δ/σ)max < 0.001
46 parametersΔρmax = 0.28 e Å3
14 restraintsΔρmin = 0.34 e Å3
Crystal data top
C10H22N2O2V = 592.8 (7) Å3
Mr = 202.30Z = 2
Monoclinic, C2/mMo Kα radiation
a = 13.838 (10) ŵ = 0.08 mm1
b = 7.791 (5) ÅT = 273 K
c = 5.543 (4) Å0.40 × 0.25 × 0.10 mm
β = 97.26 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
441 reflections with I > 2σ(I)
2493 measured reflectionsRint = 0.139
604 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05214 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.05Δρmax = 0.28 e Å3
604 reflectionsΔρmin = 0.34 e Å3
46 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.78313 (12)0.50000.4674 (3)0.0706 (7)
H10.72970.51970.39070.106*0.50
N10.60084 (15)0.50000.5912 (4)0.0715 (7)
C10.86326 (18)0.50000.8733 (5)0.0754 (9)
H1A0.91690.43900.81970.113*0.50
H1B0.85730.46901.03840.113*0.50
H1C0.87460.62130.86400.113*0.50
C20.7712 (2)0.4545 (5)0.7137 (5)0.0603 (12)0.50
H20.75970.33070.72330.072*0.50
C30.6841 (2)0.5495 (5)0.7803 (6)0.0609 (11)0.50
H3A0.69520.67240.77820.073*0.50
H3B0.67050.51660.94130.073*0.50
C40.54111 (14)0.6506 (3)0.6021 (3)0.0751 (7)
H4A0.58060.75260.59170.090*
H4B0.51500.65330.75650.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0609 (11)0.0975 (15)0.0541 (11)0.0000.0103 (8)0.000
N10.0463 (11)0.118 (2)0.0498 (12)0.0000.0031 (9)0.000
C10.0527 (15)0.103 (2)0.0677 (17)0.0000.0030 (13)0.000
C20.0519 (15)0.075 (3)0.0533 (16)0.0024 (15)0.0027 (13)0.0010 (15)
C30.0483 (14)0.084 (3)0.0490 (14)0.0021 (14)0.0016 (12)0.0047 (14)
C40.0807 (13)0.0883 (15)0.0563 (11)0.0195 (11)0.0084 (9)0.0038 (11)
Geometric parameters (Å, º) top
O1—C2i1.440 (4)C1—H1B0.9600
O1—C21.440 (4)C1—H1C0.9600
O1—H10.8200C2—C31.499 (4)
N1—C4i1.441 (3)C2—H20.9800
N1—C41.441 (3)C3—H3A0.9700
N1—C31.507 (3)C3—H3B0.9700
N1—C3i1.507 (3)C4—C4ii1.500 (4)
C1—C21.499 (4)C4—H4A0.9700
C1—C2i1.499 (4)C4—H4B0.9700
C1—H1A0.9600
C2i—O1—H1103.9O1—C2—C3107.7 (2)
C2—O1—H1109.5C1—C2—C3112.8 (3)
C4i—N1—C4109.0 (2)O1—C2—H2109.4
C4i—N1—C3124.8 (2)C1—C2—H2109.4
C4—N1—C398.90 (17)C3—C2—H2109.4
C4i—N1—C3i98.90 (17)C2—C3—N1105.7 (2)
C4—N1—C3i124.8 (2)C2—C3—H3A110.6
C2—C1—H1A109.5N1—C3—H3A110.6
C2i—C1—H1A124.6C2—C3—H3B110.6
C2—C1—H1B109.5N1—C3—H3B110.6
C2i—C1—H1B116.9H3A—C3—H3B108.7
H1A—C1—H1B109.5N1—C4—C4ii110.64 (15)
C2—C1—H1C109.5N1—C4—H4A109.5
C2i—C1—H1C82.4C4ii—C4—H4A109.5
H1A—C1—H1C109.5N1—C4—H4B109.5
H1B—C1—H1C109.5C4ii—C4—H4B109.5
O1—C2—C1108.1 (2)H4A—C4—H4B108.1
C2i—O1—C2—C170.1 (2)C4i—N1—C3—C285.4 (3)
C2i—O1—C2—C352.0 (2)C4—N1—C3—C2153.8 (2)
C2i—C1—C2—O169.7 (2)C3i—N1—C3—C252.8 (3)
C2i—C1—C2—C349.2 (3)C4i—N1—C4—C4ii58.1 (3)
O1—C2—C3—N156.3 (3)C3—N1—C4—C4ii170.2 (2)
C1—C2—C3—N1175.4 (2)C3i—N1—C4—C4ii174.2 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.822.222.696 (3)117

Experimental details

Crystal data
Chemical formulaC10H22N2O2
Mr202.30
Crystal system, space groupMonoclinic, C2/m
Temperature (K)273
a, b, c (Å)13.838 (10), 7.791 (5), 5.543 (4)
β (°) 97.26 (3)
V3)592.8 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.25 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2493, 604, 441
Rint0.139
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.119, 1.05
No. of reflections604
No. of parameters46
No. of restraints14
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.34

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.822.222.696 (3)117
 

Acknowledgements

Financial support from the Scientific and Technological Research Council of Turkey research program 1001 grant for 104 T389 is gratefully acknowledged.

References

First citationBecker, O. M., Dhanoa, D. S., Marantz, Y., Chen, D., Shacham, S., Cheruku, S., Heifetz, A., Mohanty, P., Fichman, M., Sharadendu, A., Nudelman, R., Kauffman, M. & Noiman, S. (2006). J. Med. Chem. 49, 3116–3135.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationChen, J. J., Lu, M., Jing, Y. K. & Dong, J. H. (2006). Bioorg. Med. Chem. 14, 6539–6547.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCunico, W., Gomes, C. R. B., Moreth, M., Manhanini, D. P., Figueiredo, I. H., Penido, C., Henriques, M. G. M. O., Varotti, F. P. & Krettli, A. U. (2009). Eur. J. Med. Chem. 44, 1363–1368.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationForoumadi, A., Emami, S., Mansouri, S., Javidnia, A., Saeid-Adeli, N., Shirazi, F. H. & Shafiee, A. (2007). Eur. J. Med. Chem. 42, 985–992.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPenjišević, J., Šukalović, V., Andrić, D., Kostić-Rajačić, S., Šoškić, V. & Roglić, G. (2007). Arch. Pharm. Chem. Life Sci. 340, 456–465.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmits, R. A., Lim, H. D., Hanzer, A., Zuiderveld, O. P., Guaita, E., Adami, M., Coruzzi, G., Leurs, R. & Esch, I. J. P. (2008). J. Med. Chem. 51, 2457–2467.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUpadhayaya, R. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225–2238.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds