organic compounds
1,1′-(4,4′-Bipiperidine-1,1′-diyl)bis(2,2,2-trifluoroethanone)
aDepartment of Chemistry, University of Oslo, Oslo, Norway
*Correspondence e-mail: c.h.gorbitz@kjemi.uio.no
The title compound, C14H18F6N2O2, has a central center of symmetry with both piperidine rings occurring in regular chair conformations. Even though the structure is fairly compact with no sizable voids, the shortest H⋯O distance is as long as 2.58 Å.
Related literature
For applications of and structures related to 4,4′-bipiperidine compounds, see: Medina et al. (1991); Li et al. (2009); Wang et al. (2007); Melchiorre et al. (2001); Adams et al. (2006); Angeloni & Orpen (2001); De las Casas Engel et al. (2010). For a related synthesis, see: Schenck et al. (2004). For interpretation of C—H⋯F bond configurations, see: Shimoni & Glusker (1994). For the use of a large specimen for data collection, see: Görbitz (1999).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811022434/ng5179sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811022434/ng5179Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811022434/ng5179Isup3.cml
The compound (I) was prepared by the procedure reported for piperidine by Schenck et al. (2004). The 4,4'-bipiperidyl dihydrochloride (0.5 g, 2.07 mmol) and triethyl amine (1.2 ml, 8.6 mmol) mixed together at 0 °C in 20 ml of dry diethyl ether, stirred the mixture for 10 min. and added trifluoro acetic anhydride (0.61 ml, 4.3 mmol) dropwise, continued stirring at room temperature for 3 h., added 1 ml of 2M HCl and stirred for 10 min., filtered the solid residue and washed with fresh diethyl ether.
The highly stable X-ray quality crystals were obtained by slow evaporation of dichloromethane. A rather large specimen (maximum dimension 1.00 mm) was used for data collection to get high diffraction intensitites. Previous investigations indicate that this does not represent a problem for a light-atom-only structure (see Görbitz, 1999).
The hydrogen atoms were placed at calculated position with C—H = 0.99 Å for CH2 and 1.00 Å for CH. For all H atoms Uiso(H) values were fixed at 1.2Ueq of the carrier atom.
Data collection: APEX2 (Bruker, 2007); cell
SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C14H18F6N2O2 | Z = 1 |
Mr = 360.30 | F(000) = 186 |
Triclinic, P1 | Dx = 1.590 Mg m−3 |
Hall symbol: -P 1 | Melting point: 397 K |
a = 6.6825 (12) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 6.7350 (12) Å | Cell parameters from 2545 reflections |
c = 9.3089 (16) Å | θ = 2.4–28.3° |
α = 99.952 (2)° | µ = 0.16 mm−1 |
β = 108.564 (2)° | T = 105 K |
γ = 101.542 (2)° | Rods, colourless |
V = 376.30 (12) Å3 | 1.00 × 0.50 × 0.25 mm |
Bruker APEXII CCD diffractometer | 1731 independent reflections |
Radiation source: fine-focus sealed tube | 1586 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.009 |
Detector resolution: 8.3 pixels mm-1 | θmax = 28.6°, θmin = 2.4° |
Sets of exposures each taken over 0.5° ω rotation scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | k = −8→8 |
Tmin = 0.921, Tmax = 0.962 | l = −12→12 |
3303 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0398P)2 + 0.1258P] where P = (Fo2 + 2Fc2)/3 |
1731 reflections | (Δ/σ)max = 0.008 |
109 parameters | Δρmax = 0.39 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C14H18F6N2O2 | γ = 101.542 (2)° |
Mr = 360.30 | V = 376.30 (12) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.6825 (12) Å | Mo Kα radiation |
b = 6.7350 (12) Å | µ = 0.16 mm−1 |
c = 9.3089 (16) Å | T = 105 K |
α = 99.952 (2)° | 1.00 × 0.50 × 0.25 mm |
β = 108.564 (2)° |
Bruker APEXII CCD diffractometer | 1731 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 1586 reflections with I > 2σ(I) |
Tmin = 0.921, Tmax = 0.962 | Rint = 0.009 |
3303 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.39 e Å−3 |
1731 reflections | Δρmin = −0.23 e Å−3 |
109 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
F1 | 0.11060 (12) | 0.31663 (10) | 0.84127 (9) | 0.03113 (19) | |
F2 | 0.00855 (11) | 0.51373 (11) | 0.68885 (8) | 0.02834 (18) | |
F3 | 0.13374 (10) | 0.63747 (10) | 0.93992 (7) | 0.02236 (16) | |
O1 | 0.49112 (14) | 0.43556 (12) | 0.82275 (10) | 0.02475 (19) | |
N1 | 0.47091 (14) | 0.76768 (13) | 0.81595 (10) | 0.01700 (19) | |
C2 | 0.68525 (17) | 0.82626 (17) | 0.80093 (12) | 0.0199 (2) | |
H21 | 0.7640 | 0.7193 | 0.8255 | 0.024* | |
H22 | 0.7745 | 0.9622 | 0.8764 | 0.024* | |
C3 | 0.65544 (17) | 0.84357 (16) | 0.63442 (12) | 0.0186 (2) | |
H31 | 0.5798 | 0.7036 | 0.5607 | 0.022* | |
H32 | 0.8014 | 0.8906 | 0.6274 | 0.022* | |
C4 | 0.52192 (16) | 0.99793 (15) | 0.58605 (11) | 0.0155 (2) | |
H41 | 0.6099 | 1.1413 | 0.6534 | 0.019* | |
C5 | 0.30751 (16) | 0.94359 (15) | 0.61687 (11) | 0.0166 (2) | |
H51 | 0.2321 | 1.0545 | 0.5987 | 0.020* | |
H52 | 0.2099 | 0.8101 | 0.5418 | 0.020* | |
C6 | 0.34705 (17) | 0.92258 (15) | 0.78370 (12) | 0.0171 (2) | |
H61 | 0.4304 | 1.0600 | 0.8592 | 0.021* | |
H62 | 0.2047 | 0.8779 | 0.7965 | 0.021* | |
C7 | 0.39316 (17) | 0.57031 (16) | 0.82058 (11) | 0.0176 (2) | |
C8 | 0.15978 (18) | 0.51030 (16) | 0.82412 (13) | 0.0210 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0357 (4) | 0.0179 (3) | 0.0457 (4) | 0.0046 (3) | 0.0226 (3) | 0.0114 (3) |
F2 | 0.0223 (3) | 0.0307 (4) | 0.0252 (3) | 0.0026 (3) | 0.0040 (3) | 0.0043 (3) |
F3 | 0.0247 (3) | 0.0240 (3) | 0.0250 (3) | 0.0098 (3) | 0.0148 (3) | 0.0082 (3) |
O1 | 0.0318 (4) | 0.0201 (4) | 0.0305 (4) | 0.0140 (3) | 0.0164 (4) | 0.0093 (3) |
N1 | 0.0180 (4) | 0.0177 (4) | 0.0194 (4) | 0.0078 (3) | 0.0087 (3) | 0.0080 (3) |
C2 | 0.0169 (5) | 0.0246 (5) | 0.0218 (5) | 0.0080 (4) | 0.0078 (4) | 0.0110 (4) |
C3 | 0.0184 (5) | 0.0217 (5) | 0.0207 (5) | 0.0093 (4) | 0.0093 (4) | 0.0095 (4) |
C4 | 0.0164 (4) | 0.0152 (4) | 0.0163 (5) | 0.0055 (4) | 0.0065 (4) | 0.0052 (4) |
C5 | 0.0175 (5) | 0.0175 (4) | 0.0174 (5) | 0.0073 (4) | 0.0072 (4) | 0.0063 (4) |
C6 | 0.0211 (5) | 0.0160 (4) | 0.0185 (5) | 0.0090 (4) | 0.0093 (4) | 0.0065 (4) |
C7 | 0.0218 (5) | 0.0174 (5) | 0.0157 (4) | 0.0070 (4) | 0.0086 (4) | 0.0043 (4) |
C8 | 0.0238 (5) | 0.0171 (5) | 0.0233 (5) | 0.0053 (4) | 0.0103 (4) | 0.0058 (4) |
F1—C8 | 1.3299 (12) | C3—H31 | 0.9900 |
F2—C8 | 1.3478 (13) | C3—H32 | 0.9900 |
F3—C8 | 1.3363 (12) | C4—C5 | 1.5354 (14) |
O1—C7 | 1.2199 (13) | C4—C4i | 1.5404 (19) |
N1—C7 | 1.3403 (13) | C4—H41 | 1.0000 |
N1—C2 | 1.4654 (13) | C5—C6 | 1.5268 (13) |
N1—C6 | 1.4694 (12) | C5—H51 | 0.9900 |
C2—C3 | 1.5267 (14) | C5—H52 | 0.9900 |
C2—H21 | 0.9900 | C6—H61 | 0.9900 |
C2—H22 | 0.9900 | C6—H62 | 0.9900 |
C3—C4 | 1.5352 (13) | C7—C8 | 1.5433 (15) |
C7—N1—C2 | 118.28 (8) | C6—C5—C4 | 112.24 (8) |
C7—N1—C6 | 127.41 (9) | C6—C5—H51 | 109.2 |
C2—N1—C6 | 112.38 (8) | C4—C5—H51 | 109.2 |
N1—C2—C3 | 110.03 (8) | C6—C5—H52 | 109.2 |
N1—C2—H21 | 109.7 | C4—C5—H52 | 109.2 |
C3—C2—H21 | 109.7 | H51—C5—H52 | 107.9 |
N1—C2—H22 | 109.7 | N1—C6—C5 | 109.91 (8) |
C3—C2—H22 | 109.7 | N1—C6—H61 | 109.7 |
H21—C2—H22 | 108.2 | C5—C6—H61 | 109.7 |
C2—C3—C4 | 111.99 (8) | N1—C6—H62 | 109.7 |
C2—C3—H31 | 109.2 | C5—C6—H62 | 109.7 |
C4—C3—H31 | 109.2 | H61—C6—H62 | 108.2 |
C2—C3—H32 | 109.2 | O1—C7—N1 | 125.64 (10) |
C4—C3—H32 | 109.2 | O1—C7—C8 | 117.66 (9) |
H31—C3—H32 | 107.9 | N1—C7—C8 | 116.70 (9) |
C5—C4—C3 | 109.77 (8) | F1—C8—F3 | 107.55 (8) |
C5—C4—C4i | 111.59 (10) | F1—C8—F2 | 107.07 (9) |
C3—C4—C4i | 111.60 (10) | F3—C8—F2 | 107.07 (9) |
C5—C4—H41 | 107.9 | F1—C8—C7 | 110.32 (9) |
C3—C4—H41 | 107.9 | F3—C8—C7 | 113.47 (9) |
C4i—C4—H41 | 107.9 | F2—C8—C7 | 111.08 (8) |
C7—N1—C2—C3 | 104.98 (10) | C2—N1—C7—O1 | 4.65 (15) |
C6—N1—C2—C3 | −60.38 (11) | C6—N1—C7—O1 | 167.54 (10) |
N1—C2—C3—C4 | 55.87 (11) | C2—N1—C7—C8 | −175.62 (8) |
C2—C3—C4—C5 | −51.51 (11) | C6—N1—C7—C8 | −12.72 (15) |
C2—C3—C4—C4i | −175.77 (10) | O1—C7—C8—F1 | 4.75 (13) |
C3—C4—C5—C6 | 51.41 (11) | N1—C7—C8—F1 | −175.01 (8) |
C4i—C4—C5—C6 | 175.67 (9) | O1—C7—C8—F3 | 125.51 (10) |
C7—N1—C6—C5 | −103.67 (11) | N1—C7—C8—F3 | −54.25 (12) |
C2—N1—C6—C5 | 60.06 (11) | O1—C7—C8—F2 | −113.81 (10) |
C4—C5—C6—N1 | −55.39 (11) | N1—C7—C8—F2 | 66.43 (12) |
Symmetry code: (i) −x+1, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C14H18F6N2O2 |
Mr | 360.30 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 105 |
a, b, c (Å) | 6.6825 (12), 6.7350 (12), 9.3089 (16) |
α, β, γ (°) | 99.952 (2), 108.564 (2), 101.542 (2) |
V (Å3) | 376.30 (12) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.16 |
Crystal size (mm) | 1.00 × 0.50 × 0.25 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.921, 0.962 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3303, 1731, 1586 |
Rint | 0.009 |
(sin θ/λ)max (Å−1) | 0.674 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.080, 1.06 |
No. of reflections | 1731 |
No. of parameters | 109 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.39, −0.23 |
Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXTL (Sheldrick, 2008).
References
Adams, C. J., Crawford, P. C., Orpen, A. G. & Podesta, T. J. (2006). Dalton Trans. pp. 4078–4092. Web of Science CSD CrossRef PubMed Google Scholar
Angeloni, A. & Orpen, A. G. (2001). Chem. Commun. pp. 343–344. Web of Science CSD CrossRef Google Scholar
Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
De las Casas Engel, T., Lora Maroto, B. & De la Moya Cerero, S. (2010). Eur. J. Org. Chem. 9, 1717–1727. CrossRef Google Scholar
Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, J., Wang, G., Shi, Z., Yang, M. & Luck, R. L. (2009). Struct. Chem. 20, 869–876. CrossRef CAS Google Scholar
Medina, J., Li, C., Bott, S. G., Atwood, J. L. & Gokel, G. W. (1991). J. Am. Chem. Soc. 113, 366–361. CrossRef CAS Google Scholar
Melchiorre, C., Bolognesi, M. L., Budriesi, R., Ghelardini, C., Chiarini, A., Minarini, A., Rosini, M., Tumiatti, V. & Wade, E. J. (2001). J. Med. Chem. 44, 4035–4038. Web of Science CrossRef PubMed CAS Google Scholar
Schenck, H. A., Lenkowski, P. W., Choudhury-Mukherjee, I., Ko, S.-H., Stables, J. P., Patel, M. K. & Browna, M. L. (2004). Bioorg. Med. Chem. 12, 979–993. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shimoni, L. & Glusker, J. P. (1994). Struct. Chem. 5, 383–397. CrossRef CAS Web of Science Google Scholar
Wang, W., Yamnitz, C. R. & Gokel, G. W. (2007). Heterocycles, 73, 825–839. PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The structures containing 4,4'-bipiperidine scaffold attract more interest as molecular spacer for sustaining functional diversity, which finds different applications in materials chemistry (Wang et al., 2007; Medina et al., 1991; Li et al., 2009; Adams et al., 2006; Angeloni & Orpen, 2001), Organocatalysis (De las Casas Engel et al., 2010) and pharmaceutical development (Melchiorre et al., 2001).
The asymmetric unit contain one half of the N,N'-di-trifluoroacetyl-4,4'-bipiperidine molecule. The molecular structure is shown in Fig. 1. The intermolecular interactions between –C—H···F–, –F···F–, C=O···F–, C—H ··· O=C and π ···O=C leading to the supramolecular three-dimensional crystal packing.
In the significant –C—H···F– interactions, the fluorine atom acts as an H-bond acceptor. The distances between –H···F– nearly 2.572 Å shows important and binding interactions are mainly electrostatic. The angles –C—H···F-(169.03 & 147.63 °) are linear, indicates repulsive interactions (Shimoni & Glusker, 1994).