metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(3-methyl­pyridine-κN)bis­­(thio­cyanato-κN)zinc

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Strasse 2, D-24098 Kiel, Germany
*Correspondence e-mail: jboeckmann@ac.uni-kiel.de

(Received 15 June 2011; accepted 22 June 2011; online 30 June 2011)

The asymmetric unit of the title compound, [Zn(NCS)2(C6H7N)2], consists of one Zn2+ cation and two thio­cyanate anions, all situated on special positions with site symmetry .m., and one 3-methyl­pyridine ligand. The zinc cation is coordinated by four N atoms of two terminal N-bonded thio­cyanate anions and of two symmetry-related 3-methyl­pyridine co-ligands, defining a slightly distorted tetra­hedral coordination polyhedron.

Related literature

For background to the magnetic properties of Co(II) thio- or seleno­cyanate coordination polymers, see: Boeckmann & Näther (2010[Boeckmann, J. & Näther, C. (2010). Dalton Trans. pp. 11019-11026.], 2011[Boeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104-7106.]); Wöhlert et al. (2011[Wöhlert, S., Boeckmann, J., Wriedt, M. & Näther, C. (2011). Angew. Chem. doi:10.1002/ange.201007899.]). For isostructural and related compounds with different N-donor co-ligands and thio- or seleno­cyanate ligands, see: Bhosekar et al. (2010[Bhosekar, G., Boeckmann, J., Jess, I. & Näther, C. (2010). Z. Anorg. Allg. Chem. 636, 2595-2601.]); Boeckmann et al. (2011a[Boeckmann, J., Reinert, T. & Näther, C. (2011a). Z. Anorg. Allg. Chem. doi:10.1002/zaac.201100043.],b[Boeckmann, J., Reinert, T., Jess, I. & Näther, C. (2011b). Z. Anorg. Allg. Chem. doi:10.1002/zaac.201100111.],c[Boeckmann, J., Jess, I., Reinert, T. & Näther, C. (2011c). Inorg. Chem. Submitted.]); Taniguchi et al. (1987[Taniguchi, M., Sugita, Y. & Ouchi, A. (1987). Bull. Chem. Soc. Jpn, 60, 1321-1326.]); Wu (2004[Wu, C.-B. (2004). Acta Cryst. E60, m1490-m1491.]); Zhu et al. (2008[Zhu, L., Xu, D., Wang, X. & Yu, G. (2008). J. Chem. Crystallogr. 38, 609-612.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(NCS)2(C6H7N)2]

  • Mr = 367.78

  • Orthorhombic, P n m a

  • a = 8.1510 (4) Å

  • b = 13.7382 (5) Å

  • c = 15.0111 (6) Å

  • V = 1680.94 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.71 mm−1

  • T = 293 K

  • 0.13 × 0.11 × 0.08 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008)[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.] Tmin = 0.789, Tmax = 0.863

  • 23123 measured reflections

  • 2366 independent reflections

  • 1918 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.122

  • S = 1.14

  • 2366 reflections

  • 107 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N1 1.928 (4)
Zn1—N2 1.942 (4)
Zn1—N11 2.026 (2)
N1—Zn1—N2 119.51 (18)
N1—Zn1—N11 108.39 (8)
N2—Zn1—N11 106.32 (9)
N11i—Zn1—N11 107.34 (12)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z].

Data collection: X-AREA (Stoe & Cie, 2008)[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]; cell refinement: X-AREA[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]; data reduction: X-AREA[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, we have reported about the directed synthesis of one-dimensional and two-dimensional transition metal(II) thio- and selenocyanate coordination polymers with neutral N-donor co-ligands that were obtained by thermal decomposition reactions. The compounds with Co(II) are of special interest because several of them show a slow relaxation of the magnetization which is a rare and very interesting magnetic phenomenon (Boeckmann & Näther, 2010; Boeckmann & Näther, 2011; Wöhlert et al., 2011)). Following this synthetic procedure, powders of low crystallinity are frequently obtained and therefore their structures are difficult to elucidate. Structure determinations of these compounds are of special importance because in the case of coordination polymers containing cobalt(II), both octahedral and tetrahedral coordination polyhedra can occur in these structures. In this context we found out that diamagnetic zinc and cadmium compounds can easily be crystallized in solution and are very often isotypic to their paramagnetic analogues (Bhosekar et al., 2010; Boeckmann et al., 2011a; Boeckmann et al., 2011b; Boeckmann et al., 2011c; Taniguchi et al., 1987; Wu, 2004; Zhu, 2008). The structures of the paramagnetic counterparts can then simply be refined applying the Rietveld method. This is the reason why we have determined the crystal structure of the diamagnetic title compound, [bis(thiocyanato-κN)-bis(3-methylpyridine-κN)zinc].

In the crystal structure the zinc cations (site symmetry .m.) are bonded to four nitrogen atoms of two terminal thiocyanate anions (site symmetry .m.) and to two symmetry-related terminal 3-methylpyridine co-ligands within a slightly distorted tetrahedral coordination polyhedron (Fig. 1 and Tab.1). The discrete complexes are oppositely oriented into columns which spread along the crystallographic b axis (Fig. 2). These columns are further arranged in parallel along the crystallographic a and c axes into a three-dimensional packing.

Related literature top

For background to the magnetic properties of Co(II) thio- or selenocyanate coordination polymers, see: Boeckmann & Näther (2010, 2011); Wöhlert et al. (2011). For isostructural and related compounds with different N-donor co-ligands and thio- or selenocyanate ligands, see: Bhosekar et al. (2010); Boeckmann et al. (2011a,b,c); Taniguchi et al. (1987); Wu (2004); Zhu et al. (2008).

Experimental top

The title compound was prepared by the reaction of 90.0 mg Zn(NCS)2 (0.50 mmol) and 97.3 µL 3-methylpyridine (1.00 mmol) in 1.50 ml water at RT in a closed 3 ml snap cap vial. After three days colourless block like crystals of the title compound were obtained.

Refinement top

All H atoms were discernible in difference maps but were positioned with idealized geometry and were refined isotropically with Ueq(H) = 1.2Ueq(C) for aromatic H atoms and with Ueq(H) = 1.5Ueq(C) for aliphatic H atoms of the parent atom using a riding model with C—H = 0.93 Å (aromatic) and with C—H = 0.96 Å (aliphatic).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound, showing the coordination around Zn2+, with labelling and displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: i = x, -y + 1/2, z.]
[Figure 2] Fig. 2. : Packing diagram of the title compound with view along the crystallographic a axis (aqua = zinc; yellow = sulfur; blue = nitrogen; grey = carbon; light-grey = hydrogen).
Bis(3-methylpyridine-κN)bis(thiocyanato-κN)zinc top
Crystal data top
[Zn(NCS)2(C6H7N)2]F(000) = 752
Mr = 367.78Dx = 1.453 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 16444 reflections
a = 8.1510 (4) Åθ = 2.0–29.3°
b = 13.7382 (5) ŵ = 1.71 mm1
c = 15.0111 (6) ÅT = 293 K
V = 1680.94 (12) Å3Block, colourless
Z = 40.13 × 0.11 × 0.08 mm
Data collection top
Stoe IPDS-2
diffractometer
2366 independent reflections
Radiation source: fine-focus sealed tube1918 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 29.3°, θmin = 2.0°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 1111
Tmin = 0.789, Tmax = 0.863k = 1618
23123 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.3791P]
where P = (Fo2 + 2Fc2)/3
2366 reflections(Δ/σ)max < 0.001
107 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Zn(NCS)2(C6H7N)2]V = 1680.94 (12) Å3
Mr = 367.78Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 8.1510 (4) ŵ = 1.71 mm1
b = 13.7382 (5) ÅT = 293 K
c = 15.0111 (6) Å0.13 × 0.11 × 0.08 mm
Data collection top
Stoe IPDS-2
diffractometer
2366 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
1918 reflections with I > 2σ(I)
Tmin = 0.789, Tmax = 0.863Rint = 0.048
23123 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.14Δρmax = 0.66 e Å3
2366 reflectionsΔρmin = 0.39 e Å3
107 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.48061 (6)0.75000.49255 (3)0.05827 (17)
N10.4523 (5)0.75000.3651 (2)0.0754 (10)
C10.4513 (5)0.75000.2879 (3)0.0606 (9)
S10.44866 (18)0.75000.18058 (7)0.0784 (3)
N20.2888 (5)0.75000.5693 (3)0.0792 (10)
C20.1682 (5)0.75000.6084 (3)0.0663 (10)
S20.00054 (18)0.75000.66536 (11)0.1021 (5)
N110.6137 (3)0.63122 (14)0.52674 (13)0.0549 (5)
C110.6306 (3)0.60498 (19)0.61208 (16)0.0608 (6)
H110.57910.64260.65540.073*
C120.7202 (4)0.5254 (2)0.63937 (19)0.0662 (7)
C130.7916 (4)0.4695 (2)0.5739 (2)0.0737 (8)
H130.84990.41380.58920.088*
C140.7771 (5)0.4958 (2)0.4859 (2)0.0760 (9)
H140.82670.45880.44150.091*
C150.6884 (4)0.57729 (19)0.46463 (17)0.0642 (7)
H150.68000.59570.40520.077*
C160.7368 (5)0.5021 (3)0.7369 (2)0.0953 (12)
H16A0.78980.55530.76680.143*
H16B0.80140.44410.74400.143*
H16C0.63000.49200.76220.143*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0690 (3)0.0527 (2)0.0531 (2)0.0000.00324 (18)0.000
N10.089 (3)0.078 (2)0.0592 (18)0.0000.0136 (17)0.000
C10.066 (2)0.0520 (18)0.064 (2)0.0000.0087 (16)0.000
S10.1032 (9)0.0745 (7)0.0574 (5)0.0000.0054 (5)0.000
N20.082 (3)0.063 (2)0.092 (2)0.0000.019 (2)0.000
C20.076 (3)0.0442 (17)0.078 (2)0.0000.001 (2)0.000
S20.0739 (8)0.1173 (12)0.1150 (12)0.0000.0199 (7)0.000
N110.0666 (12)0.0479 (10)0.0501 (10)0.0036 (9)0.0028 (8)0.0000 (8)
C110.0740 (16)0.0564 (14)0.0519 (12)0.0030 (13)0.0015 (11)0.0003 (10)
C120.0725 (17)0.0607 (14)0.0655 (14)0.0130 (14)0.0139 (13)0.0114 (12)
C130.0741 (19)0.0554 (14)0.092 (2)0.0031 (14)0.0095 (16)0.0072 (14)
C140.090 (2)0.0624 (16)0.075 (2)0.0102 (15)0.0062 (15)0.0107 (13)
C150.0795 (18)0.0575 (14)0.0557 (13)0.0010 (13)0.0019 (12)0.0029 (11)
C160.113 (3)0.099 (3)0.074 (2)0.004 (2)0.020 (2)0.0275 (17)
Geometric parameters (Å, º) top
Zn1—N11.928 (4)C11—H110.9300
Zn1—N21.942 (4)C12—C131.377 (5)
Zn1—N11i2.026 (2)C12—C161.505 (4)
Zn1—N112.026 (2)C13—C141.374 (4)
N1—C11.158 (5)C13—H130.9300
C1—S11.611 (4)C14—C151.371 (4)
N2—C21.145 (5)C14—H140.9300
C2—S21.619 (5)C15—H150.9300
N11—C151.338 (3)C16—H16A0.9600
N11—C111.338 (3)C16—H16B0.9600
C11—C121.377 (4)C16—H16C0.9600
N1—Zn1—N2119.51 (18)C13—C12—C16122.6 (3)
N1—Zn1—N11i108.39 (9)C11—C12—C16120.4 (3)
N2—Zn1—N11i106.32 (9)C14—C13—C12120.2 (3)
N1—Zn1—N11108.39 (8)C14—C13—H13119.9
N2—Zn1—N11106.32 (9)C12—C13—H13119.9
N11i—Zn1—N11107.34 (12)C15—C14—C13118.9 (3)
C1—N1—Zn1173.6 (4)C15—C14—H14120.5
N1—C1—S1179.7 (4)C13—C14—H14120.5
C2—N2—Zn1174.5 (4)N11—C15—C14122.0 (3)
N2—C2—S2179.0 (4)N11—C15—H15119.0
C15—N11—C11118.1 (2)C14—C15—H15119.0
C15—N11—Zn1120.90 (17)C12—C16—H16A109.5
C11—N11—Zn1120.99 (17)C12—C16—H16B109.5
N11—C11—C12123.6 (3)H16A—C16—H16B109.5
N11—C11—H11118.2C12—C16—H16C109.5
C12—C11—H11118.2H16A—C16—H16C109.5
C13—C12—C11117.0 (3)H16B—C16—H16C109.5
Symmetry code: (i) x, y+3/2, z.

Experimental details

Crystal data
Chemical formula[Zn(NCS)2(C6H7N)2]
Mr367.78
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)8.1510 (4), 13.7382 (5), 15.0111 (6)
V3)1680.94 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.71
Crystal size (mm)0.13 × 0.11 × 0.08
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
Tmin, Tmax0.789, 0.863
No. of measured, independent and
observed [I > 2σ(I)] reflections
23123, 2366, 1918
Rint0.048
(sin θ/λ)max1)0.688
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.122, 1.14
No. of reflections2366
No. of parameters107
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.39

Computer programs: X-AREA (Stoe & Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011).

Selected geometric parameters (Å, º) top
Zn1—N11.928 (4)Zn1—N112.026 (2)
Zn1—N21.942 (4)
N1—Zn1—N2119.51 (18)N2—Zn1—N11106.32 (9)
N1—Zn1—N11108.39 (8)N11i—Zn1—N11107.34 (12)
Symmetry code: (i) x, y+3/2, z.
 

Acknowledgements

We gratefully acknowledge financial support by the DFG (project number NA 720/3–1) and the State of Schleswig–Holstein. We thank Professor Dr Wolfgang Bensch for the opportunity to use his experimental facilities. Special thanks go to Inke Jess for her support in single-crystal measurements.

References

First citationBhosekar, G., Boeckmann, J., Jess, I. & Näther, C. (2010). Z. Anorg. Allg. Chem. 636, 2595–2601.  CSD CrossRef CAS Google Scholar
First citationBoeckmann, J., Jess, I., Reinert, T. & Näther, C. (2011c). Inorg. Chem. Submitted.  Google Scholar
First citationBoeckmann, J. & Näther, C. (2010). Dalton Trans. pp. 11019–11026.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBoeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104–7106.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoeckmann, J., Reinert, T., Jess, I. & Näther, C. (2011b). Z. Anorg. Allg. Chem. doi:10.1002/zaac.201100111.  Google Scholar
First citationBoeckmann, J., Reinert, T. & Näther, C. (2011a). Z. Anorg. Allg. Chem. doi:10.1002/zaac.201100043.  Google Scholar
First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTaniguchi, M., Sugita, Y. & Ouchi, A. (1987). Bull. Chem. Soc. Jpn, 60, 1321–1326.  CrossRef CAS Web of Science Google Scholar
First citationWöhlert, S., Boeckmann, J., Wriedt, M. & Näther, C. (2011). Angew. Chem. doi:10.1002/ange.201007899.  Google Scholar
First citationWu, C.-B. (2004). Acta Cryst. E60, m1490–m1491.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, L., Xu, D., Wang, X. & Yu, G. (2008). J. Chem. Crystallogr. 38, 609–612.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds