organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4-Dihy­dr­oxy­phenethyl acetate

aJiangsu Engineering Technology Research Center of, Polypeptide Pharmaceutical, Nanjing 210009, People's Republic of China, and bState Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: chemywg@126.com

(Received 14 June 2011; accepted 5 July 2011; online 9 July 2011)

In the title compound, C10H12O4, the dihedral angle between the acetate group and the aromatic ring is 20.47 (10)°. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming [001] chains. Weak C—H⋯O inter­actions consolidate the packing.

Related literature

For the synthesis, see: Bovicelli et al. (2007[Bovicelli, P., Antonioletti, R., Mancini, S., Causio, S., Borioni, G., Ammendola, S. & Barontini, M. (2007). Synth. Commun. 37, 4245-4252.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12O4

  • Mr = 196.20

  • Monoclinic, P 21 /n

  • a = 11.088 (2) Å

  • b = 7.7100 (15) Å

  • c = 12.687 (3) Å

  • β = 114.50 (3)°

  • V = 986.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.970, Tmax = 0.990

  • 3672 measured reflections

  • 1819 independent reflections

  • 1439 reflections with I > 2σ(I)

  • Rint = 0.025

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.146

  • S = 1.01

  • 1819 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.82 2.11 2.827 (2) 145
O2—H2A⋯O4ii 0.82 1.89 2.7138 (19) 179
C10—H10A⋯O1iii 0.96 2.36 3.316 (3) 177
Symmetry codes: (i) -x+2, -y, -z; (ii) -x+2, -y, -z+1; (iii) x, y, z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Related literature top

For the synthesis, see: Bovicelli et al. (2007).

Experimental top

The title compound was prepared by the literature method (Bovicelli et al. 2007). Colourless blocks of (I) were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically with C—H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 (or 1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at 30% probability levels.
[Figure 2] Fig. 2. A practical packing diagram of the title compound. Hydron bonds are shown as dashed lines.
3,4-Dihydroxyphenethyl acetate top
Crystal data top
C10H12O4F(000) = 416
Mr = 196.20Dx = 1.320 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.088 (2) ÅCell parameters from 25 reflections
b = 7.7100 (15) Åθ = 9–13°
c = 12.687 (3) ŵ = 0.10 mm1
β = 114.50 (3)°T = 293 K
V = 986.9 (3) Å3Block, colorless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1439 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 25.4°, θmin = 2.1°
ω/2θ scansh = 013
Absorption correction: ψ scan
(North et al., 1968)
k = 99
Tmin = 0.970, Tmax = 0.990l = 1513
3672 measured reflections3 standard reflections every 200 reflections
1819 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.1P)2 + 0.110P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1819 reflectionsΔρmax = 0.28 e Å3
129 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXS97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.113 (13)
Crystal data top
C10H12O4V = 986.9 (3) Å3
Mr = 196.20Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.088 (2) ŵ = 0.10 mm1
b = 7.7100 (15) ÅT = 293 K
c = 12.687 (3) Å0.30 × 0.20 × 0.10 mm
β = 114.50 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1439 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.025
Tmin = 0.970, Tmax = 0.9903 standard reflections every 200 reflections
3672 measured reflections intensity decay: 1%
1819 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.01Δρmax = 0.28 e Å3
1819 reflectionsΔρmin = 0.21 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.82657 (16)0.1555 (2)0.06613 (11)0.0744 (5)
H1A0.88140.08140.06190.112*
C10.61846 (18)0.1594 (2)0.09171 (14)0.0500 (5)
H1B0.53260.19150.07870.060*
O20.99568 (12)0.0172 (2)0.13823 (10)0.0600 (4)
H2A1.04010.01620.20450.090*
C20.6604 (2)0.1768 (3)0.00363 (14)0.0551 (5)
H2B0.60230.21950.06810.066*
O30.67398 (12)0.1071 (2)0.48254 (10)0.0591 (4)
C30.78691 (19)0.1315 (2)0.02105 (14)0.0493 (5)
O40.85894 (13)0.0936 (2)0.64219 (11)0.0667 (5)
C40.87258 (17)0.0653 (2)0.12809 (14)0.0444 (4)
C50.83054 (17)0.0485 (2)0.21595 (13)0.0435 (4)
H5A0.88860.00530.28750.052*
C60.70253 (17)0.0951 (2)0.19887 (14)0.0425 (4)
C70.65213 (17)0.0689 (3)0.29153 (14)0.0498 (5)
H7A0.57050.13390.27030.060*
H7B0.63120.05290.29340.060*
C80.74690 (17)0.1231 (2)0.41116 (15)0.0490 (5)
H8A0.82420.04830.43980.059*
H8B0.77570.24180.41090.059*
C90.73987 (17)0.0917 (2)0.59542 (15)0.0497 (5)
C100.6508 (2)0.0698 (4)0.65552 (17)0.0706 (7)
H10A0.69970.09060.73690.106*
H10B0.61630.04630.64390.106*
H10C0.57880.15080.62460.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0785 (10)0.1125 (13)0.0404 (7)0.0258 (9)0.0327 (7)0.0154 (7)
C10.0448 (9)0.0593 (11)0.0435 (9)0.0051 (8)0.0162 (8)0.0028 (7)
O20.0493 (7)0.0940 (11)0.0420 (7)0.0130 (7)0.0241 (6)0.0090 (6)
C20.0565 (11)0.0675 (12)0.0346 (9)0.0115 (9)0.0122 (8)0.0035 (8)
O30.0406 (7)0.1006 (11)0.0383 (7)0.0101 (6)0.0185 (5)0.0056 (6)
C30.0586 (11)0.0581 (11)0.0337 (8)0.0033 (8)0.0217 (8)0.0002 (7)
O40.0414 (8)0.1125 (12)0.0430 (7)0.0016 (7)0.0144 (6)0.0054 (7)
C40.0455 (9)0.0515 (10)0.0373 (8)0.0000 (7)0.0184 (7)0.0019 (7)
C50.0462 (9)0.0501 (9)0.0344 (8)0.0020 (7)0.0169 (7)0.0041 (7)
C60.0436 (9)0.0458 (9)0.0386 (9)0.0013 (7)0.0176 (7)0.0026 (7)
C70.0469 (10)0.0627 (11)0.0443 (10)0.0003 (8)0.0235 (8)0.0026 (8)
C80.0439 (9)0.0641 (11)0.0438 (9)0.0065 (8)0.0231 (8)0.0074 (8)
C90.0414 (10)0.0702 (12)0.0380 (9)0.0037 (8)0.0170 (7)0.0026 (8)
C100.0529 (12)0.1190 (19)0.0459 (11)0.0016 (12)0.0264 (9)0.0075 (11)
Geometric parameters (Å, º) top
O1—C31.362 (2)C4—C51.381 (2)
O1—H1A0.8200C5—C61.391 (2)
C1—C61.383 (2)C5—H5A0.9300
C1—C21.384 (2)C6—C71.510 (2)
C1—H1B0.9300C7—C81.503 (3)
O2—C41.368 (2)C7—H7A0.9700
O2—H2A0.8200C7—H7B0.9700
C2—C31.371 (3)C8—H8A0.9700
C2—H2B0.9300C8—H8B0.9700
O3—C91.316 (2)C9—C101.487 (2)
O3—C81.448 (2)C10—H10A0.9600
C3—C41.392 (2)C10—H10B0.9600
O4—C91.202 (2)C10—H10C0.9600
C3—O1—H1A109.5C8—C7—C6114.80 (14)
C6—C1—C2120.88 (16)C8—C7—H7A108.6
C6—C1—H1B119.6C6—C7—H7A108.6
C2—C1—H1B119.6C8—C7—H7B108.6
C4—O2—H2A109.5C6—C7—H7B108.6
C3—C2—C1120.62 (16)H7A—C7—H7B107.5
C3—C2—H2B119.7O3—C8—C7105.67 (13)
C1—C2—H2B119.7O3—C8—H8A110.6
C9—O3—C8119.11 (13)C7—C8—H8A110.6
O1—C3—C2119.20 (16)O3—C8—H8B110.6
O1—C3—C4121.50 (17)C7—C8—H8B110.6
C2—C3—C4119.29 (16)H8A—C8—H8B108.7
O2—C4—C5123.78 (16)O4—C9—O3122.44 (17)
O2—C4—C3116.22 (15)O4—C9—C10125.14 (16)
C5—C4—C3119.99 (16)O3—C9—C10112.42 (15)
C4—C5—C6120.92 (16)C9—C10—H10A109.5
C4—C5—H5A119.5C9—C10—H10B109.5
C6—C5—H5A119.5H10A—C10—H10B109.5
C1—C6—C5118.30 (15)C9—C10—H10C109.5
C1—C6—C7119.81 (15)H10A—C10—H10C109.5
C5—C6—C7121.82 (15)H10B—C10—H10C109.5
C6—C1—C2—C30.5 (3)C2—C1—C6—C7176.88 (17)
C1—C2—C3—O1177.86 (17)C4—C5—C6—C10.2 (3)
C1—C2—C3—C40.9 (3)C4—C5—C6—C7176.70 (15)
O1—C3—C4—O23.4 (3)C1—C6—C7—C8138.32 (18)
C2—C3—C4—O2177.79 (17)C5—C6—C7—C844.8 (2)
O1—C3—C4—C5177.72 (17)C9—O3—C8—C7158.48 (17)
C2—C3—C4—C51.0 (3)C6—C7—C8—O3173.27 (15)
O2—C4—C5—C6178.03 (16)C8—O3—C9—O41.5 (3)
C3—C4—C5—C60.7 (3)C8—O3—C9—C10177.75 (18)
C2—C1—C6—C50.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.822.112.827 (2)145
O2—H2A···O4ii0.821.892.7138 (19)179
C10—H10A···O1iii0.962.363.316 (3)177
Symmetry codes: (i) x+2, y, z; (ii) x+2, y, z+1; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H12O4
Mr196.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.088 (2), 7.7100 (15), 12.687 (3)
β (°) 114.50 (3)
V3)986.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.970, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
3672, 1819, 1439
Rint0.025
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.146, 1.01
No. of reflections1819
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.21

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.822.112.827 (2)145
O2—H2A···O4ii0.821.892.7138 (19)179
C10—H10A···O1iii0.962.363.316 (3)177
Symmetry codes: (i) x+2, y, z; (ii) x+2, y, z+1; (iii) x, y, z+1.
 

Acknowledgements

This research work was supported financially by the Program of Six Talent Tops Foundation of Jiangsu Province (2009 NO 2009118) and the Natural Science Basic Research Program of Higher Education in Jiangsu Province (08 K J A530002).

References

First citationBovicelli, P., Antonioletti, R., Mancini, S., Causio, S., Borioni, G., Ammendola, S. & Barontini, M. (2007). Synth. Commun. 37, 4245–4252.  Web of Science CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds