organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-(4,4′-Bi­piperidine-1,1′-di­yl)bis­­(2,2,2-tri­fluoro­ethanone)

aDepartment of Chemistry, University of Oslo, Oslo, Norway
*Correspondence e-mail: c.h.gorbitz@kjemi.uio.no

(Received 6 June 2011; accepted 9 June 2011; online 18 June 2011)

The title compound, C14H18F6N2O2, has a central center of symmetry with both piperidine rings occurring in regular chair conformations. Even though the structure is fairly compact with no sizable voids, the shortest H⋯O distance is as long as 2.58 Å.

Related literature

For applications of and structures related to 4,4′-bipiperidine compounds, see: Medina et al. (1991[Medina, J., Li, C., Bott, S. G., Atwood, J. L. & Gokel, G. W. (1991). J. Am. Chem. Soc. 113, 366-361.]); Li et al. (2009[Li, J., Wang, G., Shi, Z., Yang, M. & Luck, R. L. (2009). Struct. Chem. 20, 869-876.]); Wang et al. (2007[Wang, W., Yamnitz, C. R. & Gokel, G. W. (2007). Heterocycles, 73, 825-839.]); Melchiorre et al. (2001[Melchiorre, C., Bolognesi, M. L., Budriesi, R., Ghelardini, C., Chiarini, A., Minarini, A., Rosini, M., Tumiatti, V. & Wade, E. J. (2001). J. Med. Chem. 44, 4035-4038.]); Adams et al. (2006[Adams, C. J., Crawford, P. C., Orpen, A. G. & Podesta, T. J. (2006). Dalton Trans. pp. 4078-4092.]); Angeloni & Orpen (2001[Angeloni, A. & Orpen, A. G. (2001). Chem. Commun. pp. 343-344.]); De las Casas Engel et al. (2010[De las Casas Engel, T., Lora Maroto, B. & De la Moya Cerero, S. (2010). Eur. J. Org. Chem. 9, 1717-1727.]). For a related synthesis, see: Schenck et al. (2004[Schenck, H. A., Lenkowski, P. W., Choudhury-Mukherjee, I., Ko, S.-H., Stables, J. P., Patel, M. K. & Browna, M. L. (2004). Bioorg. Med. Chem. 12, 979-993.]). For inter­pretation of C—H⋯F bond configurations, see: Shimoni & Glusker (1994[Shimoni, L. & Glusker, J. P. (1994). Struct. Chem. 5, 383-397.]). For the use of a large specimen for data collection, see: Görbitz (1999[Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18F6N2O2

  • Mr = 360.30

  • Triclinic, [P \overline 1]

  • a = 6.6825 (12) Å

  • b = 6.7350 (12) Å

  • c = 9.3089 (16) Å

  • α = 99.952 (2)°

  • β = 108.564 (2)°

  • γ = 101.542 (2)°

  • V = 376.30 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 105 K

  • 1.00 × 0.50 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.921, Tmax = 0.962

  • 3303 measured reflections

  • 1731 independent reflections

  • 1586 reflections with I > 2σ(I)

  • Rint = 0.009

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.080

  • S = 1.06

  • 1731 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structures containing 4,4'-bipiperidine scaffold attract more interest as molecular spacer for sustaining functional diversity, which finds different applications in materials chemistry (Wang et al., 2007; Medina et al., 1991; Li et al., 2009; Adams et al., 2006; Angeloni & Orpen, 2001), Organocatalysis (De las Casas Engel et al., 2010) and pharmaceutical development (Melchiorre et al., 2001).

The asymmetric unit contain one half of the N,N'-di-trifluoroacetyl-4,4'-bipiperidine molecule. The molecular structure is shown in Fig. 1. The intermolecular interactions between –C—H···F–, –F···F–, C=O···F–, C—H ··· O=C and π ···O=C leading to the supramolecular three-dimensional crystal packing.

In the significant –C—H···F– interactions, the fluorine atom acts as an H-bond acceptor. The distances between –H···F– nearly 2.572 Å shows important and binding interactions are mainly electrostatic. The angles –C—H···F-(169.03 & 147.63 °) are linear, indicates repulsive interactions (Shimoni & Glusker, 1994).

Related literature top

For applications and related structures of 4,4'-bipiperidine compounds, see: Medina et al. (1991); Li et al. (2009); Wang et al. (2007); Melchiorre et al. (2001); Adams et al. (2006); Angeloni & Orpen (2001); De las Casas Engel et al. (2010). For a related synthesis, see: Schenck et al. (2004). For interpretation of C—H···F bond configurations, see: Shimoni & Glusker (1994). For the use of a large specimen for data collection, see: Görbitz (1999).

Experimental top

The compound (I) was prepared by the procedure reported for piperidine by Schenck et al. (2004). The 4,4'-bipiperidyl dihydrochloride (0.5 g, 2.07 mmol) and triethyl amine (1.2 ml, 8.6 mmol) mixed together at 0 °C in 20 ml of dry diethyl ether, stirred the mixture for 10 min. and added trifluoro acetic anhydride (0.61 ml, 4.3 mmol) dropwise, continued stirring at room temperature for 3 h., added 1 ml of 2M HCl and stirred for 10 min., filtered the solid residue and washed with fresh diethyl ether.

The highly stable X-ray quality crystals were obtained by slow evaporation of dichloromethane. A rather large specimen (maximum dimension 1.00 mm) was used for data collection to get high diffraction intensitites. Previous investigations indicate that this does not represent a problem for a light-atom-only structure (see Görbitz, 1999).

Refinement top

The hydrogen atoms were placed at calculated position with C—H = 0.99 Å for CH2 and 1.00 Å for CH. For all H atoms Uiso(H) values were fixed at 1.2Ueq of the carrier atom.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level; H atoms are spheres of arbitrary size.
[Figure 2] Fig. 2. The unit cell and three-dimensional crystal packing of (I) viewed approximately along the a-axis. Hydrogen atoms have been left out for clarity.
1,1'-(4,4'-Bipiperidine-1,1'-diyl)bis(2,2,2-trifluoroethanone) top
Crystal data top
C14H18F6N2O2Z = 1
Mr = 360.30F(000) = 186
Triclinic, P1Dx = 1.590 Mg m3
Hall symbol: -P 1Melting point: 397 K
a = 6.6825 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.7350 (12) ÅCell parameters from 2545 reflections
c = 9.3089 (16) Åθ = 2.4–28.3°
α = 99.952 (2)°µ = 0.16 mm1
β = 108.564 (2)°T = 105 K
γ = 101.542 (2)°Rods, colourless
V = 376.30 (12) Å31.00 × 0.50 × 0.25 mm
Data collection top
Bruker APEXII CCD
diffractometer
1731 independent reflections
Radiation source: fine-focus sealed tube1586 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.009
Detector resolution: 8.3 pixels mm-1θmax = 28.6°, θmin = 2.4°
Sets of exposures each taken over 0.5° ω rotation scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
k = 88
Tmin = 0.921, Tmax = 0.962l = 1212
3303 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0398P)2 + 0.1258P]
where P = (Fo2 + 2Fc2)/3
1731 reflections(Δ/σ)max = 0.008
109 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C14H18F6N2O2γ = 101.542 (2)°
Mr = 360.30V = 376.30 (12) Å3
Triclinic, P1Z = 1
a = 6.6825 (12) ÅMo Kα radiation
b = 6.7350 (12) ŵ = 0.16 mm1
c = 9.3089 (16) ÅT = 105 K
α = 99.952 (2)°1.00 × 0.50 × 0.25 mm
β = 108.564 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1731 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1586 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.962Rint = 0.009
3303 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.06Δρmax = 0.39 e Å3
1731 reflectionsΔρmin = 0.23 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.11060 (12)0.31663 (10)0.84127 (9)0.03113 (19)
F20.00855 (11)0.51373 (11)0.68885 (8)0.02834 (18)
F30.13374 (10)0.63747 (10)0.93992 (7)0.02236 (16)
O10.49112 (14)0.43556 (12)0.82275 (10)0.02475 (19)
N10.47091 (14)0.76768 (13)0.81595 (10)0.01700 (19)
C20.68525 (17)0.82626 (17)0.80093 (12)0.0199 (2)
H210.76400.71930.82550.024*
H220.77450.96220.87640.024*
C30.65544 (17)0.84357 (16)0.63442 (12)0.0186 (2)
H310.57980.70360.56070.022*
H320.80140.89060.62740.022*
C40.52192 (16)0.99793 (15)0.58605 (11)0.0155 (2)
H410.60991.14130.65340.019*
C50.30751 (16)0.94359 (15)0.61687 (11)0.0166 (2)
H510.23211.05450.59870.020*
H520.20990.81010.54180.020*
C60.34705 (17)0.92258 (15)0.78370 (12)0.0171 (2)
H610.43041.06000.85920.021*
H620.20470.87790.79650.021*
C70.39316 (17)0.57031 (16)0.82058 (11)0.0176 (2)
C80.15978 (18)0.51030 (16)0.82412 (13)0.0210 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0357 (4)0.0179 (3)0.0457 (4)0.0046 (3)0.0226 (3)0.0114 (3)
F20.0223 (3)0.0307 (4)0.0252 (3)0.0026 (3)0.0040 (3)0.0043 (3)
F30.0247 (3)0.0240 (3)0.0250 (3)0.0098 (3)0.0148 (3)0.0082 (3)
O10.0318 (4)0.0201 (4)0.0305 (4)0.0140 (3)0.0164 (4)0.0093 (3)
N10.0180 (4)0.0177 (4)0.0194 (4)0.0078 (3)0.0087 (3)0.0080 (3)
C20.0169 (5)0.0246 (5)0.0218 (5)0.0080 (4)0.0078 (4)0.0110 (4)
C30.0184 (5)0.0217 (5)0.0207 (5)0.0093 (4)0.0093 (4)0.0095 (4)
C40.0164 (4)0.0152 (4)0.0163 (5)0.0055 (4)0.0065 (4)0.0052 (4)
C50.0175 (5)0.0175 (4)0.0174 (5)0.0073 (4)0.0072 (4)0.0063 (4)
C60.0211 (5)0.0160 (4)0.0185 (5)0.0090 (4)0.0093 (4)0.0065 (4)
C70.0218 (5)0.0174 (5)0.0157 (4)0.0070 (4)0.0086 (4)0.0043 (4)
C80.0238 (5)0.0171 (5)0.0233 (5)0.0053 (4)0.0103 (4)0.0058 (4)
Geometric parameters (Å, º) top
F1—C81.3299 (12)C3—H310.9900
F2—C81.3478 (13)C3—H320.9900
F3—C81.3363 (12)C4—C51.5354 (14)
O1—C71.2199 (13)C4—C4i1.5404 (19)
N1—C71.3403 (13)C4—H411.0000
N1—C21.4654 (13)C5—C61.5268 (13)
N1—C61.4694 (12)C5—H510.9900
C2—C31.5267 (14)C5—H520.9900
C2—H210.9900C6—H610.9900
C2—H220.9900C6—H620.9900
C3—C41.5352 (13)C7—C81.5433 (15)
C7—N1—C2118.28 (8)C6—C5—C4112.24 (8)
C7—N1—C6127.41 (9)C6—C5—H51109.2
C2—N1—C6112.38 (8)C4—C5—H51109.2
N1—C2—C3110.03 (8)C6—C5—H52109.2
N1—C2—H21109.7C4—C5—H52109.2
C3—C2—H21109.7H51—C5—H52107.9
N1—C2—H22109.7N1—C6—C5109.91 (8)
C3—C2—H22109.7N1—C6—H61109.7
H21—C2—H22108.2C5—C6—H61109.7
C2—C3—C4111.99 (8)N1—C6—H62109.7
C2—C3—H31109.2C5—C6—H62109.7
C4—C3—H31109.2H61—C6—H62108.2
C2—C3—H32109.2O1—C7—N1125.64 (10)
C4—C3—H32109.2O1—C7—C8117.66 (9)
H31—C3—H32107.9N1—C7—C8116.70 (9)
C5—C4—C3109.77 (8)F1—C8—F3107.55 (8)
C5—C4—C4i111.59 (10)F1—C8—F2107.07 (9)
C3—C4—C4i111.60 (10)F3—C8—F2107.07 (9)
C5—C4—H41107.9F1—C8—C7110.32 (9)
C3—C4—H41107.9F3—C8—C7113.47 (9)
C4i—C4—H41107.9F2—C8—C7111.08 (8)
C7—N1—C2—C3104.98 (10)C2—N1—C7—O14.65 (15)
C6—N1—C2—C360.38 (11)C6—N1—C7—O1167.54 (10)
N1—C2—C3—C455.87 (11)C2—N1—C7—C8175.62 (8)
C2—C3—C4—C551.51 (11)C6—N1—C7—C812.72 (15)
C2—C3—C4—C4i175.77 (10)O1—C7—C8—F14.75 (13)
C3—C4—C5—C651.41 (11)N1—C7—C8—F1175.01 (8)
C4i—C4—C5—C6175.67 (9)O1—C7—C8—F3125.51 (10)
C7—N1—C6—C5103.67 (11)N1—C7—C8—F354.25 (12)
C2—N1—C6—C560.06 (11)O1—C7—C8—F2113.81 (10)
C4—C5—C6—N155.39 (11)N1—C7—C8—F266.43 (12)
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC14H18F6N2O2
Mr360.30
Crystal system, space groupTriclinic, P1
Temperature (K)105
a, b, c (Å)6.6825 (12), 6.7350 (12), 9.3089 (16)
α, β, γ (°)99.952 (2), 108.564 (2), 101.542 (2)
V3)376.30 (12)
Z1
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)1.00 × 0.50 × 0.25
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.921, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
3303, 1731, 1586
Rint0.009
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.080, 1.06
No. of reflections1731
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.23

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXTL (Sheldrick, 2008).

 

References

First citationAdams, C. J., Crawford, P. C., Orpen, A. G. & Podesta, T. J. (2006). Dalton Trans. pp. 4078–4092.  Web of Science CSD CrossRef PubMed Google Scholar
First citationAngeloni, A. & Orpen, A. G. (2001). Chem. Commun. pp. 343–344.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe las Casas Engel, T., Lora Maroto, B. & De la Moya Cerero, S. (2010). Eur. J. Org. Chem. 9, 1717–1727.  CrossRef Google Scholar
First citationGörbitz, C. H. (1999). Acta Cryst. B55, 1090–1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J., Wang, G., Shi, Z., Yang, M. & Luck, R. L. (2009). Struct. Chem. 20, 869–876.  CrossRef CAS Google Scholar
First citationMedina, J., Li, C., Bott, S. G., Atwood, J. L. & Gokel, G. W. (1991). J. Am. Chem. Soc. 113, 366–361.  CrossRef CAS Google Scholar
First citationMelchiorre, C., Bolognesi, M. L., Budriesi, R., Ghelardini, C., Chiarini, A., Minarini, A., Rosini, M., Tumiatti, V. & Wade, E. J. (2001). J. Med. Chem. 44, 4035–4038.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchenck, H. A., Lenkowski, P. W., Choudhury-Mukherjee, I., Ko, S.-H., Stables, J. P., Patel, M. K. & Browna, M. L. (2004). Bioorg. Med. Chem. 12, 979–993.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimoni, L. & Glusker, J. P. (1994). Struct. Chem. 5, 383–397.  CrossRef CAS Web of Science Google Scholar
First citationWang, W., Yamnitz, C. R. & Gokel, G. W. (2007). Heterocycles, 73, 825–839.  PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds