organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1958-o1959

4,7,13,18-Tetra­oxa-1,10-diazo­nia­bi­cyclo­[8.5.5]i­cosane hexa­fluorido­silicate

aCentre for Accelerator Based Research and Energy Physics (SAFE), Department of Chemistry, University of Oslo, PO Box 1038 Blindern, Oslo 0318, Norway, binGAP Centre for Research Based Innovation, Center for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, PO Box 1033 Blindern, Oslo 0315, Norway, and cDepartment of Chemistry, University of Oslo, PO Box 1033 Blindern, Oslo 0315, Norway
*Correspondence e-mail: n.s.gupta@kjemi.uio.no

(Received 29 March 2011; accepted 30 June 2011; online 9 July 2011)

The asymmetric unit of the title molecular salt, C14H30N2O42+·SiF62−, contains half of both the anion and the cation, both ions being completed by a crystallographic twofold axis passing through the Si atom. The cation has a cage structure with the ammonium H atoms pointing into the cage. These H atoms are shielded from inter­molecular inter­actions and form only intra­molecular contacts. There are short inter­molecular C—H⋯F inter­actions in the structure, but no conventional inter­molecular hydrogen bonds.

Related literature

For related structures, see: Cos et al. (1982[Cos, B. G., Murray-Rust, J., Murray-Rust, P., van Truong, N. & Schneider, H. (1982). Chem. Commun. pp. 377-379.]); Rehder & Wang (2003[Rehder, D. & Wang, D. (2003). Private Communication.]); Luger et al. (1991[Luger, P., Buschmann, J., Knöchel, A., Tiemann, D. & Patz, M. (1991). Acta Cryst. C47, 1860-1863.]); Sen Gupta et al. (2011[Sen Gupta, N., Wragg, D. S., Tilset, M. & Omtvedt, J. P. (2011). Acta Cryst., E67, 1929-1930.]); Anderson et al. (2006[Anderson, K. M., Goeta, A. E., Hancock, K. S. B. & Steed, J. W. (2006). Chem. Commun. pp. 2138-2140.]); Braband et al. (2003[Braband, H., Zahn, T. I. & Abram, U. (2003). Inorg. Chem. 42, 6160-6162.]); Llusar et al. (2001[Llusar, R., Uriel, S. & Vicent, C. (2001). J. Chem. Soc. Dalton Trans. pp. 2813-2818.]). For discussion of a cryptand as a mol­ecular automatic titrator, see: Alibrandi et al. (2009[Alibrandi, G., Lo Vecchio, C. & Lando, G. (2009). Angew. Chem. Int. Ed. 48, 6332-6334.]). For NMR data, see: Macchioni et al. (2001[Macchioni, A., Zuccaccia, C., Clot, E., Gruet, K. & Crabtree, R. H. (2001). Organometallics, 20, 2367-2373.]); Christe & Wilson (1990[Christe, K. O. & Wilson, W. W. (1990). J. Fluorine Chem. 46, 339-342.]).

[Scheme 1]

Experimental

Crystal data
  • C14H30N2O42+·SiF62−

  • Mr = 432.49

  • Orthorhombic, P b c n

  • a = 10.050 (5) Å

  • b = 23.218 (5) Å

  • c = 8.031 (5) Å

  • V = 1874.0 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.11 × 0.10 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.990

  • 9809 measured reflections

  • 2305 independent reflections

  • 1467 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.116

  • S = 1.02

  • 2305 reflections

  • 123 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.91 2.19 2.701 (2) 115
N1—H1⋯O1 0.91 2.30 2.813 (2) 115
N1—H1⋯O1i 0.91 2.37 2.826 (2) 111
C1—H1B⋯F004ii 0.97 2.37 3.277 (3) 156
C011—H01B⋯F3iii 0.97 2.50 3.381 (3) 151
C2—H2A⋯F005iv 0.97 2.39 3.289 (3) 155
C014—H01C⋯F005 0.97 2.41 3.257 (3) 146
C3—H3A⋯F004v 0.97 2.41 3.189 (3) 137
C3—H3B⋯F3iii 0.97 2.17 3.129 (3) 169
C014—H01D⋯F3 0.97 2.50 3.039 (3) 115
C4—H4B⋯F005v 0.97 2.52 3.368 (3) 147
Symmetry codes: (i) [-x+2, y, -z+{\script{3\over 2}}]; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x, -y, z+{\script{1\over 2}}]; (v) x, y, z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Compound (I) was obtained unintentionally as the product of the attempted synthesis of a metal-encrypted tungsten(VI) complex with the [2.1.1]cryptand, 4,7,13,18-tetraoxa-1,10-diazabicyclo[8.5.5]icosane. We suspect that WCl6, being susceptable to hydrolysis, reacted with water that was present as a contaminant. Compound (I) was obtained by recrystallization of the crude reaction product from acetone. When the same product was recrystalized from methanol, a similar diprotonated cryptand salt with PF6- as the anion formed (Sen Gupta et al., 2011). The solvent used for recystallization was the only difference between the methods to obtain the two different crystals.

This structure was originally solved as a hexafluorophosphate salt, but the P—F bond lengths appeared unusually long and corresponded to typical Si—F rather than P—F bonds. The highest difference peak was close to H—N+, indicating that the occupancy of the H atom was higher than 0.5, which would be required to ensure charge neutrality in a PF6- salt. The most negative difference density was observed near the central P atom, showing that in reality there are less electrons there. Furthermore, refinement of the data with Si gave slightly lower R factors than with P. Though similar long P—F bonds are not unprecedented (Braband et al., 2003; Llusar et al., 2001), the above observations very strongly suggested that this was a diprotonated SiF62- salt rather than a monoprotonated PF6- salt.

The presence of both anions in the reaction product was confirmed by 19F NMR data collected in a CD3OD solution. The presence of the PF6- anion was indicated by a doublet at δ = -74.7 p.p.m. with 1J(19F–31P) = 754 Hz (Macchioni et al., 2001). A small singlet peak at δ = -130.6 p.p.m. and a heteronuclear coupling constant 1J(29Si–19F) = 109 Hz were also observed and correspond to the SiF62- anion (Christe & Wilson, 1990).

SiF62- is assumed to be generated by the formation of HF upon the hydrolysis of PF6- and by the consequent reaction of HF with the silica of the glass. A smilar case was reported by Anderson et al. (2006).

In the crystal of compound (I), the two ammonium hydrogen atoms of the diprotonated cryptand cage are pointing inwards. Cryptands are known to form proton crypts, in which the protons are very efficiently concealed inside a tight molecular cavity. No exception is observed here: the ammonium hydrogen atoms are not involved in intermolecular hydrogen bonding. They only form intramolecular contacts with the oxygen atoms of the cryptand.

Related literature top

For related structures, see: Cos et al. (1982); Rehder & Wang (2003); Luger et al. (1991); Sen Gupta et al. (2011); Anderson et al. (2006); Braband et al. (2003); Llusar et al. (2001). For discussion of a cryptand as a molecular automatic titrator, see: Alibrandi et al. (2009). For NMR data, see: Macchioni et al. (2001); Christe & Wilson (1990).

Experimental top

Reagents were purchased from Sigma-Aldrich and were used without further purification. Reactions were carried out under inert conditions by Schlenk-line techniques. The metal chloride (WCl6, 100 mg, 0.25 mmol) was allowed to stir for a minute in 10 ml toluene and then was reacted with a small excess of of AgPF6 (381 mg, 1.51 mmol) to give AgCl as a precipitate and W(PF6)6 dissolved in solution. After 30 minutes stirring, the precipitate was allowed to settle. The solution was transferred under inert conditions by cannula technique and treated with the solution of [2.1.1]cryptand (66 µl, 0.25 mmol) in 5 ml toluene for 30 minutes. The crude reaction product was obtained as dirty yellow mass after drying the solvent. Portions of the product were recrystallized from acetone which produced crystal (I).

Refinement top

Hydrogen Uiso's were set at 1.2 times the Ueq of the heavy atom to which the hydrogen was attached and refined in riding mode. C—H distances were fixed at 0.97 Å and the N—H distance at 0.91 Å.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. The hydrogen atoms attached to the carbons are omitted for clarity. Symmetry codes: (i) -x+1, y, -z+1/2; (ii) -x+2, y, -z+3/2.
[Figure 2] Fig. 2. Packing diagram for (I) viewed along the a axis. H atoms omitted for clarity.
4,7,13,18-Tetraoxa-1,10-diazoniabicyclo[8.5.5]icosane hexafluoridosilicate top
Crystal data top
C14H30N2O42+·SiF62F(000) = 912
Mr = 432.49Dx = 1.533 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2312 reflections
a = 10.050 (5) Åθ = 2.2–28.0°
b = 23.218 (5) ŵ = 0.21 mm1
c = 8.031 (5) ÅT = 293 K
V = 1874.0 (15) Å3Block, colourless
Z = 40.11 × 0.10 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2305 independent reflections
Radiation source: sealed tube1467 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 28.8°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1113
Tmin = 0.977, Tmax = 0.990k = 2931
9809 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.6523P]
where P = (Fo2 + 2Fc2)/3
2305 reflections(Δ/σ)max < 0.001
123 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C14H30N2O42+·SiF62V = 1874.0 (15) Å3
Mr = 432.49Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 10.050 (5) ŵ = 0.21 mm1
b = 23.218 (5) ÅT = 293 K
c = 8.031 (5) Å0.11 × 0.10 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2305 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1467 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.990Rint = 0.028
9809 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.02Δρmax = 0.32 e Å3
2305 reflectionsΔρmin = 0.26 e Å3
123 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.50000.14596 (3)0.25000.02931 (19)
F30.61848 (13)0.19715 (5)0.25800 (17)0.0524 (3)
O20.86157 (15)0.02390 (6)0.76498 (17)0.0421 (4)
F0040.50972 (13)0.14736 (7)0.04208 (16)0.0729 (5)
F0050.61920 (12)0.09635 (5)0.2602 (2)0.0668 (4)
O10.97909 (13)0.14163 (5)0.97904 (18)0.0391 (3)
N10.79018 (16)0.13502 (6)0.72125 (19)0.0341 (4)
H10.87020.11740.73670.041*
C50.9322 (2)0.02623 (8)0.7128 (3)0.0403 (5)
H5A0.93890.02670.59230.048*
H5B0.88440.06050.74770.048*
C10.6852 (2)0.08871 (8)0.7376 (3)0.0450 (5)
H1A0.65810.08530.85310.054*
H1B0.60760.09910.67220.054*
C30.7786 (2)0.18006 (8)0.8537 (3)0.0394 (5)
H3A0.68540.18790.87570.047*
H3B0.82000.21550.81600.047*
C0110.9254 (2)0.18663 (9)0.5104 (2)0.0412 (5)
H01A0.92530.20320.39960.049*
H01B0.94590.21680.59010.049*
C40.8453 (2)0.15967 (10)1.0105 (3)0.0429 (5)
H4A0.84560.19061.09170.051*
H4B0.79520.12781.05690.051*
C20.7402 (2)0.03213 (9)0.6775 (3)0.0483 (6)
H2A0.67850.00110.70130.058*
H2B0.75600.03330.55840.058*
C0140.7927 (2)0.16036 (9)0.5484 (2)0.0424 (5)
H01C0.77360.13040.46770.051*
H01D0.72410.18960.53910.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0274 (4)0.0258 (3)0.0347 (4)0.0000.0017 (3)0.000
F30.0491 (8)0.0408 (6)0.0671 (8)0.0155 (6)0.0126 (6)0.0053 (6)
O20.0468 (8)0.0332 (7)0.0463 (8)0.0034 (6)0.0072 (7)0.0068 (6)
F0040.0457 (8)0.1356 (14)0.0373 (7)0.0124 (8)0.0033 (6)0.0186 (8)
F0050.0401 (7)0.0406 (7)0.1199 (13)0.0122 (6)0.0051 (8)0.0097 (8)
O10.0357 (8)0.0381 (8)0.0435 (8)0.0003 (6)0.0016 (6)0.0001 (6)
N10.0268 (8)0.0330 (8)0.0426 (9)0.0010 (6)0.0007 (7)0.0030 (7)
C50.0537 (13)0.0267 (9)0.0406 (11)0.0044 (9)0.0065 (9)0.0041 (7)
C10.0293 (10)0.0426 (12)0.0632 (14)0.0069 (9)0.0008 (10)0.0046 (11)
C30.0383 (11)0.0346 (10)0.0454 (11)0.0042 (9)0.0074 (9)0.0007 (8)
C0110.0448 (12)0.0429 (11)0.0358 (10)0.0049 (9)0.0023 (9)0.0081 (9)
C40.0388 (11)0.0510 (13)0.0390 (11)0.0033 (9)0.0084 (9)0.0014 (9)
C20.0457 (13)0.0414 (12)0.0578 (13)0.0097 (10)0.0078 (11)0.0001 (10)
C0140.0380 (11)0.0505 (12)0.0386 (11)0.0045 (9)0.0064 (9)0.0067 (9)
Geometric parameters (Å, º) top
Si1—F005i1.6640 (13)C1—C21.505 (3)
Si1—F0051.6640 (13)C1—H1A0.9700
Si1—F004i1.6730 (17)C1—H1B0.9700
Si1—F0041.6730 (17)C3—C41.503 (3)
Si1—F31.6836 (13)C3—H3A0.9700
Si1—F3i1.6836 (13)C3—H3B0.9700
O2—C21.421 (3)C011—O1ii1.421 (2)
O2—C51.426 (2)C011—C0141.498 (3)
O1—C011ii1.421 (2)C011—H01A0.9700
O1—C41.431 (2)C011—H01B0.9700
N1—C31.496 (2)C4—H4A0.9700
N1—C0141.508 (2)C4—H4B0.9700
N1—C11.512 (2)C2—H2A0.9700
N1—H10.9100C2—H2B0.9700
C5—C5ii1.488 (4)C014—H01C0.9700
C5—H5A0.9700C014—H01D0.9700
C5—H5B0.9700
F005i—Si1—F00592.38 (10)N1—C1—H1B109.7
F005i—Si1—F004i91.18 (8)H1A—C1—H1B108.2
F005—Si1—F004i90.36 (8)N1—C3—C4109.91 (16)
F005i—Si1—F00490.36 (8)N1—C3—H3A109.7
F005—Si1—F00491.18 (8)C4—C3—H3A109.7
F004i—Si1—F004177.77 (13)N1—C3—H3B109.7
F005i—Si1—F3178.75 (7)C4—C3—H3B109.7
F005—Si1—F388.72 (7)H3A—C3—H3B108.2
F004i—Si1—F389.40 (7)O1ii—C011—C014106.85 (16)
F004—Si1—F389.03 (7)O1ii—C011—H01A110.4
F005i—Si1—F3i88.72 (7)C014—C011—H01A110.4
F005—Si1—F3i178.75 (7)O1ii—C011—H01B110.4
F004i—Si1—F3i89.03 (7)C014—C011—H01B110.4
F004—Si1—F3i89.40 (7)H01A—C011—H01B108.6
F3—Si1—F3i90.18 (10)O1—C4—C3111.31 (16)
C2—O2—C5113.08 (16)O1—C4—H4A109.4
C011ii—O1—C4114.14 (15)C3—C4—H4A109.4
C3—N1—C014112.51 (15)O1—C4—H4B109.4
C3—N1—C1112.39 (16)C3—C4—H4B109.4
C014—N1—C1111.66 (16)H4A—C4—H4B108.0
C3—N1—H1106.6O2—C2—C1105.91 (17)
C014—N1—H1106.6O2—C2—H2A110.6
C1—N1—H1106.6C1—C2—H2A110.6
O2—C5—C5ii109.75 (13)O2—C2—H2B110.6
O2—C5—H5A109.7C1—C2—H2B110.6
C5ii—C5—H5A109.7H2A—C2—H2B108.7
O2—C5—H5B109.7C011—C014—N1111.18 (16)
C5ii—C5—H5B109.7C011—C014—H01C109.4
H5A—C5—H5B108.2N1—C014—H01C109.4
C2—C1—N1109.68 (17)C011—C014—H01D109.4
C2—C1—H1A109.7N1—C014—H01D109.4
N1—C1—H1A109.7H01C—C014—H01D108.0
C2—C1—H1B109.7
C2—O2—C5—C5ii169.93 (19)N1—C3—C4—O153.0 (2)
C3—N1—C1—C2148.05 (17)C5—O2—C2—C1175.52 (16)
C014—N1—C1—C284.4 (2)N1—C1—C2—O252.4 (2)
C014—N1—C3—C4150.55 (16)O1ii—C011—C014—N160.8 (2)
C1—N1—C3—C482.4 (2)C3—N1—C014—C01176.0 (2)
C011ii—O1—C4—C388.0 (2)C1—N1—C014—C011156.55 (16)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.912.192.701 (2)115
N1—H1···O10.912.302.813 (2)115
N1—H1···O1ii0.912.372.826 (2)111
C1—H1B···F004i0.972.373.277 (3)156
C011—H01B···F3iii0.972.503.381 (3)151
C2—H2A···F005iv0.972.393.289 (3)155
C014—H01C···F0050.972.413.257 (3)146
C3—H3A···F004v0.972.413.189 (3)137
C3—H3B···F3iii0.972.173.129 (3)169
C014—H01D···F30.972.503.039 (3)115
C4—H4B···F005v0.972.523.368 (3)147
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+2, y, z+3/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x, y, z+1/2; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H30N2O42+·SiF62
Mr432.49
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)10.050 (5), 23.218 (5), 8.031 (5)
V3)1874.0 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.11 × 0.10 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.977, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
9809, 2305, 1467
Rint0.028
(sin θ/λ)max1)0.677
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.116, 1.02
No. of reflections2305
No. of parameters123
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.26

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Berndt, 1999), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.912.192.701 (2)115
N1—H1···O10.912.302.813 (2)115
N1—H1···O1i0.912.372.826 (2)111
C1—H1B···F004ii0.972.373.277 (3)156
C011—H01B···F3iii0.972.503.381 (3)151
C2—H2A···F005iv0.972.393.289 (3)155
C014—H01C···F0050.972.413.257 (3)146
C3—H3A···F004v0.972.413.189 (3)137
C3—H3B···F3iii0.972.173.129 (3)169
C014—H01D···F30.972.503.039 (3)115
C4—H4B···F005v0.972.523.368 (3)147
Symmetry codes: (i) x+2, y, z+3/2; (ii) x+1, y, z+1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x, y, z+1/2; (v) x, y, z+1.
 

Acknowledgements

The authors thank the Norwegian Research Council for financial support (project No. 177538).

References

First citationAlibrandi, G., Lo Vecchio, C. & Lando, G. (2009). Angew. Chem. Int. Ed. 48, 6332–6334.  Web of Science CrossRef CAS Google Scholar
First citationAnderson, K. M., Goeta, A. E., Hancock, K. S. B. & Steed, J. W. (2006). Chem. Commun. pp. 2138–2140.  Web of Science CSD CrossRef Google Scholar
First citationBraband, H., Zahn, T. I. & Abram, U. (2003). Inorg. Chem. 42, 6160–6162.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChriste, K. O. & Wilson, W. W. (1990). J. Fluorine Chem. 46, 339–342.  CrossRef CAS Web of Science Google Scholar
First citationCos, B. G., Murray-Rust, J., Murray-Rust, P., van Truong, N. & Schneider, H. (1982). Chem. Commun. pp. 377–379.  Google Scholar
First citationLlusar, R., Uriel, S. & Vicent, C. (2001). J. Chem. Soc. Dalton Trans. pp. 2813–2818.  Web of Science CSD CrossRef Google Scholar
First citationLuger, P., Buschmann, J., Knöchel, A., Tiemann, D. & Patz, M. (1991). Acta Cryst. C47, 1860–1863.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacchioni, A., Zuccaccia, C., Clot, E., Gruet, K. & Crabtree, R. H. (2001). Organometallics, 20, 2367–2373.  Web of Science CrossRef CAS Google Scholar
First citationRehder, D. & Wang, D. (2003). Private Communication.  Google Scholar
First citationSen Gupta, N., Wragg, D. S., Tilset, M. & Omtvedt, J. P. (2011). Acta Cryst., E67, 1929–1930.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1958-o1959
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds