organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Methyl­phenyl­sulfon­yl)-5-phenyl-4,5-di­hydro-1H-pyrazole

aMedical College, Zhejiang University City College, Hangzhou 310015, Zhejiang, People's Republic of China
*Correspondence e-mail: lijie@zucc.edu.cn

(Received 9 May 2011; accepted 25 June 2011; online 2 July 2011)

The title compound, C16H16N2O2S, was synthesized by the reaction of 5-phenyl-4,5-dihydro-1H-pyrazole and 4-methyl­benzene-1-sulfonyl chloride. The five-membered pyrazoline ring is nearly planar, with a miximum deviation of 0.078 (2) Å.

Related literature

For the pharmacological properties of pyrazoline derivatives, see: Goodell et al. (2006[Goodell, J. R., Puig-Basagoiti, F., Forshey, B. M., Shi, P. Y. & Ferguson, D. M. (2006). J. Med. Chem. 49, 2127-2137.]); Park et al. (2005[Park, H. J., Lee, K., Park, S. J., Ahn, B., Lee, J. C., Cho, H. Y. & Lee, K. I. (2005). Bioorg. Med. Chem. Lett. 15, 3307-3312.]); Shaharyar et al. (2006[Shaharyar, M., Siddiqui, A. A. & Ali, M. A. (2006). Bioorg. Med. Chem. Lett. 16, C4571-C4574.]); Suresh et al. (2009[Suresh, K., Sandhya, B., Sushma, D., Rajiv, K. & Himanshu, G. (2009). Recent Patents Anti-Infect. Drug Disc. 4, 154-163.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O2S

  • Mr = 300.37

  • Orthorhombic, P c a 21

  • a = 19.2938 (7) Å

  • b = 6.0438 (2) Å

  • c = 12.9812 (5) Å

  • V = 1513.71 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.32 × 0.28 × 0.25 mm

Data collection
  • Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.933, Tmax = 0.947

  • 5286 measured reflections

  • 2168 independent reflections

  • 1870 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.081

  • S = 1.05

  • 2168 reflections

  • 191 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 711 Friedel pairs

  • Flack parameter: 0.00 (8)

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

5-Phenyl-1-tosyl-4,5-dihydro-1H-pyrazoles are a key intermediates which can be used to synthesize pyrazoline derivatives, which are well known for their versatile pharmacological activities such as antitumor (Park et al., 2005), antibacterial (Shaharyar et al., 2006), antifungal (Goodell et al., 2006), antiviral, antiparasitic, anti-tubercular and insecticidal agents (Suresh et al., 2009). The title compound is one of these compounds and its structure is reported here.

Related literature top

For the pharmacological properties of pyrazoline derivatives, see: Goodell et al. (2006); Park et al. (2005); Shaharyar et al. (2006); Suresh et al. (2009).

Experimental top

A CH2Cl2 solution of 5-phenyl-4,5-dihydro-1H-pyrazole (1.46 g, 0.01 mol)with 4-methylbenzene-1-sulfonyl chloride (2.15 g, 0.011 mol) was stired at room temperature for 4 h, then saturated aqueous sodium hydrogen carbonate (50 ml) was added into the solution. The mixture was extract with CH2Cl2. Then the solvent was removed and to give a white powder. Single crystals were obtained from the powder in methanol after 5 days.

Refinement top

H atoms were positioned geometrically (C-H = 0.93-0.98 Å) and refined using a riding model, with Ueq(H) = 1.5Ueq(C) for methyl group and Ueq(H) = 1.2Ueq(C) for others.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound
1-(4-Methylphenylsulfonyl)-5-phenyl-4,5-dihydro-1H-pyrazole top
Crystal data top
C16H16N2O2SF(000) = 632
Mr = 300.37Dx = 1.318 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2341 reflections
a = 19.2938 (7) Åθ = 3.1–29.4°
b = 6.0438 (2) ŵ = 0.22 mm1
c = 12.9812 (5) ÅT = 293 K
V = 1513.71 (10) Å3Block, colorless
Z = 40.32 × 0.28 × 0.25 mm
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
2168 independent reflections
Radiation source: fine-focus sealed tube1870 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.3592 pixels mm-1θmax = 25.4°, θmin = 3.1°
ω scansh = 1723
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 67
Tmin = 0.933, Tmax = 0.947l = 1510
5286 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.0462P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2168 reflectionsΔρmax = 0.15 e Å3
191 parametersΔρmin = 0.26 e Å3
1 restraintAbsolute structure: Flack (1983), 711 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (8)
Crystal data top
C16H16N2O2SV = 1513.71 (10) Å3
Mr = 300.37Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 19.2938 (7) ŵ = 0.22 mm1
b = 6.0438 (2) ÅT = 293 K
c = 12.9812 (5) Å0.32 × 0.28 × 0.25 mm
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
2168 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1870 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.947Rint = 0.028
5286 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.081Δρmax = 0.15 e Å3
S = 1.05Δρmin = 0.26 e Å3
2168 reflectionsAbsolute structure: Flack (1983), 711 Friedel pairs
191 parametersAbsolute structure parameter: 0.00 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.36119 (3)0.55535 (9)0.53950 (5)0.0517 (2)
O10.37103 (10)0.7881 (3)0.5338 (2)0.0737 (6)
O20.34854 (11)0.4301 (3)0.44842 (16)0.0680 (6)
N10.29819 (12)0.6172 (4)0.7097 (2)0.0680 (7)
N20.29200 (10)0.5148 (3)0.61190 (18)0.0511 (6)
C10.43222 (13)0.4394 (4)0.6042 (2)0.0452 (6)
C20.45625 (14)0.2327 (4)0.5752 (2)0.0555 (7)
H20.43490.15570.52180.067*
C30.51202 (15)0.1425 (4)0.6261 (3)0.0581 (7)
H30.52850.00460.60580.070*
C40.54427 (13)0.2507 (4)0.7066 (2)0.0547 (7)
C50.60491 (17)0.1474 (5)0.7611 (3)0.0828 (10)
H5C0.61140.21830.82660.124*
H5B0.64590.16530.72010.124*
H5A0.59610.00730.77150.124*
C60.51950 (14)0.4589 (4)0.7345 (2)0.0530 (7)
H60.54090.53580.78780.064*
C70.46389 (13)0.5524 (4)0.6845 (2)0.0500 (7)
H70.44760.69080.70440.060*
C80.26877 (16)0.4944 (7)0.7745 (3)0.0833 (11)
H80.26660.53170.84400.100*
C90.23803 (18)0.2892 (6)0.7349 (3)0.0839 (11)
H9A0.18780.29400.73830.101*
H9B0.25450.16140.77290.101*
C100.26345 (13)0.2845 (4)0.6227 (2)0.0523 (7)
H100.30060.17530.61480.063*
C110.20658 (11)0.2411 (3)0.5454 (2)0.0428 (5)
C120.15381 (12)0.3928 (4)0.5298 (3)0.0516 (6)
H120.15430.52620.56540.062*
C130.10086 (14)0.3487 (5)0.4626 (2)0.0619 (8)
H130.06610.45300.45250.074*
C140.09883 (16)0.1535 (5)0.4104 (3)0.0705 (9)
H140.06270.12400.36510.085*
C150.15027 (17)0.0006 (5)0.4250 (3)0.0694 (9)
H150.14900.13310.38950.083*
C160.20389 (14)0.0445 (4)0.4922 (2)0.0576 (7)
H160.23870.06010.50170.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0487 (4)0.0551 (3)0.0513 (4)0.0086 (3)0.0036 (4)0.0102 (4)
O10.0702 (12)0.0549 (9)0.0961 (16)0.0138 (8)0.0086 (14)0.0230 (14)
O20.0698 (14)0.0891 (13)0.0451 (12)0.0115 (10)0.0081 (10)0.0042 (11)
N10.0476 (14)0.0842 (16)0.072 (2)0.0022 (12)0.0035 (14)0.0205 (16)
N20.0439 (12)0.0530 (10)0.0564 (15)0.0063 (9)0.0051 (11)0.0041 (11)
C10.0434 (14)0.0462 (12)0.0460 (16)0.0091 (10)0.0061 (12)0.0001 (12)
C20.0560 (17)0.0538 (13)0.0567 (18)0.0112 (12)0.0010 (14)0.0077 (14)
C30.0597 (17)0.0482 (13)0.0663 (19)0.0048 (12)0.0084 (16)0.0035 (15)
C40.0438 (15)0.0616 (15)0.0585 (18)0.0016 (13)0.0070 (14)0.0004 (16)
C50.068 (2)0.091 (2)0.089 (3)0.0186 (18)0.0106 (19)0.003 (2)
C60.0498 (16)0.0601 (15)0.0491 (16)0.0071 (12)0.0003 (14)0.0072 (15)
C70.0482 (15)0.0467 (12)0.0551 (18)0.0020 (11)0.0042 (13)0.0080 (13)
C80.051 (2)0.143 (3)0.056 (2)0.020 (2)0.0031 (17)0.010 (2)
C90.076 (2)0.123 (3)0.0524 (19)0.037 (2)0.0169 (18)0.029 (2)
C100.0441 (14)0.0538 (13)0.0589 (18)0.0075 (11)0.0118 (15)0.0135 (14)
C110.0375 (12)0.0484 (11)0.0424 (14)0.0041 (9)0.0018 (14)0.0101 (13)
C120.0450 (14)0.0557 (12)0.0540 (17)0.0044 (10)0.0020 (16)0.0027 (15)
C130.0484 (16)0.0702 (16)0.067 (2)0.0055 (14)0.0098 (16)0.0054 (16)
C140.063 (2)0.085 (2)0.064 (2)0.0111 (16)0.0217 (16)0.0068 (18)
C150.083 (2)0.0592 (15)0.066 (2)0.0050 (15)0.0100 (19)0.0082 (17)
C160.0557 (17)0.0519 (14)0.0653 (19)0.0081 (12)0.0054 (15)0.0044 (14)
Geometric parameters (Å, º) top
S1—O11.4213 (16)C7—H70.9300
S1—O21.425 (2)C8—C91.468 (5)
S1—N21.651 (2)C8—H80.9300
S1—C11.754 (3)C9—C101.537 (5)
N1—C81.257 (4)C9—H9A0.9700
N1—N21.417 (3)C9—H9B0.9700
N2—C101.504 (3)C10—C111.510 (4)
C1—C21.385 (3)C10—H100.9800
C1—C71.387 (4)C11—C161.375 (4)
C2—C31.376 (4)C11—C121.385 (3)
C2—H20.9300C12—C131.370 (4)
C3—C41.380 (4)C12—H120.9300
C3—H30.9300C13—C141.361 (4)
C4—C61.394 (3)C13—H130.9300
C4—C51.503 (4)C14—C151.369 (4)
C5—H5C0.9600C14—H140.9300
C5—H5B0.9600C15—C161.379 (4)
C5—H5A0.9600C15—H150.9300
C6—C71.376 (4)C16—H160.9300
C6—H60.9300
O1—S1—O2120.35 (16)N1—C8—C9116.5 (3)
O1—S1—N2106.53 (13)N1—C8—H8121.7
O2—S1—N2104.77 (12)C9—C8—H8121.7
O1—S1—C1108.43 (12)C8—C9—C10102.6 (3)
O2—S1—C1108.62 (12)C8—C9—H9A111.2
N2—S1—C1107.45 (11)C10—C9—H9A111.2
C8—N1—N2107.7 (3)C8—C9—H9B111.2
N1—N2—C10110.6 (2)C10—C9—H9B111.2
N1—N2—S1112.15 (17)H9A—C9—H9B109.2
C10—N2—S1119.12 (17)N2—C10—C11111.4 (2)
C2—C1—C7120.1 (2)N2—C10—C9100.8 (2)
C2—C1—S1119.4 (2)C11—C10—C9113.7 (2)
C7—C1—S1120.48 (18)N2—C10—H10110.2
C3—C2—C1119.2 (3)C11—C10—H10110.2
C3—C2—H2120.4C9—C10—H10110.2
C1—C2—H2120.4C16—C11—C12118.1 (2)
C2—C3—C4121.9 (2)C16—C11—C10120.7 (2)
C2—C3—H3119.0C12—C11—C10121.1 (2)
C4—C3—H3119.0C13—C12—C11120.9 (2)
C3—C4—C6118.0 (3)C13—C12—H12119.6
C3—C4—C5120.7 (2)C11—C12—H12119.6
C6—C4—C5121.3 (3)C14—C13—C12120.4 (3)
C4—C5—H5C109.5C14—C13—H13119.8
C4—C5—H5B109.5C12—C13—H13119.8
H5C—C5—H5B109.5C13—C14—C15119.7 (3)
C4—C5—H5A109.5C13—C14—H14120.1
H5C—C5—H5A109.5C15—C14—H14120.1
H5B—C5—H5A109.5C14—C15—C16120.1 (3)
C7—C6—C4121.0 (3)C14—C15—H15120.0
C7—C6—H6119.5C16—C15—H15120.0
C4—C6—H6119.5C11—C16—C15120.8 (3)
C6—C7—C1119.7 (2)C11—C16—H16119.6
C6—C7—H7120.1C15—C16—H16119.6
C1—C7—H7120.1

Experimental details

Crystal data
Chemical formulaC16H16N2O2S
Mr300.37
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)293
a, b, c (Å)19.2938 (7), 6.0438 (2), 12.9812 (5)
V3)1513.71 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.32 × 0.28 × 0.25
Data collection
DiffractometerOxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.933, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
5286, 2168, 1870
Rint0.028
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.081, 1.05
No. of reflections2168
No. of parameters191
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.26
Absolute structureFlack (1983), 711 Friedel pairs
Absolute structure parameter0.00 (8)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

The authors thank Mr Ji-Yong Liu of Zhejiang University for the X-ray data collection. This paper was supported by the Research Fund for teachers of Zhejiang University City College.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoodell, J. R., Puig-Basagoiti, F., Forshey, B. M., Shi, P. Y. & Ferguson, D. M. (2006). J. Med. Chem. 49, 2127–2137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPark, H. J., Lee, K., Park, S. J., Ahn, B., Lee, J. C., Cho, H. Y. & Lee, K. I. (2005). Bioorg. Med. Chem. Lett. 15, 3307–3312.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShaharyar, M., Siddiqui, A. A. & Ali, M. A. (2006). Bioorg. Med. Chem. Lett. 16, C4571–C4574.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuresh, K., Sandhya, B., Sushma, D., Rajiv, K. & Himanshu, G. (2009). Recent Patents Anti-Infect. Drug Disc. 4, 154–163.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds