metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1075-m1076

Electrostatic repulsion between the cations of (1-methyl-1H-imidazole-κN3)(2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)platinum(II) perchlorate nitro­methane monosolvate prevents Pt⋯Pt inter­actions

aSchool of Chemistry, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg 3209, South Africa
*Correspondence e-mail: akermanm@ukzn.ac.za

(Received 7 May 2011; accepted 28 June 2011; online 9 July 2011)

The reaction between [Pt(terpy)Cl]·2H2O (terpy = 2′,2′′:6′,2′′-terpyridine) and 1-methyl­imidazole (MIm) in the presence of two equivalents of AgClO4 in nitro­methane yields the title compound, [Pt(C15H11N3)(C4H6N2)](ClO4)2·CH3NO2. The dicationic complexes are arranged in a staggered configuration. The torsion angle subtended by the 1-methyl­imidazole ring relative to the terpyridine ring is 114.9 (5)°. Inter­molecular C—H⋯O inter­actions between the perchlorate anions and the H atoms of the terpy ligand are observed. Consideration of related phenyl­bipyridyl complexes of platinum(II), which are monocationic, leads to the conclusion that the electrostatic repulsion between the dicationic chelates prevents the formation of Pt⋯Pt inter­actions. These inter­actions are a common feature associated with the monocationic species.

Related literature

For synthesis of the parent complex, chloro­(2,2′:6′,2"-ter­pyridine)­platinum(II)chloride dihydrate, [Pt(terpy)Cl]Cl·2H2O, see: Pitteri et al. (1995[Pitteri, B., Annibale, G. & Brandolisio, M. (1995). Polyhedron, 14, 451-453.]). For the structure of the aceto­nitrile solvate of the title Pt(II) chelate, see: Roszak et al. (1996[Roszak, A. W., Clement, O. & Buncel, E. (1996). Acta Cryst. C52, 1645-1648.]) and for a structure, which was devoid of solvent in the lattice, see: Müller et al. (2007[Müller, J., Freisinger, E., Lax, P., Megger, D. A. & Polonius, F.-A. (2007). Inorg. Chim. Acta, 360, 255-263.]). For studies of the luminescent properties and inter­molecular Pt⋯Pt inter­actions of related compounds, see: Field et al. (2007[Field, J. S., Büchner, R., Haines, R. J., Ledwaba, P. W., Mcguire, R., McMillan, D. R. & Munro, O. Q. (2007). Inorg. Chim. Acta, 360, 1633-1638.]). For a comprehensive review of Pt(II) terpyridines in general, see: Newkome et al. (2008[Newkome, G. R., Eryazici, I. & Moorefield, C. N. (2008). Chem. Rev. 108, 1834-1895.]). For Pt⋯Pt and Pt⋯π inter­actions in monocationic platinum(II) terpyridine and platinum(II) bipy complexes and the role they play in their unusual solid state emission properties, see: Connick et al. (1997[Connick, W. B., Marsh, R. E., Schaefer, W. B. & Gray, H. B. (1997). Inorg. Chem. 36, 913-922.]); Field et al. (2003[Field, J. S., Haines, R. J. & Summerton, G. C. (2003). J. Coord. Chem. 56, 1149-1155.]); Jaganyi & Reddy (2008[Jaganyi, D. & Reddy, D. (2008). Dalton Trans. pp. 6724-6731.]).

[Scheme 1]

Experimental

Crystal data
  • [Pt(C15H11N3)(C4H6N2)](ClO4)2·CH3NO2

  • Mr = 770.41

  • Monoclinic, P 21 /c

  • a = 16.389 (4) Å

  • b = 11.582 (5) Å

  • c = 14.538 (5) Å

  • β = 110.147 (5)°

  • V = 2590.7 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.69 mm−1

  • T = 296 K

  • 0.60 × 0.60 × 0.60 mm

Data collection
  • Oxford Diffraction Xcalibur2 CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.132, Tmax = 0.132

  • 17563 measured reflections

  • 5102 independent reflections

  • 3881 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.118

  • S = 0.98

  • 5102 reflections

  • 354 parameters

  • H-atom parameters constrained

  • Δρmax = 1.59 e Å−3

  • Δρmin = −2.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O7i 0.93 2.51 3.21 (2) 132 (1)
C8—H8⋯O7ii 0.93 2.56 3.42 (2) 153 (1)
C9—H9⋯O6iii 0.93 2.54 3.34 (1) 144 (1)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y, -z+2; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Platinum(II) polypyridine complexes are an important class of compounds in many areas of inorganic chemistry (Newkome et al., 2008). The most widely studied polypyridine ligands include 2,2'-bipyridine (bipy), 1,10-phenanthroline, 2,2':6',N''-terpyridine (terpy), 6-phenyl-2,2'-bipyridine and 2,2':6',2'':6'',2'''-quaterpyridine (Newkome et al., 2008). The substitution kinetics of platinum(II) polypyridines have been extensively studied. This is largely due to their redox stability and relatively fast reactivity (Jaganyi and Reddy, 2008). To develop the understanding of the binding mode of the incoming 1-methylimidazole ligand in substitution kinetics, the single-crystal X-ray structure of the title compound was elucidated. Upon examination it was evident that the structure was devoid of any Pt···Pt or Pt···π interactions. These interactions are ubiquitous with monocationic platinum(II) terpyridine (Field et al., 2007) and platinum(II) bipy complexes (Connick et al., 1997) and are, in part, responsible for their unusual solid state emission properties (Field et al., 2003).

Two variants of the title cation have been reported. Firstly, with an acetonitrile molecule in the lattice (Roszak et al., 1996) and secondly, a structure, which was devoid of solvent in the lattice (Müller et al., 2007). The title compound has a nitromethane molecule in the asymmetric unit.

The platinum(II) centre is nominally square planar with the tridentate terpy ligand and the monodentate 1-methylimidazole ligand, as expected for d8 platinum(II) complexes. The Pt— N1 and Pt— N3 bond distances are approximately equal, averaging 2.023 (8) Å. The Pt— N2 bond is 1.925 (5) Å. The Pt— N4 bond length is 2.013 (6) Å, these bond distances are equivalent to those previously reported. The MIm ligand is canted relative to the Pt(terpy) unit. The torsion angle defined by C(16)—N(4)—Pt—N(1) is 114.9 (5)°.This angle is equivalent to that reported by Roszak et al., 1996. The same torsion angle reported by Müller et al., 2007, is 107.2 (7)°. These data suggest that the identity of the solvent in the lattice is inconsequential in terms of its effect on the torsion angle of the ancillary ligand, but show that the presence of solvent influences the geometry of the cation. The platinum(II) chelates are arranged in a staggered configuration and are not parallel. Thus there are no Pt···Pt or Pt···π interactions in the solid state, which require interacting molecules to be parallel.

The crystal packing shows there to be no classical hydrogen bonding, however, there are unconventional hydrogen bonds between the perchlorate anions and the hydrogen atoms of the terpy ligand. The hydrogen bond parameters are given in Table 1.

Related literature top

For synthesis of the parent complex, chloro(2,2':6',2"-terpyridine)platinum(II)chloride dihydrate, [Pt(terpy)Cl]Cl.2H2O, see: Pitteri et al. (1995). For the structure of the acetonitrile solvate of the title Pt(II) chelate, see: Roszak et al. (1996) and for a structure, which was devoid of solvent in the lattice, see: Müller et al. (2007). For studies of luminescent properties and intermolecular Pt···Pt interactions of related compounds, see: Field et al. (2007). For a comprehensive review of Pt(II) terpyridines in general, see: Newkome et al. (2008). For Pt···Pt and Pt···π interactions in monocationic platinum(II) terpyridine and platinum(II) bipy complexes and the role they play in their unusual solid state emission properties, see: Connick et al. (1997); Field et al. (2003); Jaganyi & Reddy (2008).

Experimental top

The complex, chloro(2,2':6',2"-terpyridine)platinum(II)chloride dihydrate, [Pt(terpy)C1]C1.2H2O was synthesized using previously reported methods (Pitteri et al., 1995). [Pt(terpy)Cl]Cl.2H2O (70 mg, 0.13 mmol) was dissolved in nitromethane (4 ml) and AgClO4 (54 mg, 0.26 mmol) was added to the stirred platinum solution at ca. 50 oC. The reaction mixture was stirred for 1 h over which time it turned a pale yellow in colour with a white silver(I)chloride precipitate. The precipitate was removed by filtration. One equivalent of 1-methylimidazole (11 mg, 0.13 mmol) was added to the filtrate, which immediately turned orange in colour. Orange crystals of [Pt(terpy)MIm](ClO4)2(CH3NO2) were grown via vapour diffusion of diethylether into the nitromethane solution of the desired product (yield 73%).

Refinement top

H atoms were refined riding with C—H (aromatic) distances of 0.93 Å and included in the refinement with Uiso = 1.2 Ueq.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure (50% probability surfaces) of [Pt(terpy)MIm](ClO4)2(CH3NO2). Hydrogen atoms have been omitted for clarity.
(1-methyl-1H-imidazole-κN3)(2,2':6',2''- terpyridine-κ3N,N',N'')platinum(II) perchlorate nitromethane monosolvate top
Crystal data top
[Pt(C15H11N3)(C4H6N2)](ClO4)2·CH3NO2F(000) = 1496
Mr = 770.41Dx = 1.975 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5102 reflections
a = 16.389 (4) Åθ = 2.8–26.1°
b = 11.582 (5) ŵ = 5.69 mm1
c = 14.538 (5) ÅT = 296 K
β = 110.147 (5)°Cubic, orange
V = 2590.7 (16) Å30.60 × 0.60 × 0.60 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur2 CCD
diffractometer
5102 independent reflections
Radiation source: fine-focus sealed tube3881 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scans at fixed θ anglesθmax = 26.1°, θmin = 2.8°
Absorption correction: multi-scan
(Blessing, 1995)
h = 2020
Tmin = 0.132, Tmax = 0.132k = 1414
17563 measured reflectionsl = 1714
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.082P)2]
where P = (Fo2 + 2Fc2)/3
5102 reflections(Δ/σ)max = 0.001
354 parametersΔρmax = 1.59 e Å3
0 restraintsΔρmin = 2.64 e Å3
Crystal data top
[Pt(C15H11N3)(C4H6N2)](ClO4)2·CH3NO2V = 2590.7 (16) Å3
Mr = 770.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.389 (4) ŵ = 5.69 mm1
b = 11.582 (5) ÅT = 296 K
c = 14.538 (5) Å0.60 × 0.60 × 0.60 mm
β = 110.147 (5)°
Data collection top
Oxford Diffraction Xcalibur2 CCD
diffractometer
5102 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3881 reflections with I > 2σ(I)
Tmin = 0.132, Tmax = 0.132Rint = 0.053
17563 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 0.98Δρmax = 1.59 e Å3
5102 reflectionsΔρmin = 2.64 e Å3
354 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6697 (5)0.4867 (7)1.0042 (6)0.059 (2)
H10.69760.53180.97120.071*
C1S0.9475 (7)0.0921 (12)1.0904 (9)0.118 (4)
H1S10.96640.02861.13510.176*
H1S20.99720.13561.08960.176*
H1S30.91670.06331.02580.176*
C20.6293 (6)0.5379 (8)1.0631 (6)0.069 (2)
H20.63080.61791.06930.082*
C30.5873 (5)0.4746 (9)1.1124 (6)0.071 (3)
H30.55940.50971.15090.086*
C40.5882 (5)0.3568 (9)1.1025 (6)0.063 (2)
H40.56140.31101.13630.076*
C50.6272 (4)0.3058 (7)1.0446 (5)0.0450 (17)
C60.6301 (4)0.1792 (8)1.0298 (5)0.0483 (18)
C70.5995 (5)0.0928 (9)1.0705 (6)0.060 (2)
H70.56950.10961.11280.072*
C80.6121 (5)0.0197 (8)1.0502 (6)0.061 (2)
H80.59110.07821.07980.073*
C90.6548 (5)0.0487 (7)0.9871 (5)0.059 (2)
H90.66200.12530.97210.070*
C100.6871 (4)0.0424 (6)0.9465 (5)0.0435 (16)
C110.7363 (4)0.0341 (6)0.8776 (5)0.0452 (17)
C120.7570 (5)0.0665 (7)0.8412 (6)0.062 (2)
H120.73980.13710.85900.074*
C130.8024 (6)0.0627 (7)0.7794 (7)0.069 (2)
H130.81900.13100.75720.083*
C140.8241 (5)0.0410 (8)0.7494 (6)0.067 (2)
H140.85270.04400.70420.080*
C150.8030 (4)0.1402 (7)0.7870 (6)0.0525 (19)
H150.81950.21070.76840.063*
C160.8566 (4)0.4276 (6)0.8775 (5)0.0430 (16)
H160.90220.38120.91490.052*
C170.7844 (6)0.5684 (7)0.7859 (6)0.061 (2)
H170.77170.63600.74910.073*
C180.7266 (5)0.4945 (6)0.8026 (5)0.0475 (17)
H180.66650.50280.77880.057*
C190.9464 (5)0.5765 (8)0.8392 (7)0.080 (3)
H19A0.99310.52310.86810.121*
H19B0.95560.64500.87860.121*
H19C0.94460.59620.77440.121*
N10.6682 (4)0.3704 (6)0.9951 (4)0.0453 (14)
N1S0.8913 (5)0.1653 (8)1.1213 (6)0.072 (2)
N20.6734 (4)0.1509 (5)0.9674 (4)0.0429 (14)
N30.7591 (4)0.1392 (5)0.8502 (4)0.0438 (14)
N40.7711 (4)0.4065 (5)0.8597 (4)0.0399 (13)
N50.8647 (4)0.5235 (5)0.8340 (4)0.0469 (14)
O10.941 (2)0.7727 (17)1.039 (3)0.38 (2)
O1S0.8411 (5)0.1229 (7)1.1517 (5)0.102 (2)
O20.8371 (10)0.7867 (13)1.1015 (11)0.203 (7)
O2S0.8951 (5)0.2668 (7)1.1098 (8)0.114 (3)
O30.8708 (12)0.6230 (12)1.0429 (10)0.252 (8)
O40.9562 (13)0.7038 (14)1.1756 (10)0.261 (10)
O50.4957 (4)0.1229 (6)0.7854 (5)0.092 (2)
O60.4009 (6)0.2158 (7)0.6530 (6)0.104 (3)
O70.3906 (7)0.2504 (6)0.8042 (7)0.096 (3)
O80.5069 (5)0.3205 (8)0.7608 (7)0.109 (3)
Cl10.89895 (18)0.7258 (2)1.08438 (18)0.0666 (6)
Cl20.45100 (13)0.22848 (15)0.75630 (14)0.0472 (4)
Pt0.720986 (15)0.27470 (2)0.913208 (17)0.03619 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.069 (5)0.040 (5)0.072 (5)0.007 (4)0.030 (4)0.012 (4)
C1S0.088 (8)0.126 (12)0.134 (10)0.026 (8)0.032 (8)0.005 (9)
C20.073 (6)0.056 (6)0.076 (6)0.005 (5)0.025 (5)0.022 (5)
C30.064 (6)0.082 (7)0.072 (5)0.003 (5)0.028 (5)0.020 (5)
C40.049 (5)0.087 (8)0.059 (5)0.011 (4)0.025 (4)0.006 (4)
C50.030 (4)0.052 (5)0.054 (4)0.003 (3)0.016 (3)0.003 (3)
C60.032 (4)0.066 (5)0.045 (4)0.009 (4)0.011 (3)0.006 (4)
C70.043 (4)0.076 (7)0.055 (4)0.016 (4)0.012 (4)0.009 (4)
C80.050 (5)0.070 (6)0.057 (5)0.019 (4)0.010 (4)0.014 (4)
C90.059 (5)0.044 (5)0.061 (5)0.020 (4)0.005 (4)0.004 (4)
C100.034 (4)0.040 (4)0.047 (4)0.010 (3)0.002 (3)0.002 (3)
C110.035 (4)0.041 (4)0.054 (4)0.000 (3)0.008 (3)0.004 (3)
C120.065 (5)0.035 (4)0.079 (6)0.003 (4)0.018 (5)0.009 (4)
C130.066 (6)0.040 (5)0.107 (7)0.005 (4)0.037 (5)0.023 (5)
C140.060 (5)0.063 (6)0.088 (6)0.006 (4)0.038 (5)0.021 (5)
C150.036 (4)0.051 (5)0.074 (5)0.010 (3)0.024 (4)0.011 (4)
C160.044 (4)0.035 (4)0.048 (4)0.003 (3)0.012 (3)0.004 (3)
C170.081 (6)0.035 (4)0.067 (5)0.001 (4)0.027 (5)0.005 (4)
C180.044 (4)0.044 (4)0.051 (4)0.009 (3)0.012 (3)0.005 (3)
C190.071 (6)0.068 (6)0.107 (7)0.032 (5)0.038 (5)0.006 (5)
N10.035 (3)0.050 (4)0.050 (3)0.006 (3)0.013 (3)0.004 (3)
N1S0.051 (5)0.068 (6)0.082 (5)0.017 (4)0.005 (4)0.012 (4)
N20.032 (3)0.039 (4)0.057 (3)0.011 (2)0.013 (3)0.002 (3)
N30.031 (3)0.036 (3)0.065 (4)0.001 (2)0.017 (3)0.001 (3)
N40.043 (3)0.030 (3)0.046 (3)0.001 (3)0.014 (3)0.001 (2)
N50.048 (4)0.037 (3)0.058 (3)0.014 (3)0.021 (3)0.006 (3)
O10.44 (4)0.27 (2)0.64 (5)0.02 (2)0.43 (4)0.16 (2)
O1S0.083 (5)0.123 (7)0.107 (5)0.020 (5)0.041 (4)0.026 (5)
O20.140 (11)0.250 (16)0.216 (15)0.098 (11)0.057 (10)0.020 (11)
O2S0.060 (5)0.095 (7)0.164 (9)0.006 (4)0.011 (5)0.015 (6)
O30.39 (2)0.153 (12)0.218 (13)0.087 (13)0.112 (14)0.097 (11)
O40.33 (2)0.270 (18)0.130 (10)0.168 (17)0.016 (12)0.018 (11)
O50.082 (5)0.066 (4)0.123 (6)0.030 (4)0.030 (4)0.016 (4)
O60.098 (6)0.116 (7)0.084 (5)0.006 (4)0.013 (4)0.006 (4)
O70.125 (7)0.074 (5)0.125 (7)0.016 (4)0.088 (6)0.001 (4)
O80.095 (6)0.076 (5)0.167 (7)0.038 (5)0.057 (5)0.016 (5)
Cl10.0814 (17)0.0584 (13)0.0685 (13)0.0075 (12)0.0366 (12)0.0004 (10)
Cl20.0475 (11)0.0368 (9)0.0627 (11)0.0040 (8)0.0258 (9)0.0044 (8)
Pt0.02992 (17)0.03339 (17)0.04422 (17)0.00357 (11)0.01146 (12)0.00027 (11)
Geometric parameters (Å, º) top
C1—N11.353 (10)C14—C151.368 (11)
C1—C21.382 (11)C14—H140.9300
C1—H10.9300C15—N31.349 (9)
C1S—N1S1.434 (13)C15—H150.9300
C1S—H1S10.9600C16—N51.307 (8)
C1S—H1S20.9600C16—N41.356 (8)
C1S—H1S30.9600C16—H160.9300
C2—C31.366 (13)C17—C181.359 (11)
C2—H20.9300C17—N51.363 (10)
C3—C41.372 (13)C17—H170.9300
C3—H30.9300C18—N41.357 (9)
C4—C51.356 (10)C18—H180.9300
C4—H40.9300C19—N51.452 (8)
C5—N11.365 (9)C19—H19A0.9600
C5—C61.485 (13)C19—H19B0.9600
C6—C71.345 (11)C19—H19C0.9600
C6—N21.372 (9)N1—Pt2.025 (6)
C7—C81.367 (13)N1S—O1S1.168 (9)
C7—H70.9300N1S—O2S1.192 (11)
C8—C91.374 (11)N2—Pt1.925 (5)
C8—H80.9300N3—Pt2.021 (6)
C9—C101.400 (10)N4—Pt2.013 (6)
C9—H90.9300O1—Cl11.234 (16)
C10—N21.330 (9)O2—Cl11.327 (11)
C10—C111.489 (10)O3—Cl11.343 (12)
C11—C121.369 (11)O4—Cl11.359 (14)
C11—N31.372 (9)O5—Cl21.413 (7)
C12—C131.351 (12)O6—Cl21.450 (8)
C12—H120.9300O7—Cl21.415 (8)
C13—C141.366 (12)O8—Cl21.393 (7)
C13—H130.9300
N1—C1—C2119.5 (8)N5—C16—N4109.3 (6)
N1—C1—H1120.2N5—C16—H16125.3
C2—C1—H1120.2N4—C16—H16125.3
N1S—C1S—H1S1109.5C18—C17—N5106.0 (7)
N1S—C1S—H1S2109.5C18—C17—H17127.0
H1S1—C1S—H1S2109.5N5—C17—H17127.0
N1S—C1S—H1S3109.5N4—C18—C17108.8 (7)
H1S1—C1S—H1S3109.5N4—C18—H18125.6
H1S2—C1S—H1S3109.5C17—C18—H18125.6
C3—C2—C1122.0 (9)N5—C19—H19A109.5
C3—C2—H2119.0N5—C19—H19B109.5
C1—C2—H2119.0H19A—C19—H19B109.5
C2—C3—C4117.0 (8)N5—C19—H19C109.5
C2—C3—H3121.5H19A—C19—H19C109.5
C4—C3—H3121.5H19B—C19—H19C109.5
C5—C4—C3121.5 (8)C1—N1—C5119.3 (6)
C5—C4—H4119.3C1—N1—Pt127.3 (5)
C3—C4—H4119.3C5—N1—Pt113.4 (5)
C4—C5—N1120.8 (8)O1S—N1S—O2S123.1 (10)
C4—C5—C6124.4 (7)O1S—N1S—C1S118.9 (10)
N1—C5—C6114.8 (6)O2S—N1S—C1S117.9 (9)
C7—C6—N2118.1 (8)C10—N2—C6122.9 (6)
C7—C6—C5129.6 (7)C10—N2—Pt119.1 (5)
N2—C6—C5112.3 (6)C6—N2—Pt117.9 (5)
C6—C7—C8120.4 (8)C15—N3—C11117.9 (7)
C6—C7—H7119.8C15—N3—Pt128.5 (5)
C8—C7—H7119.8C11—N3—Pt113.6 (5)
C7—C8—C9121.9 (8)C16—N4—C18106.5 (6)
C7—C8—H8119.1C16—N4—Pt126.5 (4)
C9—C8—H8119.1C18—N4—Pt127.0 (5)
C8—C9—C10116.8 (8)C16—N5—C17109.4 (6)
C8—C9—H9121.6C16—N5—C19125.4 (7)
C10—C9—H9121.6C17—N5—C19125.1 (7)
N2—C10—C9119.9 (7)O1—Cl1—O2118.1 (12)
N2—C10—C11112.8 (6)O1—Cl1—O3108.6 (15)
C9—C10—C11127.3 (7)O2—Cl1—O3112.9 (11)
C12—C11—N3121.0 (7)O1—Cl1—O4106.3 (19)
C12—C11—C10125.3 (7)O2—Cl1—O4103.3 (9)
N3—C11—C10113.7 (6)O3—Cl1—O4106.7 (10)
C13—C12—C11119.7 (8)O8—Cl2—O5112.5 (6)
C13—C12—H12120.2O8—Cl2—O7113.6 (5)
C11—C12—H12120.2O5—Cl2—O7112.7 (5)
C12—C13—C14120.4 (8)O8—Cl2—O6104.8 (5)
C12—C13—H13119.8O5—Cl2—O6105.8 (5)
C14—C13—H13119.8O7—Cl2—O6106.6 (6)
C13—C14—C15118.7 (8)N2—Pt—N4178.5 (2)
C13—C14—H14120.6N2—Pt—N380.7 (3)
C15—C14—H14120.6N4—Pt—N3100.6 (2)
N3—C15—C14122.3 (8)N2—Pt—N181.5 (3)
N3—C15—H15118.9N4—Pt—N197.2 (2)
C14—C15—H15118.9N3—Pt—N1162.2 (2)
N1—C1—C2—C30.3 (14)C7—C6—N2—Pt177.7 (5)
C1—C2—C3—C41.2 (14)C5—C6—N2—Pt0.3 (7)
C2—C3—C4—C51.5 (13)C14—C15—N3—C110.8 (11)
C3—C4—C5—N11.0 (12)C14—C15—N3—Pt179.5 (6)
C3—C4—C5—C6179.5 (7)C12—C11—N3—C150.5 (10)
C4—C5—C6—C72.5 (12)C10—C11—N3—C15179.3 (6)
N1—C5—C6—C7177.0 (7)C12—C11—N3—Pt179.8 (6)
C4—C5—C6—N2179.8 (7)C10—C11—N3—Pt1.0 (7)
N1—C5—C6—N20.6 (8)N5—C16—N4—C180.1 (7)
N2—C6—C7—C80.4 (11)N5—C16—N4—Pt177.2 (4)
C5—C6—C7—C8177.1 (7)C17—C18—N4—C160.0 (8)
C6—C7—C8—C90.9 (12)C17—C18—N4—Pt177.2 (5)
C7—C8—C9—C101.7 (11)N4—C16—N5—C170.1 (8)
C8—C9—C10—N21.9 (10)N4—C16—N5—C19177.6 (7)
C8—C9—C10—C11179.2 (7)C18—C17—N5—C160.0 (9)
N2—C10—C11—C12177.8 (7)C18—C17—N5—C19177.7 (7)
C9—C10—C11—C121.1 (12)C10—N2—Pt—N32.5 (5)
N2—C10—C11—N30.9 (9)C6—N2—Pt—N3179.6 (5)
C9—C10—C11—N3179.8 (6)C10—N2—Pt—N1177.0 (5)
N3—C11—C12—C131.7 (12)C6—N2—Pt—N10.0 (5)
C10—C11—C12—C13179.7 (7)C16—N4—Pt—N364.4 (6)
C11—C12—C13—C143.2 (14)C18—N4—Pt—N3119.0 (6)
C12—C13—C14—C153.4 (14)C16—N4—Pt—N1114.9 (5)
C13—C14—C15—N32.2 (13)C18—N4—Pt—N161.7 (6)
N5—C17—C18—N40.0 (8)C15—N3—Pt—N2178.5 (7)
C2—C1—N1—C50.3 (11)C11—N3—Pt—N21.8 (4)
C2—C1—N1—Pt179.4 (6)C15—N3—Pt—N42.2 (7)
C4—C5—N1—C10.0 (11)C11—N3—Pt—N4177.4 (5)
C6—C5—N1—C1179.6 (6)C15—N3—Pt—N1179.9 (7)
C4—C5—N1—Pt179.8 (6)C11—N3—Pt—N10.2 (10)
C6—C5—N1—Pt0.6 (7)C1—N1—Pt—N2179.9 (6)
C9—C10—N2—C61.5 (10)C5—N1—Pt—N20.4 (5)
C11—C10—N2—C6179.5 (6)C1—N1—Pt—N40.6 (7)
C9—C10—N2—Pt178.4 (5)C5—N1—Pt—N4179.7 (5)
C11—C10—N2—Pt2.5 (8)C1—N1—Pt—N3178.3 (7)
C7—C6—N2—C100.7 (10)C5—N1—Pt—N32.0 (10)
C5—C6—N2—C10177.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O7i0.932.513.21 (2)132 (1)
C8—H8···O7ii0.932.563.42 (2)153 (1)
C9—H9···O6iii0.932.543.34 (1)144 (1)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+2; (iii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Pt(C15H11N3)(C4H6N2)](ClO4)2·CH3NO2
Mr770.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.389 (4), 11.582 (5), 14.538 (5)
β (°) 110.147 (5)
V3)2590.7 (16)
Z4
Radiation typeMo Kα
µ (mm1)5.69
Crystal size (mm)0.60 × 0.60 × 0.60
Data collection
DiffractometerOxford Diffraction Xcalibur2 CCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.132, 0.132
No. of measured, independent and
observed [I > 2σ(I)] reflections
17563, 5102, 3881
Rint0.053
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.118, 0.98
No. of reflections5102
No. of parameters354
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.59, 2.64

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O7i0.932.513.21 (2)132 (1)
C8—H8···O7ii0.932.5623.42 (2)153 (1)
C9—H9···O6iii0.932.5433.34 (1)144 (1)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+2; (iii) x+1, y1/2, z+3/2.
 

Acknowledgements

We thank the University of KwaZulu-Natal and the National Research Foundation for their financial support.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationConnick, W. B., Marsh, R. E., Schaefer, W. B. & Gray, H. B. (1997). Inorg. Chem. 36, 913–922.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationField, J. S., Büchner, R., Haines, R. J., Ledwaba, P. W., Mcguire, R., McMillan, D. R. & Munro, O. Q. (2007). Inorg. Chim. Acta, 360, 1633–1638.  Google Scholar
First citationField, J. S., Haines, R. J. & Summerton, G. C. (2003). J. Coord. Chem. 56, 1149–1155.  Web of Science CSD CrossRef CAS Google Scholar
First citationJaganyi, D. & Reddy, D. (2008). Dalton Trans. pp. 6724–6731.  Google Scholar
First citationMüller, J., Freisinger, E., Lax, P., Megger, D. A. & Polonius, F.-A. (2007). Inorg. Chim. Acta, 360, 255–263.  Google Scholar
First citationNewkome, G. R., Eryazici, I. & Moorefield, C. N. (2008). Chem. Rev. 108, 1834–1895.  Web of Science PubMed Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPitteri, B., Annibale, G. & Brandolisio, M. (1995). Polyhedron, 14, 451–453.  CrossRef Google Scholar
First citationRoszak, A. W., Clement, O. & Buncel, E. (1996). Acta Cryst. C52, 1645–1648.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1075-m1076
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds