organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5′-Methyl­sulfanyl-4′-oxo-7′-phenyl-3′,4′-di­hydro-1′H-spiro­[cyclo­hexane-1,2′-quinazoline]-8′-carbo­nitrile di­methyl­formamide monosolvate

aSchool of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, People's Republic of China, and bCollege of Chemical Engineering, Huaqiao University, Xiamen Fujian 362021, People's Republic of China
*Correspondence e-mail: jrli@bit.edu.cn

(Received 20 May 2011; accepted 6 July 2011; online 13 July 2011)

In the title compound, C21H21N3OS·C3H7NO, the carbonitrile mol­ecule is built up of two fused six-membered rings and one six-membered ring linked through a spiro C atom. The 1,3-diaza ring adopts an envelope conformation and the cyclo­hexane ring adopts a chair conformation. The dihedral angle between the aromatic rings is 46.7 (3)°. In the crystal, the components are linked by N—H⋯O hydrogen bonds.

Related literature

For medicinal and biological properties of dihydro­quinazolin-3H-4-one derivatives, see: Alagarsamy & Murugesan (2007[Alagarsamy, V. & Murugesan, S. (2007). Chem. Pharm. Bull. 55, 76-80.]); Wang et al. (2007[Wang, K., Kirichian, A. M., Al Aowad, A. F., Adelstein, S. J. & Kassis, A. I. (2007). Bioconjug. Chem. 18, 754-764.]); Jatav et al. (2008[Jatav, V., Kashaw, S. & Mishra, P. (2008). Med. Chem. Res. 17, 169-181.]); Markosyan et al. (2010[Markosyan, A. I., Dilanyan, S. V., Arsenyan, F. G., Sukasyan, R. S., Sarkisyan, I. S. & Garibdzhanyan, B. T. (2010). Pharm. Chem. J. 44, 111-114.]). For a related structure, see Zhang et al. (2008[Zhang, L., Li, J., Shi, D. & Chen, J. (2008). Acta Cryst. E64, o449.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21N3OS·C3H7NO

  • Mr = 436.56

  • Triclinic, [P \overline 1]

  • a = 9.415 (3) Å

  • b = 10.615 (3) Å

  • c = 12.037 (3) Å

  • α = 95.092 (3)°

  • β = 98.156 (4)°

  • γ = 109.833 (3)°

  • V = 1108.0 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 153 K

  • 0.31 × 0.31 × 0.12 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.947, Tmax = 0.979

  • 11758 measured reflections

  • 5754 independent reflections

  • 4274 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.117

  • S = 1.00

  • 5754 reflections

  • 291 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯N3i 0.838 (10) 2.328 (14) 3.120 (2) 157.96 (3)
N2—H21⋯O1ii 0.886 (10) 2.044 (18) 2.927 (3) 174.94 (3)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2008)[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]; cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The molecular structure of 5'-methylthio-4'-oxo-7'-phenyl-3',4'-dihydro-1'H-spiro[cyclohexane-1, 2'-quinazoline]-8'-carbonitrile(I) is built up with one six membered ring and two fused six membered rings and a six membered ring linked through a spiro C atom (Fig. 1). The ring of C1, C2, C3, C4, C5, C6 exists in an chair conformation, and the C6 atom displaced by 0.647 (6)Å from the ring of C1, C2, C4, C5 (planar within 0.019 (5) Å), while C3 atom displaced by 0.669 (8) Å. The 1,3-diaza ring exists in an envelope conformation, and the C6 atom displaced by 0.476 (5)Å from the rest of the atoms of the 1,3-diaza ring (planar within 0.013 (5) Å). The dihedral angle between the plane (C14, C15, C16, C17, C18, C19) and the plane (C8, C9, C10, C11, C12, C13) is 46.7 (3)°. The angle between C9, S1, C20 is 102.83 (8) Å. The geometry of the fused rings compares well with the related spiro[cyclopentane-1,2'(1'H)-quinazolin]-4'(3'H)-one] (Zhang et al., 2008). The crystal packing is stabilized by intermolecular N—H···O and N—H···N bonds.

Related literature top

For medicinal and biological properities of dihydroquinazolin-3H-4-one derivatives, see: Alagarsamy & Murugesan (2007); Wang et al. (2007); Jatav et al. (2008); Markosyan et al. (2010). For a related structure, see Zhang et al. (2008).

Experimental top

To a solution of cyclohexanone (3 ml) and sodium hydroxide (0.3 mmol) were added 3-amino-5-(methylthio)biphenyl-2,4-dicarbonitrile (0.1 mmol). The mixture was heated at 373 K for 2.0 h. The reaction mixture was cooled with ice water (20 ml) and then filtered to give the title compound. The product was recrystallizated from a mixed solvent (ethanol:N,N-dimethylformamide 1:3) to obtain colorless single crystals. M.p. 572–573 K. Spectra data: IR (KBr): 3317, 3219, 2933, 2216, 1650, 1585, 1550, 1413, 771, 709 cm-1. 1H-NMR (DMSO-d6, p.p.m.): 0.92–1.84 (10H, m, C5H10), 2.38 (3H, s, SCH3), 6.50(1H, s, NH), 6.61 (1H, s, ArH), 7.50–7.61 (5H, m, ArH), 8.29 (1H, s, NH). ESI-MS m/z: [M+H]+ 364.1. C21H21N3OS: calcd. % C 69.39, H 5.82, N 11.56; found % C 69.28, H 5.68, N 11.31.

Refinement top

H atoms bonded to C atoms were included in the calculated positions and refined as riding with Uiso(H)=1.2Ueq(C) or 1.5Ueq(C)(methyl). H atoms of NH group were located in difference Fourrier maps and refined inependently with Uiso(H)=1.5Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 50% probability ellipsoids
[Figure 2] Fig. 2. The crystal structure of (I), viewed along a axis
5'-Methylsulfanyl-4'-oxo-7'-phenyl-3',4'-dihydro-1'H- spiro[cyclohexane-1,2'-quinazoline]-8'-carbonitrile dimethylformamide monosolvate top
Crystal data top
C21H21N3OS·C3H7NOZ = 2
Mr = 436.56F(000) = 464
Triclinic, P1Dx = 1.309 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.415 (3) ÅCell parameters from 3507 reflections
b = 10.615 (3) Åθ = 2.5–29.1°
c = 12.037 (3) ŵ = 0.18 mm1
α = 95.092 (3)°T = 153 K
β = 98.156 (4)°Chunk, colorless
γ = 109.833 (3)°0.31 × 0.31 × 0.12 mm
V = 1108.0 (6) Å3
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
5754 independent reflections
Radiation source: Rotating Anode4274 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 28.5714 pixels mm-1θmax = 29.1°, θmin = 2.5°
phi and ω scansh = 1212
Absorption correction: ψ scan
(North et al., 1968)
k = 1214
Tmin = 0.947, Tmax = 0.979l = 1615
11758 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.160P]
where P = (Fo2 + 2Fc2)/3
5754 reflections(Δ/σ)max = 0.001
291 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C21H21N3OS·C3H7NOγ = 109.833 (3)°
Mr = 436.56V = 1108.0 (6) Å3
Triclinic, P1Z = 2
a = 9.415 (3) ÅMo Kα radiation
b = 10.615 (3) ŵ = 0.18 mm1
c = 12.037 (3) ÅT = 153 K
α = 95.092 (3)°0.31 × 0.31 × 0.12 mm
β = 98.156 (4)°
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
5754 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
4274 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.979Rint = 0.029
11758 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.36 e Å3
5754 reflectionsΔρmin = 0.26 e Å3
291 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.30973 (5)0.65929 (4)0.27438 (3)0.02075 (11)
O10.43889 (14)0.57074 (13)0.11197 (9)0.0275 (3)
N40.75021 (19)0.94951 (17)0.28720 (14)0.0374 (4)
O20.6020 (2)1.02046 (18)0.39412 (16)0.0580 (5)
N10.79059 (16)0.52496 (15)0.31427 (11)0.0197 (3)
N20.63848 (16)0.49735 (14)0.13547 (11)0.0200 (3)
N30.99764 (17)0.62325 (16)0.58365 (11)0.0259 (3)
C10.87655 (18)0.44768 (18)0.15077 (13)0.0221 (3)
H1A0.92640.54150.13620.026*
H1B0.95110.42660.20570.026*
C20.8378 (2)0.3509 (2)0.03980 (14)0.0288 (4)
H2A0.77800.38120.01950.035*
H2B0.93410.35310.01450.035*
C30.7457 (2)0.2069 (2)0.05401 (16)0.0362 (5)
H3A0.81020.17240.10620.043*
H3B0.71580.14810.02040.043*
C40.6018 (2)0.20061 (19)0.10126 (16)0.0316 (4)
H4A0.54510.10630.11140.038*
H4B0.53380.22920.04680.038*
C50.64463 (19)0.29280 (17)0.21494 (14)0.0226 (3)
H5A0.70690.26030.27070.027*
H5B0.54990.28870.24360.027*
C60.73564 (17)0.43950 (16)0.20362 (12)0.0166 (3)
C70.54013 (18)0.54868 (16)0.17623 (13)0.0187 (3)
C80.56754 (17)0.58920 (16)0.30038 (12)0.0163 (3)
C90.47755 (17)0.65007 (16)0.35316 (13)0.0166 (3)
C100.52394 (17)0.70489 (16)0.46842 (13)0.0178 (3)
H100.46280.74550.50370.021*
C110.65724 (17)0.70114 (15)0.53231 (13)0.0165 (3)
C120.74383 (17)0.63548 (16)0.48131 (12)0.0160 (3)
C130.69977 (17)0.57954 (15)0.36522 (13)0.0160 (3)
C140.71051 (17)0.77401 (16)0.65038 (13)0.0168 (3)
C150.70835 (19)0.90471 (17)0.67204 (14)0.0222 (3)
H150.67170.94440.61190.027*
C160.7592 (2)0.97693 (18)0.78055 (14)0.0276 (4)
H160.75831.06620.79420.033*
C170.8112 (2)0.9198 (2)0.86898 (14)0.0303 (4)
H170.84680.97000.94310.036*
C180.8114 (2)0.7890 (2)0.84928 (14)0.0282 (4)
H180.84530.74910.91030.034*
C190.76196 (19)0.71616 (18)0.74030 (13)0.0218 (3)
H190.76320.62700.72700.026*
C200.2291 (2)0.72814 (19)0.38122 (15)0.0271 (4)
H20A0.21000.66840.43930.033*
H20B0.13210.73520.34610.033*
H20C0.30130.81820.41630.033*
C210.88385 (18)0.63108 (16)0.54123 (13)0.0183 (3)
C220.6208 (3)0.9699 (2)0.3065 (2)0.0446 (6)
H220.53660.94150.24480.053*
C240.8796 (3)0.9892 (3)0.3788 (2)0.0567 (7)
H24A0.85361.02750.44680.068*
H24B0.96761.05730.35760.068*
H24C0.90580.90990.39440.068*
C230.7636 (3)0.8852 (3)0.1816 (2)0.0654 (8)
H23A0.66460.85470.12950.078*
H23B0.79350.80700.19470.078*
H23C0.84180.94960.14850.078*
H110.855 (2)0.504 (2)0.3564 (16)0.029 (5)*
H210.621 (2)0.4760 (19)0.0607 (17)0.030 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01842 (19)0.0274 (2)0.0198 (2)0.01458 (16)0.00019 (15)0.00021 (16)
O10.0315 (7)0.0441 (8)0.0155 (6)0.0282 (6)0.0021 (5)0.0003 (5)
N40.0314 (9)0.0385 (10)0.0354 (9)0.0042 (7)0.0027 (7)0.0091 (8)
O20.0584 (11)0.0559 (11)0.0747 (12)0.0312 (9)0.0266 (10)0.0201 (10)
N10.0200 (7)0.0298 (8)0.0127 (6)0.0164 (6)0.0019 (5)0.0024 (6)
N20.0241 (7)0.0299 (8)0.0117 (7)0.0179 (6)0.0011 (5)0.0016 (6)
N30.0253 (7)0.0387 (9)0.0182 (7)0.0192 (7)0.0016 (6)0.0002 (6)
C10.0196 (7)0.0350 (10)0.0168 (8)0.0153 (7)0.0048 (6)0.0058 (7)
C20.0305 (9)0.0491 (12)0.0175 (8)0.0277 (9)0.0062 (7)0.0020 (8)
C30.0482 (12)0.0418 (12)0.0254 (10)0.0303 (10)0.0008 (8)0.0086 (8)
C40.0362 (10)0.0254 (10)0.0309 (10)0.0125 (8)0.0003 (8)0.0041 (8)
C50.0231 (8)0.0256 (9)0.0215 (8)0.0118 (7)0.0042 (6)0.0029 (7)
C60.0189 (7)0.0239 (8)0.0104 (7)0.0130 (6)0.0013 (6)0.0006 (6)
C70.0210 (7)0.0224 (8)0.0156 (8)0.0126 (6)0.0016 (6)0.0009 (6)
C80.0169 (7)0.0198 (8)0.0141 (7)0.0095 (6)0.0014 (6)0.0013 (6)
C90.0155 (7)0.0187 (8)0.0163 (7)0.0076 (6)0.0014 (6)0.0031 (6)
C100.0182 (7)0.0215 (8)0.0170 (8)0.0112 (6)0.0044 (6)0.0015 (6)
C110.0172 (7)0.0178 (8)0.0154 (7)0.0072 (6)0.0036 (6)0.0023 (6)
C120.0166 (7)0.0185 (8)0.0142 (7)0.0087 (6)0.0010 (6)0.0015 (6)
C130.0167 (7)0.0176 (8)0.0158 (7)0.0087 (6)0.0032 (6)0.0022 (6)
C140.0162 (7)0.0209 (8)0.0145 (7)0.0083 (6)0.0039 (6)0.0006 (6)
C150.0251 (8)0.0260 (9)0.0182 (8)0.0131 (7)0.0042 (6)0.0014 (7)
C160.0341 (10)0.0251 (9)0.0253 (9)0.0147 (8)0.0059 (7)0.0048 (7)
C170.0343 (10)0.0404 (11)0.0159 (8)0.0176 (8)0.0002 (7)0.0078 (7)
C180.0320 (9)0.0418 (11)0.0165 (8)0.0213 (8)0.0022 (7)0.0046 (8)
C190.0248 (8)0.0260 (9)0.0189 (8)0.0136 (7)0.0063 (6)0.0043 (7)
C200.0240 (8)0.0369 (11)0.0274 (9)0.0203 (8)0.0055 (7)0.0013 (8)
C210.0229 (8)0.0220 (8)0.0121 (7)0.0117 (6)0.0032 (6)0.0017 (6)
C220.0348 (11)0.0402 (13)0.0534 (14)0.0054 (9)0.0004 (10)0.0248 (11)
C240.0370 (12)0.0674 (18)0.0595 (16)0.0165 (12)0.0021 (11)0.0040 (13)
C230.079 (2)0.0561 (17)0.0461 (15)0.0015 (14)0.0222 (14)0.0024 (12)
Geometric parameters (Å, º) top
S1—C91.7611 (16)C8—C91.411 (2)
S1—C201.8033 (17)C8—C131.412 (2)
O1—C71.2394 (18)C9—C101.402 (2)
N4—C221.355 (3)C10—C111.391 (2)
N4—C231.431 (3)C10—H100.9500
N4—C241.437 (3)C11—C121.407 (2)
O2—C221.204 (3)C11—C141.486 (2)
N1—C131.3655 (19)C12—C131.414 (2)
N1—C61.4616 (19)C12—C211.428 (2)
N1—H110.84 (2)C14—C151.396 (2)
N2—C71.349 (2)C14—C191.398 (2)
N2—C61.4644 (19)C15—C161.385 (2)
N2—H210.89 (2)C15—H150.9500
N3—C211.152 (2)C16—C171.381 (3)
C1—C21.529 (2)C16—H160.9500
C1—C61.531 (2)C17—C181.389 (3)
C1—H1A0.9900C17—H170.9500
C1—H1B0.9900C18—C191.392 (2)
C2—C31.519 (3)C18—H180.9500
C2—H2A0.9900C19—H190.9500
C2—H2B0.9900C20—H20A0.9800
C3—C41.525 (3)C20—H20B0.9800
C3—H3A0.9900C20—H20C0.9800
C3—H3B0.9900C22—H220.9500
C4—C51.527 (2)C24—H24A0.9800
C4—H4A0.9900C24—H24B0.9800
C4—H4B0.9900C24—H24C0.9800
C5—C61.531 (2)C23—H23A0.9800
C5—H5A0.9900C23—H23B0.9800
C5—H5B0.9900C23—H23C0.9800
C7—C81.479 (2)
C9—S1—C20102.83 (8)C8—C9—S1120.24 (11)
C22—N4—C23123.6 (2)C11—C10—C9121.56 (14)
C22—N4—C24118.59 (19)C11—C10—H10119.2
C23—N4—C24117.7 (2)C9—C10—H10119.2
C13—N1—C6122.09 (13)C10—C11—C12119.13 (14)
C13—N1—H11117.5 (13)C10—C11—C14119.37 (13)
C6—N1—H11112.7 (13)C12—C11—C14121.38 (14)
C7—N2—C6124.20 (13)C11—C12—C13120.40 (14)
C7—N2—H21114.8 (13)C11—C12—C21121.94 (14)
C6—N2—H21118.3 (13)C13—C12—C21117.50 (13)
C2—C1—C6113.17 (14)N1—C13—C8120.12 (13)
C2—C1—H1A108.9N1—C13—C12120.04 (14)
C6—C1—H1A108.9C8—C13—C12119.68 (13)
C2—C1—H1B108.9C15—C14—C19118.98 (15)
C6—C1—H1B108.9C15—C14—C11118.66 (14)
H1A—C1—H1B107.8C19—C14—C11122.36 (14)
C3—C2—C1111.36 (15)C16—C15—C14120.51 (16)
C3—C2—H2A109.4C16—C15—H15119.7
C1—C2—H2A109.4C14—C15—H15119.7
C3—C2—H2B109.4C17—C16—C15120.32 (17)
C1—C2—H2B109.4C17—C16—H16119.8
H2A—C2—H2B108.0C15—C16—H16119.8
C2—C3—C4111.08 (15)C16—C17—C18119.89 (16)
C2—C3—H3A109.4C16—C17—H17120.1
C4—C3—H3A109.4C18—C17—H17120.1
C2—C3—H3B109.4C17—C18—C19120.19 (16)
C4—C3—H3B109.4C17—C18—H18119.9
H3A—C3—H3B108.0C19—C18—H18119.9
C3—C4—C5110.48 (15)C18—C19—C14120.10 (16)
C3—C4—H4A109.6C18—C19—H19120.0
C5—C4—H4A109.6C14—C19—H19120.0
C3—C4—H4B109.6S1—C20—H20A109.5
C5—C4—H4B109.6S1—C20—H20B109.5
H4A—C4—H4B108.1H20A—C20—H20B109.5
C4—C5—C6111.32 (14)S1—C20—H20C109.5
C4—C5—H5A109.4H20A—C20—H20C109.5
C6—C5—H5A109.4H20B—C20—H20C109.5
C4—C5—H5B109.4N3—C21—C12175.83 (16)
C6—C5—H5B109.4O2—C22—N4126.4 (2)
H5A—C5—H5B108.0O2—C22—H22116.8
N1—C6—N2106.52 (12)N4—C22—H22116.8
N1—C6—C5111.29 (13)N4—C24—H24A109.5
N2—C6—C5110.69 (13)N4—C24—H24B109.5
N1—C6—C1107.40 (13)H24A—C24—H24B109.5
N2—C6—C1110.23 (13)N4—C24—H24C109.5
C5—C6—C1110.60 (13)H24A—C24—H24C109.5
O1—C7—N2121.46 (14)H24B—C24—H24C109.5
O1—C7—C8121.36 (14)N4—C23—H23A109.5
N2—C7—C8116.94 (14)N4—C23—H23B109.5
C9—C8—C13119.62 (13)H23A—C23—H23B109.5
C9—C8—C7122.55 (14)N4—C23—H23C109.5
C13—C8—C7117.44 (13)H23A—C23—H23C109.5
C10—C9—C8119.49 (14)H23B—C23—H23C109.5
C10—C9—S1120.26 (11)
C6—C1—C2—C352.6 (2)C9—C10—C11—C122.9 (2)
C1—C2—C3—C454.9 (2)C9—C10—C11—C14173.20 (14)
C2—C3—C4—C557.9 (2)C10—C11—C12—C132.9 (2)
C3—C4—C5—C658.0 (2)C14—C11—C12—C13173.08 (14)
C13—N1—C6—N237.8 (2)C10—C11—C12—C21178.32 (14)
C13—N1—C6—C582.94 (18)C14—C11—C12—C212.3 (2)
C13—N1—C6—C1155.88 (15)C6—N1—C13—C818.7 (2)
C7—N2—C6—N139.4 (2)C6—N1—C13—C12165.86 (14)
C7—N2—C6—C581.73 (18)C9—C8—C13—N1177.79 (14)
C7—N2—C6—C1155.59 (15)C7—C8—C13—N14.8 (2)
C4—C5—C6—N1173.96 (13)C9—C8—C13—C122.4 (2)
C4—C5—C6—N267.79 (16)C7—C8—C13—C12170.62 (14)
C4—C5—C6—C154.67 (18)C11—C12—C13—N1175.10 (15)
C2—C1—C6—N1173.76 (14)C21—C12—C13—N10.5 (2)
C2—C1—C6—N270.58 (18)C11—C12—C13—C80.3 (2)
C2—C1—C6—C552.15 (18)C21—C12—C13—C8175.91 (14)
C6—N2—C7—O1165.03 (15)C10—C11—C14—C1544.1 (2)
C6—N2—C7—C820.5 (2)C12—C11—C14—C15131.86 (16)
O1—C7—C8—C92.4 (3)C10—C11—C14—C19135.62 (16)
N2—C7—C8—C9176.94 (15)C12—C11—C14—C1948.4 (2)
O1—C7—C8—C13170.34 (16)C19—C14—C15—C161.2 (2)
N2—C7—C8—C134.2 (2)C11—C14—C15—C16179.02 (15)
C13—C8—C9—C102.5 (2)C14—C15—C16—C170.7 (3)
C7—C8—C9—C10170.18 (14)C15—C16—C17—C180.5 (3)
C13—C8—C9—S1178.45 (12)C16—C17—C18—C191.2 (3)
C7—C8—C9—S18.9 (2)C17—C18—C19—C140.6 (3)
C20—S1—C9—C106.48 (15)C15—C14—C19—C180.6 (2)
C20—S1—C9—C8174.42 (13)C11—C14—C19—C18179.68 (15)
C8—C9—C10—C110.2 (2)C23—N4—C22—O2178.2 (2)
S1—C9—C10—C11178.91 (12)C24—N4—C22—O20.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···N3i0.838 (10)2.328 (14)3.120 (2)157.96 (3)
N2—H21···O1ii0.886 (10)2.044 (18)2.927 (3)174.94 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H21N3OS·C3H7NO
Mr436.56
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)9.415 (3), 10.615 (3), 12.037 (3)
α, β, γ (°)95.092 (3), 98.156 (4), 109.833 (3)
V3)1108.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.31 × 0.31 × 0.12
Data collection
DiffractometerRigaku AFC10/Saturn724+
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.947, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
11758, 5754, 4274
Rint0.029
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.117, 1.00
No. of reflections5754
No. of parameters291
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.26

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···N3i0.838 (10)2.328 (14)3.120 (2)157.96 (3)
N2—H21···O1ii0.886 (10)2.044 (18)2.927 (3)174.94 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z.
 

Acknowledgements

The authors thank Beijing Institute of Technology for the X-ray diffraction analysis.

References

First citationAlagarsamy, V. & Murugesan, S. (2007). Chem. Pharm. Bull. 55, 76–80.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJatav, V., Kashaw, S. & Mishra, P. (2008). Med. Chem. Res. 17, 169–181.  Web of Science CrossRef CAS Google Scholar
First citationMarkosyan, A. I., Dilanyan, S. V., Arsenyan, F. G., Sukasyan, R. S., Sarkisyan, I. S. & Garibdzhanyan, B. T. (2010). Pharm. Chem. J. 44, 111–114.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, K., Kirichian, A. M., Al Aowad, A. F., Adelstein, S. J. & Kassis, A. I. (2007). Bioconjug. Chem. 18, 754–764.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, L., Li, J., Shi, D. & Chen, J. (2008). Acta Cryst. E64, o449.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds