metal-organic compounds
Electrostatic repulsion between the cations of (1-methyl-1H-imidazole-κN3)(2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)platinum(II) perchlorate nitromethane monosolvate prevents Pt⋯Pt interactions
aSchool of Chemistry, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg 3209, South Africa
*Correspondence e-mail: akermanm@ukzn.ac.za
The reaction between [Pt(terpy)Cl]·2H2O (terpy = 2′,2′′:6′,2′′-terpyridine) and 1-methylimidazole (MIm) in the presence of two equivalents of AgClO4 in nitromethane yields the title compound, [Pt(C15H11N3)(C4H6N2)](ClO4)2·CH3NO2. The dicationic complexes are arranged in a staggered configuration. The torsion angle subtended by the 1-methylimidazole ring relative to the terpyridine ring is 114.9 (5)°. Intermolecular C—H⋯O interactions between the perchlorate anions and the H atoms of the terpy ligand are observed. Consideration of related phenylbipyridyl complexes of platinum(II), which are monocationic, leads to the conclusion that the electrostatic repulsion between the dicationic chelates prevents the formation of Pt⋯Pt interactions. These interactions are a common feature associated with the monocationic species.
Related literature
For synthesis of the parent complex, chloro(2,2′:6′,2"-terpyridine)platinum(II)chloride dihydrate, [Pt(terpy)Cl]Cl·2H2O, see: Pitteri et al. (1995). For the structure of the acetonitrile solvate of the title Pt(II) chelate, see: Roszak et al. (1996) and for a structure, which was devoid of solvent in the lattice, see: Müller et al. (2007). For studies of the luminescent properties and intermolecular Pt⋯Pt interactions of related compounds, see: Field et al. (2007). For a comprehensive review of Pt(II) terpyridines in general, see: Newkome et al. (2008). For Pt⋯Pt and Pt⋯π interactions in monocationic platinum(II) terpyridine and platinum(II) bipy complexes and the role they play in their unusual solid state emission properties, see: Connick et al. (1997); Field et al. (2003); Jaganyi & Reddy (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811025475/fi2109sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811025475/fi2109Isup2.hkl
The complex, chloro(2,2':6',2"-terpyridine)platinum(II)chloride dihydrate, [Pt(terpy)C1]C1.2H2O was synthesized using previously reported methods (Pitteri et al., 1995). [Pt(terpy)Cl]Cl.2H2O (70 mg, 0.13 mmol) was dissolved in nitromethane (4 ml) and AgClO4 (54 mg, 0.26 mmol) was added to the stirred platinum solution at ca. 50 oC. The reaction mixture was stirred for 1 h over which time it turned a pale yellow in colour with a white silver(I)chloride precipitate. The precipitate was removed by filtration. One equivalent of 1-methylimidazole (11 mg, 0.13 mmol) was added to the filtrate, which immediately turned orange in colour. Orange crystals of [Pt(terpy)MIm](ClO4)2(CH3NO2) were grown via vapour diffusion of diethylether into the nitromethane solution of the desired product (yield 73%).
H atoms were refined riding with C—H (aromatic) distances of 0.93 Å and included in the
with Uiso = 1.2 Ueq.Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. Molecular structure (50% probability surfaces) of [Pt(terpy)MIm](ClO4)2(CH3NO2). Hydrogen atoms have been omitted for clarity. |
[Pt(C15H11N3)(C4H6N2)](ClO4)2·CH3NO2 | F(000) = 1496 |
Mr = 770.41 | Dx = 1.975 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5102 reflections |
a = 16.389 (4) Å | θ = 2.8–26.1° |
b = 11.582 (5) Å | µ = 5.69 mm−1 |
c = 14.538 (5) Å | T = 296 K |
β = 110.147 (5)° | Cubic, orange |
V = 2590.7 (16) Å3 | 0.60 × 0.60 × 0.60 mm |
Z = 4 |
Oxford Diffraction Xcalibur2 CCD diffractometer | 5102 independent reflections |
Radiation source: fine-focus sealed tube | 3881 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.053 |
ω scans at fixed θ angles | θmax = 26.1°, θmin = 2.8° |
Absorption correction: multi-scan (Blessing, 1995) | h = −20→20 |
Tmin = 0.132, Tmax = 0.132 | k = −14→14 |
17563 measured reflections | l = −17→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 0.98 | w = 1/[σ2(Fo2) + (0.082P)2] where P = (Fo2 + 2Fc2)/3 |
5102 reflections | (Δ/σ)max = 0.001 |
354 parameters | Δρmax = 1.59 e Å−3 |
0 restraints | Δρmin = −2.64 e Å−3 |
[Pt(C15H11N3)(C4H6N2)](ClO4)2·CH3NO2 | V = 2590.7 (16) Å3 |
Mr = 770.41 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 16.389 (4) Å | µ = 5.69 mm−1 |
b = 11.582 (5) Å | T = 296 K |
c = 14.538 (5) Å | 0.60 × 0.60 × 0.60 mm |
β = 110.147 (5)° |
Oxford Diffraction Xcalibur2 CCD diffractometer | 5102 independent reflections |
Absorption correction: multi-scan (Blessing, 1995) | 3881 reflections with I > 2σ(I) |
Tmin = 0.132, Tmax = 0.132 | Rint = 0.053 |
17563 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 0.98 | Δρmax = 1.59 e Å−3 |
5102 reflections | Δρmin = −2.64 e Å−3 |
354 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6697 (5) | 0.4867 (7) | 1.0042 (6) | 0.059 (2) | |
H1 | 0.6976 | 0.5318 | 0.9712 | 0.071* | |
C1S | 0.9475 (7) | 0.0921 (12) | 1.0904 (9) | 0.118 (4) | |
H1S1 | 0.9664 | 0.0286 | 1.1351 | 0.176* | |
H1S2 | 0.9972 | 0.1356 | 1.0896 | 0.176* | |
H1S3 | 0.9167 | 0.0633 | 1.0258 | 0.176* | |
C2 | 0.6293 (6) | 0.5379 (8) | 1.0631 (6) | 0.069 (2) | |
H2 | 0.6308 | 0.6179 | 1.0693 | 0.082* | |
C3 | 0.5873 (5) | 0.4746 (9) | 1.1124 (6) | 0.071 (3) | |
H3 | 0.5594 | 0.5097 | 1.1509 | 0.086* | |
C4 | 0.5882 (5) | 0.3568 (9) | 1.1025 (6) | 0.063 (2) | |
H4 | 0.5614 | 0.3110 | 1.1363 | 0.076* | |
C5 | 0.6272 (4) | 0.3058 (7) | 1.0446 (5) | 0.0450 (17) | |
C6 | 0.6301 (4) | 0.1792 (8) | 1.0298 (5) | 0.0483 (18) | |
C7 | 0.5995 (5) | 0.0928 (9) | 1.0705 (6) | 0.060 (2) | |
H7 | 0.5695 | 0.1096 | 1.1128 | 0.072* | |
C8 | 0.6121 (5) | −0.0197 (8) | 1.0502 (6) | 0.061 (2) | |
H8 | 0.5911 | −0.0782 | 1.0798 | 0.073* | |
C9 | 0.6548 (5) | −0.0487 (7) | 0.9871 (5) | 0.059 (2) | |
H9 | 0.6620 | −0.1253 | 0.9721 | 0.070* | |
C10 | 0.6871 (4) | 0.0424 (6) | 0.9465 (5) | 0.0435 (16) | |
C11 | 0.7363 (4) | 0.0341 (6) | 0.8776 (5) | 0.0452 (17) | |
C12 | 0.7570 (5) | −0.0665 (7) | 0.8412 (6) | 0.062 (2) | |
H12 | 0.7398 | −0.1371 | 0.8590 | 0.074* | |
C13 | 0.8024 (6) | −0.0627 (7) | 0.7794 (7) | 0.069 (2) | |
H13 | 0.8190 | −0.1310 | 0.7572 | 0.083* | |
C14 | 0.8241 (5) | 0.0410 (8) | 0.7494 (6) | 0.067 (2) | |
H14 | 0.8527 | 0.0440 | 0.7042 | 0.080* | |
C15 | 0.8030 (4) | 0.1402 (7) | 0.7870 (6) | 0.0525 (19) | |
H15 | 0.8195 | 0.2107 | 0.7684 | 0.063* | |
C16 | 0.8566 (4) | 0.4276 (6) | 0.8775 (5) | 0.0430 (16) | |
H16 | 0.9022 | 0.3812 | 0.9149 | 0.052* | |
C17 | 0.7844 (6) | 0.5684 (7) | 0.7859 (6) | 0.061 (2) | |
H17 | 0.7717 | 0.6360 | 0.7491 | 0.073* | |
C18 | 0.7266 (5) | 0.4945 (6) | 0.8026 (5) | 0.0475 (17) | |
H18 | 0.6665 | 0.5028 | 0.7788 | 0.057* | |
C19 | 0.9464 (5) | 0.5765 (8) | 0.8392 (7) | 0.080 (3) | |
H19A | 0.9931 | 0.5231 | 0.8681 | 0.121* | |
H19B | 0.9556 | 0.6450 | 0.8786 | 0.121* | |
H19C | 0.9446 | 0.5962 | 0.7744 | 0.121* | |
N1 | 0.6682 (4) | 0.3704 (6) | 0.9951 (4) | 0.0453 (14) | |
N1S | 0.8913 (5) | 0.1653 (8) | 1.1213 (6) | 0.072 (2) | |
N2 | 0.6734 (4) | 0.1509 (5) | 0.9674 (4) | 0.0429 (14) | |
N3 | 0.7591 (4) | 0.1392 (5) | 0.8502 (4) | 0.0438 (14) | |
N4 | 0.7711 (4) | 0.4065 (5) | 0.8597 (4) | 0.0399 (13) | |
N5 | 0.8647 (4) | 0.5235 (5) | 0.8340 (4) | 0.0469 (14) | |
O1 | 0.941 (2) | 0.7727 (17) | 1.039 (3) | 0.38 (2) | |
O1S | 0.8411 (5) | 0.1229 (7) | 1.1517 (5) | 0.102 (2) | |
O2 | 0.8371 (10) | 0.7867 (13) | 1.1015 (11) | 0.203 (7) | |
O2S | 0.8951 (5) | 0.2668 (7) | 1.1098 (8) | 0.114 (3) | |
O3 | 0.8708 (12) | 0.6230 (12) | 1.0429 (10) | 0.252 (8) | |
O4 | 0.9562 (13) | 0.7038 (14) | 1.1756 (10) | 0.261 (10) | |
O5 | 0.4957 (4) | 0.1229 (6) | 0.7854 (5) | 0.092 (2) | |
O6 | 0.4009 (6) | 0.2158 (7) | 0.6530 (6) | 0.104 (3) | |
O7 | 0.3906 (7) | 0.2504 (6) | 0.8042 (7) | 0.096 (3) | |
O8 | 0.5069 (5) | 0.3205 (8) | 0.7608 (7) | 0.109 (3) | |
Cl1 | 0.89895 (18) | 0.7258 (2) | 1.08438 (18) | 0.0666 (6) | |
Cl2 | 0.45100 (13) | 0.22848 (15) | 0.75630 (14) | 0.0472 (4) | |
Pt | 0.720986 (15) | 0.27470 (2) | 0.913208 (17) | 0.03619 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.069 (5) | 0.040 (5) | 0.072 (5) | −0.007 (4) | 0.030 (4) | −0.012 (4) |
C1S | 0.088 (8) | 0.126 (12) | 0.134 (10) | 0.026 (8) | 0.032 (8) | −0.005 (9) |
C2 | 0.073 (6) | 0.056 (6) | 0.076 (6) | 0.005 (5) | 0.025 (5) | −0.022 (5) |
C3 | 0.064 (6) | 0.082 (7) | 0.072 (5) | 0.003 (5) | 0.028 (5) | −0.020 (5) |
C4 | 0.049 (5) | 0.087 (8) | 0.059 (5) | −0.011 (4) | 0.025 (4) | −0.006 (4) |
C5 | 0.030 (4) | 0.052 (5) | 0.054 (4) | −0.003 (3) | 0.016 (3) | 0.003 (3) |
C6 | 0.032 (4) | 0.066 (5) | 0.045 (4) | −0.009 (4) | 0.011 (3) | 0.006 (4) |
C7 | 0.043 (4) | 0.076 (7) | 0.055 (4) | −0.016 (4) | 0.012 (4) | 0.009 (4) |
C8 | 0.050 (5) | 0.070 (6) | 0.057 (5) | −0.019 (4) | 0.010 (4) | 0.014 (4) |
C9 | 0.059 (5) | 0.044 (5) | 0.061 (5) | −0.020 (4) | 0.005 (4) | 0.004 (4) |
C10 | 0.034 (4) | 0.040 (4) | 0.047 (4) | −0.010 (3) | 0.002 (3) | 0.002 (3) |
C11 | 0.035 (4) | 0.041 (4) | 0.054 (4) | 0.000 (3) | 0.008 (3) | 0.004 (3) |
C12 | 0.065 (5) | 0.035 (4) | 0.079 (6) | −0.003 (4) | 0.018 (5) | −0.009 (4) |
C13 | 0.066 (6) | 0.040 (5) | 0.107 (7) | −0.005 (4) | 0.037 (5) | −0.023 (5) |
C14 | 0.060 (5) | 0.063 (6) | 0.088 (6) | −0.006 (4) | 0.038 (5) | −0.021 (5) |
C15 | 0.036 (4) | 0.051 (5) | 0.074 (5) | −0.010 (3) | 0.024 (4) | −0.011 (4) |
C16 | 0.044 (4) | 0.035 (4) | 0.048 (4) | −0.003 (3) | 0.012 (3) | 0.004 (3) |
C17 | 0.081 (6) | 0.035 (4) | 0.067 (5) | 0.001 (4) | 0.027 (5) | 0.005 (4) |
C18 | 0.044 (4) | 0.044 (4) | 0.051 (4) | 0.009 (3) | 0.012 (3) | 0.005 (3) |
C19 | 0.071 (6) | 0.068 (6) | 0.107 (7) | −0.032 (5) | 0.038 (5) | 0.006 (5) |
N1 | 0.035 (3) | 0.050 (4) | 0.050 (3) | 0.006 (3) | 0.013 (3) | −0.004 (3) |
N1S | 0.051 (5) | 0.068 (6) | 0.082 (5) | −0.017 (4) | 0.005 (4) | 0.012 (4) |
N2 | 0.032 (3) | 0.039 (4) | 0.057 (3) | −0.011 (2) | 0.013 (3) | 0.002 (3) |
N3 | 0.031 (3) | 0.036 (3) | 0.065 (4) | −0.001 (2) | 0.017 (3) | 0.001 (3) |
N4 | 0.043 (3) | 0.030 (3) | 0.046 (3) | 0.001 (3) | 0.014 (3) | −0.001 (2) |
N5 | 0.048 (4) | 0.037 (3) | 0.058 (3) | −0.014 (3) | 0.021 (3) | −0.006 (3) |
O1 | 0.44 (4) | 0.27 (2) | 0.64 (5) | 0.02 (2) | 0.43 (4) | 0.16 (2) |
O1S | 0.083 (5) | 0.123 (7) | 0.107 (5) | −0.020 (5) | 0.041 (4) | 0.026 (5) |
O2 | 0.140 (11) | 0.250 (16) | 0.216 (15) | 0.098 (11) | 0.057 (10) | −0.020 (11) |
O2S | 0.060 (5) | 0.095 (7) | 0.164 (9) | −0.006 (4) | 0.011 (5) | 0.015 (6) |
O3 | 0.39 (2) | 0.153 (12) | 0.218 (13) | −0.087 (13) | 0.112 (14) | −0.097 (11) |
O4 | 0.33 (2) | 0.270 (18) | 0.130 (10) | 0.168 (17) | 0.016 (12) | −0.018 (11) |
O5 | 0.082 (5) | 0.066 (4) | 0.123 (6) | 0.030 (4) | 0.030 (4) | 0.016 (4) |
O6 | 0.098 (6) | 0.116 (7) | 0.084 (5) | 0.006 (4) | 0.013 (4) | 0.006 (4) |
O7 | 0.125 (7) | 0.074 (5) | 0.125 (7) | 0.016 (4) | 0.088 (6) | 0.001 (4) |
O8 | 0.095 (6) | 0.076 (5) | 0.167 (7) | −0.038 (5) | 0.057 (5) | −0.016 (5) |
Cl1 | 0.0814 (17) | 0.0584 (13) | 0.0685 (13) | 0.0075 (12) | 0.0366 (12) | −0.0004 (10) |
Cl2 | 0.0475 (11) | 0.0368 (9) | 0.0627 (11) | 0.0040 (8) | 0.0258 (9) | 0.0044 (8) |
Pt | 0.02992 (17) | 0.03339 (17) | 0.04422 (17) | −0.00357 (11) | 0.01146 (12) | 0.00027 (11) |
C1—N1 | 1.353 (10) | C14—C15 | 1.368 (11) |
C1—C2 | 1.382 (11) | C14—H14 | 0.9300 |
C1—H1 | 0.9300 | C15—N3 | 1.349 (9) |
C1S—N1S | 1.434 (13) | C15—H15 | 0.9300 |
C1S—H1S1 | 0.9600 | C16—N5 | 1.307 (8) |
C1S—H1S2 | 0.9600 | C16—N4 | 1.356 (8) |
C1S—H1S3 | 0.9600 | C16—H16 | 0.9300 |
C2—C3 | 1.366 (13) | C17—C18 | 1.359 (11) |
C2—H2 | 0.9300 | C17—N5 | 1.363 (10) |
C3—C4 | 1.372 (13) | C17—H17 | 0.9300 |
C3—H3 | 0.9300 | C18—N4 | 1.357 (9) |
C4—C5 | 1.356 (10) | C18—H18 | 0.9300 |
C4—H4 | 0.9300 | C19—N5 | 1.452 (8) |
C5—N1 | 1.365 (9) | C19—H19A | 0.9600 |
C5—C6 | 1.485 (13) | C19—H19B | 0.9600 |
C6—C7 | 1.345 (11) | C19—H19C | 0.9600 |
C6—N2 | 1.372 (9) | N1—Pt | 2.025 (6) |
C7—C8 | 1.367 (13) | N1S—O1S | 1.168 (9) |
C7—H7 | 0.9300 | N1S—O2S | 1.192 (11) |
C8—C9 | 1.374 (11) | N2—Pt | 1.925 (5) |
C8—H8 | 0.9300 | N3—Pt | 2.021 (6) |
C9—C10 | 1.400 (10) | N4—Pt | 2.013 (6) |
C9—H9 | 0.9300 | O1—Cl1 | 1.234 (16) |
C10—N2 | 1.330 (9) | O2—Cl1 | 1.327 (11) |
C10—C11 | 1.489 (10) | O3—Cl1 | 1.343 (12) |
C11—C12 | 1.369 (11) | O4—Cl1 | 1.359 (14) |
C11—N3 | 1.372 (9) | O5—Cl2 | 1.413 (7) |
C12—C13 | 1.351 (12) | O6—Cl2 | 1.450 (8) |
C12—H12 | 0.9300 | O7—Cl2 | 1.415 (8) |
C13—C14 | 1.366 (12) | O8—Cl2 | 1.393 (7) |
C13—H13 | 0.9300 | ||
N1—C1—C2 | 119.5 (8) | N5—C16—N4 | 109.3 (6) |
N1—C1—H1 | 120.2 | N5—C16—H16 | 125.3 |
C2—C1—H1 | 120.2 | N4—C16—H16 | 125.3 |
N1S—C1S—H1S1 | 109.5 | C18—C17—N5 | 106.0 (7) |
N1S—C1S—H1S2 | 109.5 | C18—C17—H17 | 127.0 |
H1S1—C1S—H1S2 | 109.5 | N5—C17—H17 | 127.0 |
N1S—C1S—H1S3 | 109.5 | N4—C18—C17 | 108.8 (7) |
H1S1—C1S—H1S3 | 109.5 | N4—C18—H18 | 125.6 |
H1S2—C1S—H1S3 | 109.5 | C17—C18—H18 | 125.6 |
C3—C2—C1 | 122.0 (9) | N5—C19—H19A | 109.5 |
C3—C2—H2 | 119.0 | N5—C19—H19B | 109.5 |
C1—C2—H2 | 119.0 | H19A—C19—H19B | 109.5 |
C2—C3—C4 | 117.0 (8) | N5—C19—H19C | 109.5 |
C2—C3—H3 | 121.5 | H19A—C19—H19C | 109.5 |
C4—C3—H3 | 121.5 | H19B—C19—H19C | 109.5 |
C5—C4—C3 | 121.5 (8) | C1—N1—C5 | 119.3 (6) |
C5—C4—H4 | 119.3 | C1—N1—Pt | 127.3 (5) |
C3—C4—H4 | 119.3 | C5—N1—Pt | 113.4 (5) |
C4—C5—N1 | 120.8 (8) | O1S—N1S—O2S | 123.1 (10) |
C4—C5—C6 | 124.4 (7) | O1S—N1S—C1S | 118.9 (10) |
N1—C5—C6 | 114.8 (6) | O2S—N1S—C1S | 117.9 (9) |
C7—C6—N2 | 118.1 (8) | C10—N2—C6 | 122.9 (6) |
C7—C6—C5 | 129.6 (7) | C10—N2—Pt | 119.1 (5) |
N2—C6—C5 | 112.3 (6) | C6—N2—Pt | 117.9 (5) |
C6—C7—C8 | 120.4 (8) | C15—N3—C11 | 117.9 (7) |
C6—C7—H7 | 119.8 | C15—N3—Pt | 128.5 (5) |
C8—C7—H7 | 119.8 | C11—N3—Pt | 113.6 (5) |
C7—C8—C9 | 121.9 (8) | C16—N4—C18 | 106.5 (6) |
C7—C8—H8 | 119.1 | C16—N4—Pt | 126.5 (4) |
C9—C8—H8 | 119.1 | C18—N4—Pt | 127.0 (5) |
C8—C9—C10 | 116.8 (8) | C16—N5—C17 | 109.4 (6) |
C8—C9—H9 | 121.6 | C16—N5—C19 | 125.4 (7) |
C10—C9—H9 | 121.6 | C17—N5—C19 | 125.1 (7) |
N2—C10—C9 | 119.9 (7) | O1—Cl1—O2 | 118.1 (12) |
N2—C10—C11 | 112.8 (6) | O1—Cl1—O3 | 108.6 (15) |
C9—C10—C11 | 127.3 (7) | O2—Cl1—O3 | 112.9 (11) |
C12—C11—N3 | 121.0 (7) | O1—Cl1—O4 | 106.3 (19) |
C12—C11—C10 | 125.3 (7) | O2—Cl1—O4 | 103.3 (9) |
N3—C11—C10 | 113.7 (6) | O3—Cl1—O4 | 106.7 (10) |
C13—C12—C11 | 119.7 (8) | O8—Cl2—O5 | 112.5 (6) |
C13—C12—H12 | 120.2 | O8—Cl2—O7 | 113.6 (5) |
C11—C12—H12 | 120.2 | O5—Cl2—O7 | 112.7 (5) |
C12—C13—C14 | 120.4 (8) | O8—Cl2—O6 | 104.8 (5) |
C12—C13—H13 | 119.8 | O5—Cl2—O6 | 105.8 (5) |
C14—C13—H13 | 119.8 | O7—Cl2—O6 | 106.6 (6) |
C13—C14—C15 | 118.7 (8) | N2—Pt—N4 | 178.5 (2) |
C13—C14—H14 | 120.6 | N2—Pt—N3 | 80.7 (3) |
C15—C14—H14 | 120.6 | N4—Pt—N3 | 100.6 (2) |
N3—C15—C14 | 122.3 (8) | N2—Pt—N1 | 81.5 (3) |
N3—C15—H15 | 118.9 | N4—Pt—N1 | 97.2 (2) |
C14—C15—H15 | 118.9 | N3—Pt—N1 | 162.2 (2) |
N1—C1—C2—C3 | −0.3 (14) | C7—C6—N2—Pt | −177.7 (5) |
C1—C2—C3—C4 | 1.2 (14) | C5—C6—N2—Pt | 0.3 (7) |
C2—C3—C4—C5 | −1.5 (13) | C14—C15—N3—C11 | 0.8 (11) |
C3—C4—C5—N1 | 1.0 (12) | C14—C15—N3—Pt | −179.5 (6) |
C3—C4—C5—C6 | −179.5 (7) | C12—C11—N3—C15 | −0.5 (10) |
C4—C5—C6—C7 | −2.5 (12) | C10—C11—N3—C15 | −179.3 (6) |
N1—C5—C6—C7 | 177.0 (7) | C12—C11—N3—Pt | 179.8 (6) |
C4—C5—C6—N2 | 179.8 (7) | C10—C11—N3—Pt | 1.0 (7) |
N1—C5—C6—N2 | −0.6 (8) | N5—C16—N4—C18 | 0.1 (7) |
N2—C6—C7—C8 | 0.4 (11) | N5—C16—N4—Pt | −177.2 (4) |
C5—C6—C7—C8 | −177.1 (7) | C17—C18—N4—C16 | 0.0 (8) |
C6—C7—C8—C9 | −0.9 (12) | C17—C18—N4—Pt | 177.2 (5) |
C7—C8—C9—C10 | 1.7 (11) | N4—C16—N5—C17 | −0.1 (8) |
C8—C9—C10—N2 | −1.9 (10) | N4—C16—N5—C19 | 177.6 (7) |
C8—C9—C10—C11 | 179.2 (7) | C18—C17—N5—C16 | 0.0 (9) |
N2—C10—C11—C12 | −177.8 (7) | C18—C17—N5—C19 | −177.7 (7) |
C9—C10—C11—C12 | 1.1 (12) | C10—N2—Pt—N3 | 2.5 (5) |
N2—C10—C11—N3 | 0.9 (9) | C6—N2—Pt—N3 | 179.6 (5) |
C9—C10—C11—N3 | 179.8 (6) | C10—N2—Pt—N1 | −177.0 (5) |
N3—C11—C12—C13 | 1.7 (12) | C6—N2—Pt—N1 | 0.0 (5) |
C10—C11—C12—C13 | −179.7 (7) | C16—N4—Pt—N3 | −64.4 (6) |
C11—C12—C13—C14 | −3.2 (14) | C18—N4—Pt—N3 | 119.0 (6) |
C12—C13—C14—C15 | 3.4 (14) | C16—N4—Pt—N1 | 114.9 (5) |
C13—C14—C15—N3 | −2.2 (13) | C18—N4—Pt—N1 | −61.7 (6) |
N5—C17—C18—N4 | 0.0 (8) | C15—N3—Pt—N2 | 178.5 (7) |
C2—C1—N1—C5 | −0.3 (11) | C11—N3—Pt—N2 | −1.8 (4) |
C2—C1—N1—Pt | 179.4 (6) | C15—N3—Pt—N4 | −2.2 (7) |
C4—C5—N1—C1 | 0.0 (11) | C11—N3—Pt—N4 | 177.4 (5) |
C6—C5—N1—C1 | −179.6 (6) | C15—N3—Pt—N1 | −179.9 (7) |
C4—C5—N1—Pt | −179.8 (6) | C11—N3—Pt—N1 | −0.2 (10) |
C6—C5—N1—Pt | 0.6 (7) | C1—N1—Pt—N2 | 179.9 (6) |
C9—C10—N2—C6 | 1.5 (10) | C5—N1—Pt—N2 | −0.4 (5) |
C11—C10—N2—C6 | −179.5 (6) | C1—N1—Pt—N4 | 0.6 (7) |
C9—C10—N2—Pt | 178.4 (5) | C5—N1—Pt—N4 | −179.7 (5) |
C11—C10—N2—Pt | −2.5 (8) | C1—N1—Pt—N3 | 178.3 (7) |
C7—C6—N2—C10 | −0.7 (10) | C5—N1—Pt—N3 | −2.0 (10) |
C5—C6—N2—C10 | 177.2 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O7i | 0.93 | 2.51 | 3.21 (2) | 132 (1) |
C8—H8···O7ii | 0.93 | 2.56 | 3.42 (2) | 153 (1) |
C9—H9···O6iii | 0.93 | 2.54 | 3.34 (1) | 144 (1) |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y, −z+2; (iii) −x+1, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Pt(C15H11N3)(C4H6N2)](ClO4)2·CH3NO2 |
Mr | 770.41 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 16.389 (4), 11.582 (5), 14.538 (5) |
β (°) | 110.147 (5) |
V (Å3) | 2590.7 (16) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.69 |
Crystal size (mm) | 0.60 × 0.60 × 0.60 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur2 CCD diffractometer |
Absorption correction | Multi-scan (Blessing, 1995) |
Tmin, Tmax | 0.132, 0.132 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17563, 5102, 3881 |
Rint | 0.053 |
(sin θ/λ)max (Å−1) | 0.618 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.118, 0.98 |
No. of reflections | 5102 |
No. of parameters | 354 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.59, −2.64 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O7i | 0.93 | 2.51 | 3.21 (2) | 132 (1) |
C8—H8···O7ii | 0.93 | 2.562 | 3.42 (2) | 153 (1) |
C9—H9···O6iii | 0.93 | 2.543 | 3.34 (1) | 144 (1) |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y, −z+2; (iii) −x+1, y−1/2, −z+3/2. |
Acknowledgements
We thank the University of KwaZulu-Natal and the National Research Foundation for their financial support.
References
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Connick, W. B., Marsh, R. E., Schaefer, W. B. & Gray, H. B. (1997). Inorg. Chem. 36, 913–922. CSD CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Field, J. S., Büchner, R., Haines, R. J., Ledwaba, P. W., Mcguire, R., McMillan, D. R. & Munro, O. Q. (2007). Inorg. Chim. Acta, 360, 1633–1638. Google Scholar
Field, J. S., Haines, R. J. & Summerton, G. C. (2003). J. Coord. Chem. 56, 1149–1155. Web of Science CSD CrossRef CAS Google Scholar
Jaganyi, D. & Reddy, D. (2008). Dalton Trans. pp. 6724–6731. Google Scholar
Müller, J., Freisinger, E., Lax, P., Megger, D. A. & Polonius, F.-A. (2007). Inorg. Chim. Acta, 360, 255–263. Google Scholar
Newkome, G. R., Eryazici, I. & Moorefield, C. N. (2008). Chem. Rev. 108, 1834–1895. Web of Science PubMed Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Pitteri, B., Annibale, G. & Brandolisio, M. (1995). Polyhedron, 14, 451–453. CrossRef Google Scholar
Roszak, A. W., Clement, O. & Buncel, E. (1996). Acta Cryst. C52, 1645–1648. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Platinum(II) polypyridine complexes are an important class of compounds in many areas of inorganic chemistry (Newkome et al., 2008). The most widely studied polypyridine ligands include 2,2'-bipyridine (bipy), 1,10-phenanthroline, 2,2':6',N''-terpyridine (terpy), 6-phenyl-2,2'-bipyridine and 2,2':6',2'':6'',2'''-quaterpyridine (Newkome et al., 2008). The substitution kinetics of platinum(II) polypyridines have been extensively studied. This is largely due to their redox stability and relatively fast reactivity (Jaganyi and Reddy, 2008). To develop the understanding of the binding mode of the incoming 1-methylimidazole ligand in substitution kinetics, the single-crystal X-ray structure of the title compound was elucidated. Upon examination it was evident that the structure was devoid of any Pt···Pt or Pt···π interactions. These interactions are ubiquitous with monocationic platinum(II) terpyridine (Field et al., 2007) and platinum(II) bipy complexes (Connick et al., 1997) and are, in part, responsible for their unusual solid state emission properties (Field et al., 2003).
Two variants of the title cation have been reported. Firstly, with an acetonitrile molecule in the lattice (Roszak et al., 1996) and secondly, a structure, which was devoid of solvent in the lattice (Müller et al., 2007). The title compound has a nitromethane molecule in the asymmetric unit.
The platinum(II) centre is nominally square planar with the tridentate terpy ligand and the monodentate 1-methylimidazole ligand, as expected for d8 platinum(II) complexes. The Pt— N1 and Pt— N3 bond distances are approximately equal, averaging 2.023 (8) Å. The Pt— N2 bond is 1.925 (5) Å. The Pt— N4 bond length is 2.013 (6) Å, these bond distances are equivalent to those previously reported. The MIm ligand is canted relative to the Pt(terpy) unit. The torsion angle defined by C(16)—N(4)—Pt—N(1) is 114.9 (5)°.This angle is equivalent to that reported by Roszak et al., 1996. The same torsion angle reported by Müller et al., 2007, is 107.2 (7)°. These data suggest that the identity of the solvent in the lattice is inconsequential in terms of its effect on the torsion angle of the ancillary ligand, but show that the presence of solvent influences the geometry of the cation. The platinum(II) chelates are arranged in a staggered configuration and are not parallel. Thus there are no Pt···Pt or Pt···π interactions in the solid state, which require interacting molecules to be parallel.
The crystal packing shows there to be no classical hydrogen bonding, however, there are unconventional hydrogen bonds between the perchlorate anions and the hydrogen atoms of the terpy ligand. The hydrogen bond parameters are given in Table 1.