metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ5-2,6-di­methyl­pyridine-3,5-di­carboxyl­ato)zinc]

aCollege of Chemistry, Chongqing Normal University, Chongqing 400047, People's Republic of China, and bCollege of Life Science, Chongqing Normal University, Chongqing 400047, People's Republic of China
*Correspondence e-mail: zmx0102@hotmail.com

(Received 18 June 2011; accepted 20 June 2011; online 25 June 2011)

In the polymeric title complex, [Zn(C9H7NO4)]n, the ZnII cation is located on a twofold rotation axis and is coordinated by five 2,6-dimethyl­pyridine-3,5-dicarboxyl­ate (mpdc) anions in a distorted ZnNO4 trigonal–bipyramidal geometry. The mpdc anion is also located on the twofold rotation axis and bridges five ZnII cations, forming the three-dimensional polymeric complex. Weak C—H⋯π inter­actions are present in the crystal structure.

Related literature

For a related structure, see: Huang et al. (2007[Huang, K.-L., He, Y.-T., Wang, D.-Q., Pan, W.-L. & Hu, C.-W. (2007). J. Mol. Struct. 832, 146-149.]). For background to metal-organic frameworks (MOFs), see: Long & Yaghi (2009[Long, J. R. & Yaghi, O. M. (2009). Chem. Soc. Rev. 38, 1213-1214.]); Zhao et al. (2003[Zhao, B., Cheng, P., Dai, Y., Cheng, C., Liao, D.-Z., Yan, S.-P., Jiang, Z.-H. & Wang, G.-L. (2003). Angew. Chem. Int. Ed. 42, 934-936.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C9H7NO4)]

  • Mr = 258.53

  • Monoclinic, C 2/c

  • a = 8.578 (7) Å

  • b = 14.016 (11) Å

  • c = 7.382 (7) Å

  • β = 112.176 (17)°

  • V = 821.9 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.98 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.16 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan]) Tmin = 0.469, Tmax = 0.647

  • 2615 measured reflections

  • 732 independent reflections

  • 709 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.067

  • S = 1.00

  • 732 reflections

  • 71 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 2.207 (3)
Zn1—O2i 1.977 (2)
Zn1—N1ii 2.089 (3)
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Table 2
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the pyridine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5CCgii 0.96 2.67 3.573 (4) 158
Symmetry code: (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2008[Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Recently, research on metal-organic frameworks (MOFs) has become of increasing interest (Long & Yaghi, 2009). However, it is still a great challenge to assemble a predicted structure because there are numerous influences that can play decisive roles on the structure and crystal packing. Fortunately, these uncertainties can be reduced by the use of well selected spacers that have the ability to aggregate metal ions into different secondary building units (Zhao et al., 2003). Herein we reports an interesting five-connected zeolite-like coordination polymer based on highly-substituted pyridinedicarboxylates.

The title compound is a three-dimensional framework built from Zn cations that are linked by mpdc anions. From this arrangement cavities are formed. Zn1 is coordinated by four oxygen atoms from four different CO2- groups of mpdc ligands and one pyridyl nitrogen atom from another mpdc ligand. The mpdc ligand bridges five different Zn atoms and favors the construction of the structure with zeolite-like topology.The topology of the title compound is identical with the reported [Cd(mpdc)]n (Huang et al., 2007), but the coordination sphere of cation, the binding mode of the carboxylate group and the synthesis condition are different.

The combination of the dramatic twists between two carboxylate groups in mpdc ligands results in the formation of the intersecting double-stranded helical chain comprised of [Zn(CO2)2]n (Zn atoms as nodes).

Related literature top

For a related structure, see: Huang et al. (2007). For background to metal-organic frameworks (MOFs), see: Long & Yaghi (2009); Zhao et al. (2003).

Experimental top

All chemicals were of reagent grade and used as purchased without further purification. A mixture of Zn(NO3)2.6H2O (450 mg, 1.5 mmol), H2mpdc (97.5 mg, 0.5 mmol), (Et)3N 0.07 mL and H2O 10 mL was sealed in a 25 ml stainless steel reactor with Teflon liner and directly heated to 180 °C for 3 days, and then cooled to room temperature. The crystal samples were washed with methanol to give the title compound in about 35% yield (based on H2mpdc ligand).

Refinement top

Constraint instruction 'delu 0.001 Zn1 O1' was used in the refinement. All H atoms were placed in geometrically idealized positions (C—H = 0.93 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for aromatic H atom.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The coordination environments of Zinc ions, showing 30% probability displacement ellipsoids and hydrogen atoms have been removed for clarity. Symmetry codes: (i) -x, -y, -z+1; (ii) -x + 1/2, -y + 1/2,-z + 1; (iii) -x, y, -z+1/2; (iv) x, -y, z - 1/2; (v) -x + 1, +y, -z + 3/2.
[Figure 2] Fig. 2. The presentation of the 3-D zeolite-like architecture. Methyl groups and hydrogen atoms have been removed for clarity. Polyhedra represent the ZnNO4 groups.
Poly[(µ5-2,6-dimethylpyridine-3,5-dicarboxylato)zinc] top
Crystal data top
[Zn(C9H7NO4)]F(000) = 520
Mr = 258.53Dx = 2.089 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 535 reflections
a = 8.578 (7) Åθ = 2.9–27.5°
b = 14.016 (11) ŵ = 2.98 mm1
c = 7.382 (7) ÅT = 293 K
β = 112.176 (17)°Prism, colorless
V = 821.9 (12) Å30.30 × 0.25 × 0.16 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
732 independent reflections
Radiation source: fine-focus sealed tube709 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1010
Tmin = 0.469, Tmax = 0.647k = 1416
2615 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.6817P]
where P = (Fo2 + 2Fc2)/3
732 reflections(Δ/σ)max < 0.001
71 parametersΔρmax = 0.50 e Å3
1 restraintΔρmin = 0.59 e Å3
Crystal data top
[Zn(C9H7NO4)]V = 821.9 (12) Å3
Mr = 258.53Z = 4
Monoclinic, C2/cMo Kα radiation
a = 8.578 (7) ŵ = 2.98 mm1
b = 14.016 (11) ÅT = 293 K
c = 7.382 (7) Å0.30 × 0.25 × 0.16 mm
β = 112.176 (17)°
Data collection top
Rigaku Mercury2
diffractometer
732 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
709 reflections with I > 2σ(I)
Tmin = 0.469, Tmax = 0.647Rint = 0.022
2615 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0231 restraint
wR(F2) = 0.067H-atom parameters constrained
S = 1.00Δρmax = 0.50 e Å3
732 reflectionsΔρmin = 0.59 e Å3
71 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.08158 (2)0.25000.01616 (18)
N10.50000.26938 (18)0.75000.0137 (5)
O10.0625 (2)0.09690 (11)0.5672 (2)0.0189 (4)
O20.20746 (19)0.00679 (11)0.7999 (2)0.0192 (4)
C10.1949 (3)0.06763 (15)0.6979 (3)0.0147 (5)
C20.3560 (3)0.12188 (16)0.7360 (3)0.0147 (5)
C30.50000.0730 (2)0.75000.0168 (7)
H30.50000.00660.75000.020*
C40.3618 (3)0.22210 (15)0.7464 (3)0.0137 (5)
C50.2202 (3)0.28064 (16)0.7589 (4)0.0195 (5)
H5A0.26440.32780.85960.029*
H5B0.14340.23990.78930.029*
H5C0.16210.31170.63580.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0108 (2)0.0106 (3)0.0269 (3)0.0000.00690 (17)0.000
N10.0128 (13)0.0115 (13)0.0166 (12)0.0000.0054 (10)0.000
O10.0143 (8)0.0178 (8)0.0228 (7)0.0007 (7)0.0050 (7)0.0013 (6)
O20.0146 (8)0.0135 (8)0.0277 (8)0.0012 (6)0.0061 (6)0.0048 (6)
C10.0143 (12)0.0124 (11)0.0202 (11)0.0012 (9)0.0095 (9)0.0039 (8)
C20.0145 (11)0.0121 (12)0.0175 (10)0.0004 (9)0.0058 (9)0.0007 (8)
C30.0161 (17)0.0107 (16)0.0226 (17)0.0000.0064 (14)0.000
C40.0111 (11)0.0133 (11)0.0165 (10)0.0011 (8)0.0049 (8)0.0001 (8)
C50.0160 (11)0.0150 (12)0.0302 (12)0.0005 (9)0.0118 (10)0.0021 (9)
Geometric parameters (Å, º) top
Zn1—O12.207 (3)O2—Zn1iii1.977 (2)
Zn1—O1i2.207 (3)C1—C21.507 (3)
Zn1—O2ii1.977 (2)C2—C31.382 (3)
Zn1—O2iii1.977 (2)C2—C41.407 (3)
Zn1—N1iv2.089 (3)C3—C2v1.382 (3)
N1—C41.349 (3)C3—H30.9300
N1—C4v1.349 (3)C4—C51.497 (3)
N1—Zn1iv2.089 (3)C5—H5A0.9600
O1—C11.250 (3)C5—H5B0.9600
O2—C11.267 (3)C5—H5C0.9600
O2iii—Zn1—O2ii115.94 (11)O2—C1—C2116.0 (2)
O2iii—Zn1—N1iv122.03 (5)C3—C2—C4118.6 (2)
O2ii—Zn1—N1iv122.03 (5)C3—C2—C1119.6 (2)
O2iii—Zn1—O195.17 (6)C4—C2—C1121.69 (19)
O2ii—Zn1—O190.75 (6)C2v—C3—C2120.5 (3)
N1iv—Zn1—O184.42 (4)C2v—C3—H3119.7
O2iii—Zn1—O1i90.75 (6)C2—C3—H3119.7
O2ii—Zn1—O1i95.17 (6)N1—C4—C2120.30 (19)
N1iv—Zn1—O1i84.42 (4)N1—C4—C5117.2 (2)
O1—Zn1—O1i168.83 (9)C2—C4—C5122.51 (19)
C4—N1—C4v121.2 (3)C4—C5—H5A109.5
C4—N1—Zn1iv119.41 (13)C4—C5—H5B109.5
C4v—N1—Zn1iv119.41 (13)H5A—C5—H5B109.5
C1—O1—Zn1124.94 (16)C4—C5—H5C109.5
C1—O2—Zn1iii117.23 (15)H5A—C5—H5C109.5
O1—C1—O2125.3 (2)H5B—C5—H5C109.5
O1—C1—C2118.7 (2)
O2iii—Zn1—O1—C1120.17 (19)O2—C1—C2—C4137.8 (2)
O2ii—Zn1—O1—C14.03 (18)C4—C2—C3—C2v3.21 (13)
N1iv—Zn1—O1—C1118.08 (18)C1—C2—C3—C2v173.1 (2)
O1i—Zn1—O1—C1118.08 (18)C4v—N1—C4—C23.33 (14)
Zn1—O1—C1—O2103.1 (2)Zn1iv—N1—C4—C2176.67 (14)
Zn1—O1—C1—C274.7 (2)C4v—N1—C4—C5175.2 (2)
Zn1iii—O2—C1—O10.8 (3)Zn1iv—N1—C4—C54.8 (2)
Zn1iii—O2—C1—C2178.63 (14)C3—C2—C4—N16.6 (3)
O1—C1—C2—C3131.9 (2)C1—C2—C4—N1169.61 (17)
O2—C1—C2—C346.1 (3)C3—C2—C4—C5171.85 (17)
O1—C1—C2—C444.2 (3)C1—C2—C4—C511.9 (3)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z1/2; (iii) x, y, z+1; (iv) x+1/2, y+1/2, z+1; (v) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the pyridine ring.
D—H···AD—HH···AD···AD—H···A
C5—H5C···Cgiv0.962.673.573 (4)158
Symmetry code: (iv) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C9H7NO4)]
Mr258.53
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)8.578 (7), 14.016 (11), 7.382 (7)
β (°) 112.176 (17)
V3)821.9 (12)
Z4
Radiation typeMo Kα
µ (mm1)2.98
Crystal size (mm)0.30 × 0.25 × 0.16
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.469, 0.647
No. of measured, independent and
observed [I > 2σ(I)] reflections
2615, 732, 709
Rint0.022
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.067, 1.00
No. of reflections732
No. of parameters71
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.59

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2008) and ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Selected bond lengths (Å) top
Zn1—O12.207 (3)Zn1—N1ii2.089 (3)
Zn1—O2i1.977 (2)
Symmetry codes: (i) x, y, z1/2; (ii) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the pyridine ring.
D—H···AD—HH···AD···AD—H···A
C5—H5C···Cgii0.962.673.573 (4)157.76
Symmetry code: (ii) x+1/2, y+1/2, z+1.
 

Acknowledgements

This work was supported by Science and Technology Projects of Chongqing Municipal Education Commission (KJ100602) and Chongqing Normal University Scientific Research Foundation Project (10XLZ005).

References

First citationBrandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHuang, K.-L., He, Y.-T., Wang, D.-Q., Pan, W.-L. & Hu, C.-W. (2007). J. Mol. Struct. 832, 146–149.  CrossRef CAS Google Scholar
First citationLong, J. R. & Yaghi, O. M. (2009). Chem. Soc. Rev. 38, 1213–1214.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, B., Cheng, P., Dai, Y., Cheng, C., Liao, D.-Z., Yan, S.-P., Jiang, Z.-H. & Wang, G.-L. (2003). Angew. Chem. Int. Ed. 42, 934–936.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds