organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phenyl­naphtho­[1,8-de][1,3,2]di­aza­borinane

aWarren Research Laboratory, School of Chemistry, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
*Correspondence e-mail: robinsonr@ukzn.ac.za

(Received 22 March 2011; accepted 6 July 2011; online 9 July 2011)

The title compound, C16H13BN2, is one compound in a series of diaza­borinanes featuring substitution at the 1, 2 and 3 positions in the nitro­gen–boron heterocycle. The title compound is slightly distorted from planarity, with a dihedral angle of 9.0 (5)° between the mean planes of the naphthalene system and the benzene ring. The m-carbon atom of the benzene ring exhibits the greatest deviation of 0.164 (2) Å from the 19-atom mean plane defined by all non-H atoms. The two N—B—C—C torsion angles are 6.0 (3) and 5.6 (3)°. In the crystal, mol­ecules are linked by ππ inter­actions into columns, with a distance of 3.92 (3) Å between the naphthalene ring centroids. Adjacent π-stacked columns, co-linear with the b-axis, are linked by C—H⋯π inter­actions.

Related literature

For the synthesis, see: Letsinger & Hamilton (1958[Letsinger, R. L. & Hamilton, S. B. (1958). J. Am. Chem. Soc. 80, 5411-5413.]); Pailer & Fenzl (1961[Pailer, M. & Fenzl, W. (1961). Monatsh. Chem. 92, 1294-1299.]); Kaupp et al. (2003[Kaupp, G., Naimi-Jamal, M. R. & Stepanenko, V. (2003). Chem. Eur. J. 9, 4156-4160.]); Slabber (2011[Slabber, C. A. (2011). MSc Thesis, University of KwaZulu-Natal, South Africa.]). For related structures and luminescence studies, see: Weber et al. (2009[Weber, L., Werner, V., Fox, M. A., Marder, R. T., Schwedler, S., Brockhinke, A., Stammler, H.-G. & Neumann, B. (2009). Dalton Trans. pp. 1339-1351.]). Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999[Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.]) by the multi-scan inter-frame scaling (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13BN2

  • Mr = 244.10

  • Monoclinic, P 21

  • a = 11.0117 (7) Å

  • b = 5.4299 (2) Å

  • c = 11.7454 (7) Å

  • β = 117.574 (8)°

  • V = 622.52 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.45 × 0.35 × 0.35 mm

Data collection
  • Oxford Diffraction Xcalibur 2 CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2002[Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED, Oxford Diffraction Ltd, Abingdon,England.]) Tmin = 0.966, Tmax = 0.974

  • 6492 measured reflections

  • 2177 independent reflections

  • 1601 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.121

  • S = 0.91

  • 2173 reflections

  • 173 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is he centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cg3i 0.97 2.86 3.630 (2) 136
Symmetry code: (i) [-x+3, y+{\script{1\over 2}}, -z+2].

Data collection: CrysAlis CCD (Oxford Diffraction, 2002[Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED, Oxford Diffraction Ltd, Abingdon,England.]5); cell refinement: CrysAlis RED (Oxford Diffraction, 2002[Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED, Oxford Diffraction Ltd, Abingdon,England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON, Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

The title compound is approaching planarity. The biggest deviation from planarity lies in the phenyl ring, which subtends an angle of 9.0 (5)° ° relative to the naphthalene rings and the boron-nitrogen heterocycle. The N1—B—C11—C12 torsion angle is 6.0 (3) ° and the N2—B—C11—C16 torsion angle is 5.6 (3)°. The two N—B bonds are approximately equal (averaged to 1.414 (5) Å), the B—C11 bond length is 1.562 (2) Å. The N1—B—N2 bond angle measures 115.6 (2) ° while the N1—B—C11 and N2—B—C11 bond angles measure 122.0 (2) and 122.4 (2) °, respectively. These bond lengths and angles are in good agreement with those reported for structurally related diazaborolyl systems (Weber et al.).

The structure shows the molecules to be packed into infinite one-dimensional columns, supported by π···π interactions. The Cg1···Cg2 distance is 3.92 Å, where Cg1 and Cg2 are the centroids of two naphthyl rings of adjacent molecules. The one-dimensional chains run collinear with the b axis. The spacing between the mean planes of the naphthalene rings of two neighbouring molecules is 3.44 (4) Å. Two adjoining π—stacked columns are linked together by a C—H···π interaction between atoms C12–H12 and Cg3, where Cg3 is the centroid of the phenyl ring. The H12···Cg3 and C12···Cg3 distances are 2.86 (3)Å and 3.63 (3) Å, respectively, with a C12—H12 bond length of 0.970 (2) Å. The symmetry code is 2 - x, ½+y, 2 - z.

Related literature top

For the synthesis, see: Letsinger & Hamilton (1958); Pailer & Fenzl (1961); Kaupp et al. (2003); Slabber (2011). For related structures and luminescence studies, see: Weber et al. (2009). Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997)

Experimental top

To a solution of 1,8-diaminonaphthalene in toluene (4.11 mmol in 50 ml, 0.82M) (Letsinger, 1958, Slabber, 2011) was added the phenylboronic acid (4.11 mmol) in one portion. The round-bottomed flask was equipped with a Dean and Stark trap, and the solution was stirred and heated at 110°C for 3 h. The solvent was removed in vacuo and column chromatography of the crude solid on silica eluting with CH2Cl2 yielded pale green crystalline material in a yield of 77%. Crystals suitable for X-ray diffraction analysis were grown from CH2Cl2 at room temperature.

Refinement top

In the absence of significant anomalous scattering, Friedel pairs were merged.

The absolute configuration was arbitrarily assigned.

The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:nnn) reflect changes in the illuminated volume of the crystal.

Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997).

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 20025); cell refinement: CrysAlis RED (Oxford Diffraction, 2002); data reduction: CrysAlis RED (Oxford Diffraction, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The title compound, showing the fll atom labelling scheme, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 2] Fig. 2. Intermolecular interactions of the title compound. The columns are supported by π-stacking and C–H···π interqactions. The resulting column runs collinear to the b axis.
2-Phenylnaphtho[1,8-de][1,3,2]diazaborinane top
Crystal data top
C16H13BN2F(000) = 256
Mr = 244.10Dx = 1.302 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3114 reflections
a = 11.0117 (7) Åθ = 3.5–32.1°
b = 5.4299 (2) ŵ = 0.08 mm1
c = 11.7454 (7) ÅT = 298 K
β = 117.574 (8)°Amorphous, colourless
V = 622.52 (7) Å30.45 × 0.35 × 0.35 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur 2 CCD
diffractometer
1601 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω/2θ scansθmax = 32.2°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2002)
h = 1616
Tmin = 0.966, Tmax = 0.974k = 67
6492 measured reflectionsl = 1717
2177 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.09P)2 + 0.01P],
where P = [max(Fo2,0) + 2Fc2]/3
wR(F2) = 0.121(Δ/σ)max = 0.000415
S = 0.91Δρmax = 0.20 e Å3
2173 reflectionsΔρmin = 0.16 e Å3
173 parametersExtinction correction: Larson (1970), Equation 22
1 restraintExtinction coefficient: 140 (30)
Primary atom site location: structure-invariant direct methods
Crystal data top
C16H13BN2V = 622.52 (7) Å3
Mr = 244.10Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.0117 (7) ŵ = 0.08 mm1
b = 5.4299 (2) ÅT = 298 K
c = 11.7454 (7) Å0.45 × 0.35 × 0.35 mm
β = 117.574 (8)°
Data collection top
Oxford Diffraction Xcalibur 2 CCD
diffractometer
2177 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2002)
1601 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.974Rint = 0.025
6492 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.121H-atom parameters constrained
S = 0.91Δρmax = 0.20 e Å3
2173 reflectionsΔρmin = 0.16 e Å3
173 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.07937 (13)0.0122 (3)0.90876 (12)0.0456
C90.94717 (15)0.0472 (3)0.80805 (13)0.0417
C100.92753 (16)0.2405 (3)0.71948 (14)0.0406
C11.03776 (16)0.3948 (3)0.73368 (14)0.0430
N21.16544 (14)0.3539 (3)0.83909 (13)0.0491
B1.19265 (18)0.1616 (4)0.92917 (17)0.0403
C111.33755 (15)0.1227 (3)1.04553 (14)0.0399
C121.44379 (16)0.2892 (3)1.07293 (15)0.0477
C131.57062 (17)0.2611 (4)1.17915 (16)0.0531
C141.59475 (16)0.0640 (4)1.26062 (15)0.0511
C151.49189 (18)0.1046 (4)1.23488 (17)0.0560
C161.36508 (17)0.0755 (3)1.12917 (17)0.0517
C21.01683 (19)0.5787 (4)0.64568 (17)0.0543
C30.8862 (2)0.6115 (4)0.54197 (17)0.0612
C40.7787 (2)0.4684 (4)0.52663 (17)0.0583
C50.79515 (16)0.2780 (4)0.61455 (14)0.0475
C60.68699 (17)0.1231 (4)0.60321 (17)0.0561
C70.70890 (17)0.0588 (4)0.68964 (17)0.0580
C80.83880 (17)0.0999 (4)0.79292 (16)0.0522
H121.42930.42881.01660.0546*
H131.64230.38241.19560.0605*
H141.68130.04431.33390.0599*
H151.50870.23971.29020.0629*
H161.29540.19801.11330.0628*
H21.09180.68440.65510.0617*
H30.87360.73780.48050.0712*
H40.69200.49190.45650.0616*
H60.59820.14870.53150.0599*
H70.63550.16520.68000.0684*
H80.85470.23200.85290.0600*
H1011.09170.11390.95950.0510*
H1021.23400.45030.84710.0527*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0460 (7)0.0460 (7)0.0388 (6)0.0010 (6)0.0146 (5)0.0082 (6)
C90.0420 (7)0.0475 (9)0.0358 (7)0.0013 (7)0.0182 (6)0.0005 (7)
C100.0424 (7)0.0452 (9)0.0354 (6)0.0063 (7)0.0190 (6)0.0001 (6)
C10.0453 (8)0.0455 (8)0.0400 (7)0.0084 (7)0.0212 (6)0.0054 (7)
N20.0402 (6)0.0529 (9)0.0506 (7)0.0006 (6)0.0180 (6)0.0130 (6)
B0.0415 (8)0.0417 (9)0.0387 (8)0.0033 (7)0.0194 (6)0.0029 (7)
C110.0411 (7)0.0403 (8)0.0391 (7)0.0041 (6)0.0193 (6)0.0031 (6)
C120.0479 (8)0.0481 (9)0.0445 (7)0.0000 (8)0.0191 (6)0.0051 (8)
C130.0450 (8)0.0589 (11)0.0517 (9)0.0047 (8)0.0191 (7)0.0027 (8)
C140.0421 (8)0.0626 (11)0.0430 (7)0.0078 (8)0.0150 (6)0.0010 (8)
C150.0526 (9)0.0582 (11)0.0528 (9)0.0112 (9)0.0206 (7)0.0179 (9)
C160.0452 (8)0.0493 (10)0.0555 (9)0.0015 (8)0.0190 (7)0.0128 (8)
C20.0590 (9)0.0540 (10)0.0541 (9)0.0104 (8)0.0297 (8)0.0142 (8)
C30.0716 (11)0.0607 (11)0.0490 (9)0.0188 (10)0.0260 (8)0.0179 (9)
C40.0565 (9)0.0651 (12)0.0421 (8)0.0178 (9)0.0134 (7)0.0059 (8)
C50.0463 (8)0.0558 (10)0.0374 (7)0.0110 (8)0.0168 (6)0.0022 (7)
C60.0422 (8)0.0732 (12)0.0455 (8)0.0055 (9)0.0141 (6)0.0074 (9)
C70.0454 (8)0.0729 (13)0.0548 (9)0.0082 (9)0.0225 (7)0.0070 (9)
C80.0495 (9)0.0610 (11)0.0488 (8)0.0036 (8)0.0250 (7)0.0012 (8)
Geometric parameters (Å, º) top
N1—C91.4001 (18)C14—C151.376 (3)
N1—B1.412 (2)C14—H140.949
N1—H1010.876C15—C161.383 (2)
C9—C101.422 (2)C15—H150.940
C9—C81.377 (2)C16—H160.966
C10—C11.420 (2)C2—C31.401 (2)
C10—C51.422 (2)C2—H20.969
C1—N21.3956 (19)C3—C41.356 (3)
C1—C21.378 (2)C3—H30.958
N2—B1.416 (2)C4—C51.412 (3)
N2—H1020.888C4—H40.937
B—C111.562 (2)C5—C61.413 (3)
C11—C121.393 (2)C6—C71.356 (3)
C11—C161.393 (2)C6—H60.961
C12—C131.385 (2)C7—C81.400 (2)
C12—H120.969C7—H70.956
C13—C141.377 (3)C8—H80.963
C13—H130.976
C9—N1—B123.84 (13)C15—C14—H14120.2
C9—N1—H101117.0C14—C15—C16120.50 (17)
B—N1—H101119.1C14—C15—H15119.3
N1—C9—C10117.69 (13)C16—C15—H15120.2
N1—C9—C8122.02 (14)C11—C16—C15121.42 (16)
C10—C9—C8120.29 (14)C11—C16—H16120.1
C9—C10—C1121.16 (12)C15—C16—H16118.4
C9—C10—C5119.17 (14)C1—C2—C3119.49 (18)
C1—C10—C5119.67 (14)C1—C2—H2120.4
C10—C1—N2117.75 (13)C3—C2—H2120.1
C10—C1—C2120.18 (14)C2—C3—C4121.63 (18)
N2—C1—C2122.08 (15)C2—C3—H3118.6
C1—N2—B123.93 (14)C4—C3—H3119.8
C1—N2—H102117.3C3—C4—C5120.91 (16)
B—N2—H102118.7C3—C4—H4120.7
N2—B—N1115.57 (13)C5—C4—H4118.4
N2—B—C11122.03 (14)C10—C5—C4118.13 (16)
N1—B—C11122.37 (13)C10—C5—C6118.52 (16)
B—C11—C12121.53 (14)C4—C5—C6123.35 (16)
B—C11—C16121.48 (14)C5—C6—C7120.87 (16)
C12—C11—C16116.95 (14)C5—C6—H6117.9
C11—C12—C13121.70 (16)C7—C6—H6121.2
C11—C12—H12119.6C6—C7—C8121.40 (17)
C13—C12—H12118.7C6—C7—H7120.3
C12—C13—C14120.09 (17)C8—C7—H7118.3
C12—C13—H13119.3C7—C8—C9119.74 (17)
C14—C13—H13120.6C7—C8—H8121.3
C13—C14—C15119.32 (15)C9—C8—H8119.0
C13—C14—H14120.5
Hydrogen-bond geometry (Å, º) top
Cg3 is he centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg3i0.972.863.630 (2)136
Symmetry code: (i) x+3, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC16H13BN2
Mr244.10
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)11.0117 (7), 5.4299 (2), 11.7454 (7)
β (°) 117.574 (8)
V3)622.52 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.45 × 0.35 × 0.35
Data collection
DiffractometerOxford Diffraction Xcalibur 2 CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2002)
Tmin, Tmax0.966, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
6492, 2177, 1601
Rint0.025
(sin θ/λ)max1)0.750
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.121, 0.91
No. of reflections2173
No. of parameters173
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.16

Computer programs: CrysAlis CCD (Oxford Diffraction, 20025), CrysAlis RED (Oxford Diffraction, 2002), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
Cg3 is he centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg3i0.972.863.630 (2)136
Symmetry code: (i) x+3, y+1/2, z+2.
 

Acknowledgements

The authors would like to thank Professor O. Q. Munro and Mr C. R. Wilson (University of KwaZulu-Natal) for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGörbitz, C. H. (1999). Acta Cryst. B55, 1090–1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaupp, G., Naimi-Jamal, M. R. & Stepanenko, V. (2003). Chem. Eur. J. 9, 4156–4160.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLetsinger, R. L. & Hamilton, S. B. (1958). J. Am. Chem. Soc. 80, 5411–5413.  CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationOxford Diffraction (2002). CrysAlis CCD and CrysAlis RED, Oxford Diffraction Ltd, Abingdon,England.  Google Scholar
First citationPailer, M. & Fenzl, W. (1961). Monatsh. Chem. 92, 1294–1299.  CrossRef CAS Web of Science Google Scholar
First citationSlabber, C. A. (2011). MSc Thesis, University of KwaZulu–Natal, South Africa.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON, Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWeber, L., Werner, V., Fox, M. A., Marder, R. T., Schwedler, S., Brockhinke, A., Stammler, H.-G. & Neumann, B. (2009). Dalton Trans. pp. 1339–1351.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds