organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-(3,5-di­methyl­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri-574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287, Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 22 June 2011; accepted 17 July 2011; online 23 July 2011)

The asymmetric unit of the title compound, C14H14ClNO2S, contains two independent mol­ecules, which are twisted at the S atoms with C—SO2—NH—C torsion angles of −69.4 (7)° and 66.0 (8)°. The sulfonyl and the anilino benzene rings are tilted relative to each other by 49.0 (4) and 61.7 (3)° in the two mol­ecules. In the crystal, the mol­ecules are linked into chains by N—H⋯O hydrogen bonds.

Related literature

For hydrogen-bonding modes of sulfonamides, see: Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]). For our studies of the effect of substituents on the structures of N-(ar­yl)-amides, see: Gowda et al. (2006[Gowda, B. T., Kozisek, J. & Fuess, H. (2006). Z. Naturforsch. Teil A, 55, 588-594.]), on N-(ar­yl)aryl­sulfonamides, see: Nirmala et al. (2009[Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3225.]); Shakuntala et al. (2011a[Shakuntala, K., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o1252.],b[Shakuntala, K., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o1541.]) and on N-(ar­yl)methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2339.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14ClNO2S

  • Mr = 295.77

  • Orthorhombic, P b c a

  • a = 21.990 (2) Å

  • b = 10.0470 (8) Å

  • c = 26.408 (2) Å

  • V = 5834.4 (8) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.856, Tmax = 0.976

  • 21403 measured reflections

  • 5320 independent reflections

  • 2694 reflections with I > 2σ(I)

  • Rint = 0.106

Refinement
  • R[F2 > 2σ(F2)] = 0.128

  • wR(F2) = 0.345

  • S = 1.07

  • 5320 reflections

  • 347 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.06 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.49 3.001 (9) 119
N2—H2A⋯O1ii 0.86 2.39 3.006 (9) 130
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The sulfonamide moieties are the constituents of many biologically important compounds. The hydrogen bonding preferences of sulfonamides have been investigated (Adsmond & Grant, 2001). As a part of our work on the substituent effects on the structures and other aspects of this class of compounds (Gowda et al., 2006, 2007; Nirmala et al., 2009; Shakuntala et al., 2011a,b), in the present work, the crystal structure of 4-chloro-N-(3,5-dimethylphenyl)- benzenesulfonamide (I) has been determined (Fig.1). The asymmetric unit of the structure contains two independent molecules. The molecules are twisted at the S atoms with the C—SO2—NH—C torsion angles of -69.5 (7)° and 66.1 (8)° in the two molecules, compared to the values of 65.3 (2)° and 54.6 (2)° in the two independent molecules of 4-chloro-N-(2,5-dimethylphenyl)-benzenesulfonamide (II) (Shakuntala et al., 2011b), and -53.8 (3)° and -63.4 (3)° in the two molecules of 4-chloro-N-(phenyl)-benzenesulfonamide (III) (Shakuntala et al., 2011a) and 67.9 (2)° in N-(3,5-dimethylphenyl)benzenesulfonamide (IV)(Nirmala et al., 2009).

The sulfonyl and the anilino benzene rings in the two independent molecules of (I) are tilted relative to each other by 49.0 (4)° (molecule 1) and 61.7 (3)° (molecule 2), compared to the values of 59.3 (1)° (molecule 1) and 45.8 (1)° (molecule 2) in (II), -53.8 (3)° and -63.4 (3)° in the two independent molecules of (III), and 54.6 (1)° in (IV)

In the title compound the molecules are linked into chains by N—H···O(S) hydrogen bonding (Table 1 and Fig.2).

Related literature top

For hydrogen-bonding modes of sulfonamides, see: Adsmond & Grant (2001). For our studies of the effect of substituents on the structures of N-(aryl)-amides, see: Gowda et al. (2006), on N-(aryl)arylsulfonamides, see: Nirmala et al. (2009); Shakuntala et al. (2011a,b) and on N-(aryl)methanesulfonamides, see: Gowda et al. (2007).

Experimental top

The solution of chlorobenzene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-chlorobenzenesulfonylchloride was treated with 3,5-dimethylaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant 4-chloro-N-(3,5-dimethylphenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from aqueous ethanol. The compound was characterized by recording its infrared and NMR spectra.

Prism like colourless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å, N—H = 0.86 Å and were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

The residual electron-density features are located in the region of H1A and S1. The highest peak is 1.31 Å from H1A and the deepest hole is 1.09 Å from S1. To improve considerably values of R1, wR2, and GOOF these bad four reflections (4 3 10 2 2 7 2 2 5 2 3 4) were omitted from the refinement.

The crystals available for X-ray studies were of rather poor quality and weak scatterers at high theta value resulting in relatively high R values.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
4-Chloro-N-(3,5-dimethylphenyl)benzenesulfonamide top
Crystal data top
C14H14ClNO2SF(000) = 2464
Mr = 295.77Dx = 1.347 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2329 reflections
a = 21.990 (2) Åθ = 2.5–27.8°
b = 10.0470 (8) ŵ = 0.40 mm1
c = 26.408 (2) ÅT = 293 K
V = 5834.4 (8) Å3Prism, colourless
Z = 160.40 × 0.20 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
5320 independent reflections
Radiation source: fine-focus sealed tube2694 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.106
Rotation method data acquisition using ω scans.θmax = 25.4°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 2626
Tmin = 0.856, Tmax = 0.976k = 912
21403 measured reflectionsl = 2531
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.128Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.345H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1148P)2 + 41.4199P]
where P = (Fo2 + 2Fc2)/3
5320 reflections(Δ/σ)max = 0.003
347 parametersΔρmax = 1.06 e Å3
1 restraintΔρmin = 0.41 e Å3
Crystal data top
C14H14ClNO2SV = 5834.4 (8) Å3
Mr = 295.77Z = 16
Orthorhombic, PbcaMo Kα radiation
a = 21.990 (2) ŵ = 0.40 mm1
b = 10.0470 (8) ÅT = 293 K
c = 26.408 (2) Å0.40 × 0.20 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
5320 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2694 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 0.976Rint = 0.106
21403 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1281 restraint
wR(F2) = 0.345H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1148P)2 + 41.4199P]
where P = (Fo2 + 2Fc2)/3
5320 reflectionsΔρmax = 1.06 e Å3
347 parametersΔρmin = 0.41 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.00034 (14)0.0421 (4)0.59314 (17)0.1103 (14)
S10.26317 (10)0.0246 (2)0.50757 (9)0.0454 (6)
O10.3036 (3)0.0914 (6)0.5418 (2)0.0544 (17)
O20.2769 (3)0.1061 (6)0.4911 (3)0.0547 (17)
N10.2594 (3)0.1192 (7)0.4583 (3)0.0456 (18)
H1A0.27780.19470.45870.055*
C10.1902 (4)0.0237 (9)0.5340 (3)0.047 (2)
C20.1472 (5)0.0646 (11)0.5157 (5)0.070 (3)
H20.15700.12670.49100.084*
C30.0889 (5)0.0574 (12)0.5355 (5)0.082 (4)
H30.05930.11630.52420.098*
C40.0746 (5)0.0348 (11)0.5713 (5)0.065 (3)
C50.1174 (5)0.1204 (11)0.5888 (4)0.069 (3)
H50.10750.18180.61380.083*
C60.1749 (4)0.1166 (10)0.5699 (4)0.056 (3)
H60.20390.17700.58140.068*
C70.2264 (3)0.0807 (8)0.4140 (3)0.037 (2)
C80.1732 (4)0.1481 (9)0.4019 (3)0.044 (2)
H80.15830.21260.42390.053*
C90.1421 (4)0.1212 (10)0.3577 (4)0.049 (2)
C100.1645 (4)0.0205 (10)0.3270 (4)0.054 (2)
H100.14350.00030.29740.065*
C110.2166 (5)0.0504 (10)0.3383 (4)0.057 (3)
C120.2471 (4)0.0189 (9)0.3823 (3)0.049 (2)
H120.28220.06550.39070.058*
C130.0873 (4)0.2025 (12)0.3421 (4)0.074 (3)
H13A0.09890.29410.33830.088*
H13B0.05630.19540.36760.088*
H13C0.07170.16970.31050.088*
C140.2416 (5)0.1558 (11)0.3035 (4)0.070 (3)
H14A0.24040.12420.26930.084*
H14B0.21740.23500.30640.084*
H14C0.28280.17540.31280.084*
Cl20.09120 (19)0.4163 (3)0.22721 (16)0.1050 (13)
S20.13516 (12)1.0127 (3)0.17349 (10)0.0600 (8)
O30.1989 (3)1.0367 (8)0.1698 (3)0.085 (2)
O40.0976 (4)1.0924 (8)0.2066 (3)0.081 (2)
N20.1092 (3)1.0317 (8)0.1159 (3)0.0504 (19)
H2A0.13421.05140.09200.061*
C150.1242 (4)0.8416 (10)0.1887 (3)0.048 (2)
C160.1665 (5)0.7509 (12)0.1776 (4)0.065 (3)
H160.20300.77590.16250.078*
C170.1549 (5)0.6177 (11)0.1893 (4)0.069 (3)
H170.18320.55240.18090.083*
C180.1036 (5)0.5848 (11)0.2123 (4)0.062 (3)
C190.0606 (5)0.6750 (12)0.2248 (4)0.071 (3)
H190.02430.64880.23980.085*
C200.0720 (4)0.8036 (11)0.2150 (4)0.058 (3)
H200.04470.86830.22580.070*
C210.0456 (4)1.0162 (9)0.1041 (3)0.042 (2)
C220.0300 (4)0.9218 (9)0.0686 (3)0.044 (2)
H220.05960.86540.05560.053*
C230.0305 (4)0.9104 (9)0.0518 (3)0.046 (2)
C240.0726 (4)0.9957 (9)0.0725 (4)0.052 (2)
H240.11270.99090.06150.063*
C250.0572 (4)1.0907 (9)0.1101 (4)0.050 (2)
C260.0030 (4)1.0975 (9)0.1251 (3)0.044 (2)
H260.01441.15840.14980.053*
C270.0480 (4)0.8106 (10)0.0130 (4)0.057 (3)
H27A0.05970.72920.02930.068*
H27B0.01410.79400.00900.068*
H27C0.08150.84400.00660.068*
C280.1049 (5)1.1804 (13)0.1316 (5)0.086 (4)
H28A0.13701.12770.14590.104*
H28B0.12101.23590.10520.104*
H28C0.08721.23520.15750.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0679 (19)0.107 (3)0.156 (4)0.008 (2)0.046 (2)0.006 (3)
S10.0432 (12)0.0429 (13)0.0501 (13)0.0036 (10)0.0105 (10)0.0032 (11)
O10.046 (4)0.060 (4)0.057 (4)0.001 (3)0.022 (3)0.009 (3)
O20.065 (4)0.039 (4)0.061 (4)0.008 (3)0.010 (3)0.001 (3)
N10.047 (4)0.053 (5)0.037 (4)0.011 (3)0.007 (3)0.006 (4)
C10.049 (5)0.041 (5)0.051 (5)0.003 (4)0.013 (4)0.000 (5)
C20.053 (6)0.066 (7)0.091 (8)0.006 (5)0.001 (6)0.022 (6)
C30.058 (7)0.069 (8)0.119 (11)0.021 (6)0.001 (7)0.015 (8)
C40.059 (6)0.046 (6)0.091 (8)0.005 (5)0.013 (6)0.011 (6)
C50.076 (8)0.064 (7)0.067 (7)0.007 (6)0.013 (6)0.013 (6)
C60.054 (6)0.067 (7)0.048 (6)0.004 (5)0.002 (5)0.005 (5)
C70.031 (4)0.036 (5)0.044 (5)0.004 (4)0.008 (4)0.005 (4)
C80.043 (5)0.046 (5)0.043 (5)0.001 (4)0.004 (4)0.005 (4)
C90.038 (5)0.063 (6)0.046 (5)0.002 (4)0.000 (4)0.006 (5)
C100.053 (6)0.065 (7)0.044 (5)0.002 (5)0.014 (4)0.004 (5)
C110.066 (6)0.061 (6)0.045 (6)0.003 (5)0.000 (5)0.006 (5)
C120.049 (5)0.053 (6)0.044 (5)0.008 (5)0.006 (4)0.004 (5)
C130.049 (6)0.094 (9)0.079 (8)0.009 (6)0.012 (5)0.016 (7)
C140.080 (7)0.075 (8)0.054 (6)0.009 (6)0.010 (6)0.021 (6)
Cl20.124 (3)0.075 (2)0.116 (3)0.007 (2)0.004 (2)0.035 (2)
S20.0554 (15)0.0633 (17)0.0614 (16)0.0026 (13)0.0178 (13)0.0092 (14)
O30.048 (4)0.096 (6)0.111 (6)0.020 (4)0.028 (4)0.009 (5)
O40.103 (6)0.087 (6)0.052 (4)0.022 (5)0.020 (4)0.028 (4)
N20.038 (4)0.068 (5)0.046 (4)0.007 (4)0.002 (3)0.007 (4)
C150.049 (5)0.053 (6)0.041 (5)0.004 (5)0.019 (4)0.002 (5)
C160.061 (6)0.072 (8)0.063 (7)0.004 (6)0.001 (5)0.012 (6)
C170.075 (8)0.063 (7)0.070 (8)0.021 (6)0.010 (6)0.004 (6)
C180.069 (7)0.069 (7)0.049 (6)0.004 (6)0.001 (5)0.008 (5)
C190.058 (6)0.079 (6)0.074 (8)0.003 (6)0.003 (6)0.017 (7)
C200.051 (6)0.066 (5)0.059 (6)0.005 (5)0.010 (5)0.012 (5)
C210.041 (5)0.042 (5)0.044 (5)0.002 (4)0.004 (4)0.007 (4)
C220.044 (5)0.046 (5)0.043 (5)0.005 (4)0.005 (4)0.004 (4)
C230.037 (5)0.052 (6)0.048 (5)0.000 (4)0.001 (4)0.002 (5)
C240.042 (5)0.057 (6)0.057 (6)0.000 (4)0.002 (4)0.004 (5)
C250.042 (5)0.058 (6)0.050 (6)0.010 (4)0.009 (4)0.005 (5)
C260.045 (5)0.046 (6)0.042 (5)0.000 (4)0.003 (4)0.009 (4)
C270.054 (6)0.058 (6)0.058 (6)0.002 (5)0.008 (5)0.005 (5)
C280.065 (7)0.093 (9)0.102 (10)0.019 (7)0.003 (7)0.021 (8)
Geometric parameters (Å, º) top
Cl1—C41.732 (10)Cl2—C181.760 (11)
S1—O21.416 (6)S2—O31.425 (7)
S1—O11.434 (6)S2—O41.445 (8)
S1—N11.613 (7)S2—N21.636 (7)
S1—C11.750 (9)S2—C151.782 (10)
N1—C71.429 (10)N2—C211.442 (10)
N1—H1A0.8600N2—H2A0.8600
C1—C61.374 (13)C15—C161.335 (13)
C1—C21.383 (13)C15—C201.394 (13)
C2—C31.384 (14)C16—C171.396 (15)
C2—H20.9300C16—H160.9300
C3—C41.361 (16)C17—C181.323 (15)
C3—H30.9300C17—H170.9300
C4—C51.357 (15)C18—C191.351 (15)
C5—C61.360 (13)C19—C201.342 (14)
C5—H50.9300C19—H190.9300
C6—H60.9300C20—H200.9300
C7—C121.382 (12)C21—C261.361 (11)
C7—C81.390 (11)C21—C221.378 (12)
C8—C91.380 (12)C22—C231.406 (12)
C8—H80.9300C22—H220.9300
C9—C101.387 (13)C23—C241.376 (12)
C9—C131.513 (12)C23—C271.485 (12)
C10—C111.382 (13)C24—C251.417 (13)
C10—H100.9300C24—H240.9300
C11—C121.377 (12)C25—C261.383 (12)
C11—C141.505 (13)C25—C281.495 (13)
C12—H120.9300C26—H260.9300
C13—H13A0.9600C27—H27A0.9600
C13—H13B0.9600C27—H27B0.9600
C13—H13C0.9600C27—H27C0.9600
C14—H14A0.9600C28—H28A0.9600
C14—H14B0.9600C28—H28B0.9600
C14—H14C0.9600C28—H28C0.9600
O2—S1—O1119.7 (4)O3—S2—O4120.6 (5)
O2—S1—N1108.0 (4)O3—S2—N2105.0 (5)
O1—S1—N1105.4 (4)O4—S2—N2107.4 (4)
O2—S1—C1108.2 (4)O3—S2—C15108.2 (5)
O1—S1—C1108.6 (4)O4—S2—C15108.7 (5)
N1—S1—C1106.1 (4)N2—S2—C15106.0 (4)
C7—N1—S1121.8 (6)C21—N2—S2121.8 (6)
C7—N1—H1A119.1C21—N2—H2A119.1
S1—N1—H1A119.1S2—N2—H2A119.1
C6—C1—C2120.6 (9)C16—C15—C20119.8 (10)
C6—C1—S1119.7 (7)C16—C15—S2120.9 (8)
C2—C1—S1119.5 (8)C20—C15—S2119.2 (8)
C3—C2—C1117.9 (10)C15—C16—C17118.6 (10)
C3—C2—H2121.1C15—C16—H16120.7
C1—C2—H2121.1C17—C16—H16120.7
C4—C3—C2120.8 (10)C18—C17—C16119.7 (10)
C4—C3—H3119.6C18—C17—H17120.1
C2—C3—H3119.6C16—C17—H17120.1
C5—C4—C3120.4 (10)C17—C18—C19122.8 (11)
C5—C4—Cl1121.0 (9)C17—C18—Cl2118.4 (9)
C3—C4—Cl1118.6 (9)C19—C18—Cl2118.7 (9)
C4—C5—C6120.3 (11)C20—C19—C18117.8 (11)
C4—C5—H5119.9C20—C19—H19121.1
C6—C5—H5119.9C18—C19—H19121.1
C5—C6—C1119.9 (10)C19—C20—C15120.9 (10)
C5—C6—H6120.0C19—C20—H20119.5
C1—C6—H6120.0C15—C20—H20119.5
C12—C7—C8119.3 (8)C26—C21—C22121.3 (8)
C12—C7—N1121.7 (7)C26—C21—N2121.0 (8)
C8—C7—N1119.0 (8)C22—C21—N2117.6 (8)
C9—C8—C7121.2 (8)C21—C22—C23120.4 (8)
C9—C8—H8119.4C21—C22—H22119.8
C7—C8—H8119.4C23—C22—H22119.8
C8—C9—C10117.4 (8)C24—C23—C22117.3 (9)
C8—C9—C13121.3 (9)C24—C23—C27121.5 (8)
C10—C9—C13121.2 (9)C22—C23—C27121.2 (8)
C11—C10—C9122.9 (9)C23—C24—C25122.6 (8)
C11—C10—H10118.5C23—C24—H24118.7
C9—C10—H10118.5C25—C24—H24118.7
C12—C11—C10117.9 (9)C26—C25—C24117.5 (8)
C12—C11—C14119.9 (9)C26—C25—C28122.2 (9)
C10—C11—C14122.2 (9)C24—C25—C28120.3 (9)
C11—C12—C7121.2 (9)C21—C26—C25120.8 (8)
C11—C12—H12119.4C21—C26—H26119.6
C7—C12—H12119.4C25—C26—H26119.6
C9—C13—H13A109.5C23—C27—H27A109.5
C9—C13—H13B109.5C23—C27—H27B109.5
H13A—C13—H13B109.5H27A—C27—H27B109.5
C9—C13—H13C109.5C23—C27—H27C109.5
H13A—C13—H13C109.5H27A—C27—H27C109.5
H13B—C13—H13C109.5H27B—C27—H27C109.5
C11—C14—H14A109.5C25—C28—H28A109.5
C11—C14—H14B109.5C25—C28—H28B109.5
H14A—C14—H14B109.5H28A—C28—H28B109.5
C11—C14—H14C109.5C25—C28—H28C109.5
H14A—C14—H14C109.5H28A—C28—H28C109.5
H14B—C14—H14C109.5H28B—C28—H28C109.5
O2—S1—N1—C746.5 (7)O3—S2—N2—C21179.5 (7)
O1—S1—N1—C7175.5 (6)O4—S2—N2—C2150.1 (8)
C1—S1—N1—C769.4 (7)C15—S2—N2—C2166.0 (8)
O2—S1—C1—C6153.8 (7)O3—S2—C15—C1623.8 (9)
O1—S1—C1—C622.4 (9)O4—S2—C15—C16156.4 (8)
N1—S1—C1—C690.5 (8)N2—S2—C15—C1688.4 (8)
O2—S1—C1—C230.9 (9)O3—S2—C15—C20152.8 (8)
O1—S1—C1—C2162.3 (8)O4—S2—C15—C2020.2 (9)
N1—S1—C1—C284.8 (9)N2—S2—C15—C2095.0 (8)
C6—C1—C2—C31.1 (16)C20—C15—C16—C175.0 (15)
S1—C1—C2—C3176.4 (9)S2—C15—C16—C17178.4 (8)
C1—C2—C3—C40.8 (19)C15—C16—C17—C182.1 (17)
C2—C3—C4—C50.9 (19)C16—C17—C18—C190.9 (18)
C2—C3—C4—Cl1178.0 (10)C16—C17—C18—Cl2179.0 (9)
C3—C4—C5—C61.3 (18)C17—C18—C19—C202.5 (18)
Cl1—C4—C5—C6177.5 (9)Cl2—C18—C19—C20177.3 (9)
C4—C5—C6—C11.7 (17)C18—C19—C20—C155.4 (17)
C2—C1—C6—C51.6 (15)C16—C15—C20—C196.8 (15)
S1—C1—C6—C5176.9 (8)S2—C15—C20—C19176.5 (9)
S1—N1—C7—C1271.4 (10)S2—N2—C21—C2662.2 (11)
S1—N1—C7—C8110.6 (8)S2—N2—C21—C22121.8 (8)
C12—C7—C8—C92.7 (13)C26—C21—C22—C232.1 (13)
N1—C7—C8—C9175.3 (8)N2—C21—C22—C23173.9 (8)
C7—C8—C9—C102.7 (13)C21—C22—C23—C240.5 (13)
C7—C8—C9—C13174.6 (9)C21—C22—C23—C27179.1 (8)
C8—C9—C10—C111.5 (14)C22—C23—C24—C251.2 (14)
C13—C9—C10—C11175.9 (10)C27—C23—C24—C25179.2 (9)
C9—C10—C11—C120.2 (15)C23—C24—C25—C261.2 (14)
C9—C10—C11—C14177.6 (9)C23—C24—C25—C28179.6 (10)
C10—C11—C12—C70.2 (15)C22—C21—C26—C252.1 (14)
C14—C11—C12—C7177.7 (9)N2—C21—C26—C25173.8 (8)
C8—C7—C12—C111.4 (13)C24—C25—C26—C210.4 (14)
N1—C7—C12—C11176.6 (9)C28—C25—C26—C21178.7 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.493.001 (9)119
N2—H2A···O1ii0.862.393.006 (9)130
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC14H14ClNO2S
Mr295.77
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)21.990 (2), 10.0470 (8), 26.408 (2)
V3)5834.4 (8)
Z16
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.40 × 0.20 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.856, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
21403, 5320, 2694
Rint0.106
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.128, 0.345, 1.07
No. of reflections5320
No. of parameters347
No. of restraints1
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.1148P)2 + 41.4199P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.06, 0.41

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.493.001 (9)119.2
N2—H2A···O1ii0.862.393.006 (9)129.5
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1, z1/2.
 

Acknowledgements

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kozisek, J. & Fuess, H. (2006). Z. Naturforsch. Teil A, 55, 588–594.  Google Scholar
First citationNirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3225.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o1252.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o1541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds