metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1109-m1110

Redetermination of di­aqua­tetra­kis­(di­methyl­formamide-κO)magnesium dichloride

aInstitut für Anorganische Chemie und Strukturchemie, Heinrich Heine Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: janiak@uni-duesseldorf.de

(Received 17 June 2011; accepted 6 July 2011; online 23 July 2011)

The crystal structure of the title compound, [Mg(C3H7NO)4(H2O)2]Cl2, in which the Mg ion lies on a crystallographic inversion centre, confirms that of the previous room-temperature study [Pavanello et al. (1995[Pavanello, L., Marigo, A., Bresadola, S. & Valle, G. (1995). Main Group Met. Chem. 18, 9-19.]). Main Group Met. Chem. 18, 9–19]. This redetermination at 113 K has improved geometry precision by almost an order of magnitude [e.g. Mg—O(w) (w = water) distances = 2.094 (4) and 2.0899 (7) Å in the old and new structures, respectively] and allowed the water H atoms to be located and their positions refined. In the crystal, O—H⋯Cl hydrogen bonds between the two aqua ligands of the complex mol­ecule and neighboring chloride counter-anions generate supra­molecular chains propagating along [010]. The dicationic [Mg(DMF)4(H2O)2] unit (DMF is dimethyl­formamide) adopts a slightly distorted octa­hedral geometry in which the Mg atom is coordinated by four DMF O atoms in a pseudo-tetra­gonal arrangement and two trans aqua ligands.

Related literature

For the previous structure determination, see: Pavanello et al. (1995[Pavanello, L., Marigo, A., Bresadola, S. & Valle, G. (1995). Main Group Met. Chem. 18, 9-19.]). For related structures, see: Lebioda & Lewiński (1980[Lebioda, Ł. & Lewiński, K. (1980). Acta Cryst. B36, 693-695.]); Castro et al. (2010[Castro, L. F., Almeida, T. C., Soares Júnior, A. L., Yoshida, M. I., Machado, F. C., Diniz, R. & de Oliveira, L. F. C. (2010). Vib. Spectrosc. 54, 112-117.]). For discussion of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Janiak et al. (1996[Janiak, C., Scharmann, T. G., Günther, W., Hinrichs, W. & Lentz, D. (1996). Chem. Ber. 129, 991-995.]). Dorn et al. (2005[Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633-641.]); Aakeröy et al. (2010[Aakeröy, C., Champness, N. R. & Janiak, C. (2010). CrystEngComm, 12, 22-43.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg(C3H7NO)4(H2O)2]Cl2

  • Mr = 423.62

  • Triclinic, [P \overline 1]

  • a = 8.0284 (3) Å

  • b = 8.0748 (3) Å

  • c = 8.8373 (4) Å

  • α = 90.803 (3)°

  • β = 91.330 (3)°

  • γ = 111.563 (4)°

  • V = 532.51 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 113 K

  • 0.40 × 0.25 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.683, Tmax = 1.000

  • 8374 measured reflections

  • 2443 independent reflections

  • 2381 reflections with I > 2σ(I)

  • Rint = 0.017

  • 3 standard frames every 30 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.048

  • S = 1.07

  • 2443 reflections

  • 136 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Selected bond lengths (Å)

Mg—O1 2.0221 (6)
Mg—O2 2.0839 (7)
Mg—O3 2.0899 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H31⋯Cl 0.810 (16) 2.348 (16) 3.1528 (8) 172.6 (14)
O3—H32⋯Cli 0.817 (17) 2.326 (18) 3.1408 (8) 175.4 (15)
Symmetry code: (i) -x, -y-1, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Crystal Impact, 2009[Crystal Impact (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the structure of the title compound the complex cation trans-[Mg(H2O)2(DMF)4]2+ (DMF = HCON(CH3)2) is located on a center of symmetry. Two DMF ligands show significantly shorter Mg—O bond lengths with 2.0221 (6) Å than the two other DMF ligands and the two aqua ligands (2.0839 (7), 2.0899 (7) Å, respectively).

This distortion is in accord with the reported room temperature structure of the title compound [2.021 (5), 2.094 (5) and 2.094 (4) Å, respectively] (Pavanello et al., 1995) and the structure of [MgK2(croconate violet)(H2O)4] where one of the two Mg—O(croconate) bond distances is significantly longer (2.128 Å) than the other one or the Mg—O(H2O) bond distance (2.072 (1), 2.053 (2) Å, respectively) (Castro et al., 2010). Whereas the structure of [Mg(H2O)2{OC(NH2)2}2]Br2 has similar Mg—O(urea) bond distances of 2.050 (1) and 2.078 (1) Å and a longer Mg—O(H2O) contact (2.108 (2) Å) (Lebioda & Lewiński, 1980).

Hydrogen bonding as a primary interaction in crytal engineering and supramolecular chemistry is of continous interest (Aakeröy et al., 2010). The hydrogen bonding between the aqua ligands and the chloride counter anions is in the typical range (Dorn et al., 2005; Janiak et al., 1996). The cyclic hydrogen bond motif (Fig.1) which is formed by two aqua ligands of neigboring complexes and two chloride anions features the well known R24(8) motif (Etter et al., 1990).

Fig. 1 shows the molecular structure with the hydrogen bonding from the aqua ligands to the chloride ions which leads to the supramolecular chain.

Related literature top

For the previous structure determination, see: Pavanello et al. (1995). For related structures, see: Lebioda & Lewiński (1980); Castro et al. (2010). For discussion of hydrogen bonds, see: Etter et al. (1990); Janiak et al. (1996). Dorn et al. (2005); Aakeröy et al. (2010).

Experimental top

Synthesis

42 mg (0.44 mmol) of anhydrous MgCl2 (Merck, >98%) and 500 µL of DMF (ACS, H2O content max. 0.1%) in a 1.5 ml vial were shaken at r.t. until complete dissolution of the solid. 16 mL of H2O (0.88 mmol) were added to the formed solution at once, the solution was homogenized and the vial was placed in an oven preheated at 70°C. After one day the vial was cooled down to r.t. with a rate of 2 K/h to yield large and thick plates of perfect optical quality with dimensions significantly outreaching the millimeter scale. Rapid cooling in an alternative experiment resulted in complete crystallization within one hour. Yet, the formed crystals were of lower quality and their opaqueness indicated some solvent occlusion.The crystalline product redissolves readily in the mother liquor under heating.

The isolated crystals deliquesce quickly in air, whereby hindering the exact determination of the yield. A repeated experiment was performed and the crystals were separated by decanting-off the mother solution, washing the residue with 3 × 1ml of diethyl ether and drying it in an argon stream during a few minutes thus yielding 140 mg (75%) of product.

For IR (ATR) measurements a few transparent crystals were separated directly from the mother solution, dried on a filter paper, ground and measured immediately allowing less then one minute contact with air. IR (ATR): ν (cm-1) = 3226(s, br, sh), 2933(m), 1649(vs), 1501(m), 1445(m), 1433(m),1417(m), 1394(s), 1252(m), 1116(s), 1063(m),867(w), 679(s). The ether washed product had the same spectrum but with an additional weak line at 805 cm-1.

Refinement top

A single-crystal suitable for structure determination was harvested from the mother liquor and was directly transferred into the cooling stream of an Oxford-Xcalibur diffractometer equipped with an EOS-CCD detector at 113 K. In the final stages of the refinement the anisotropic displacement parameters of all non-hydrogen atoms were refined.

The hydrogen atoms of the the C—H group of the DMF ligand and the hydrogen atoms of the water ligand were refined freely with individual Uiso values. The hydrogen atoms of the methyl groups were introduced using a riding model (SHELXL; AFIX 137).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : Molecular structure of [Mg(H2O)2{(CH3)2NCHO}4]Cl2. Hydrogen bonds are indicated as dashed lines (see Table for bond distances and angles). Displacement ellipsoids are drawn at the 60% probability level; H atoms as spheres of arbitrary radii.
Diaquatetrakis(dimethylformamide-κO)magnesium dichloride top
Crystal data top
[Mg(C3H7NO)4(H2O)2]Cl2Z = 1
Mr = 423.62F(000) = 226
Triclinic, P1Dx = 1.321 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0284 (3) ÅCell parameters from 9519 reflections
b = 8.0748 (3) Åθ = 3.1–31.8°
c = 8.8373 (4) ŵ = 0.37 mm1
α = 90.803 (3)°T = 113 K
β = 91.330 (3)°Plate, colourless
γ = 111.563 (4)°0.40 × 0.25 × 0.10 mm
V = 532.51 (4) Å3
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2381 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 27.5°, θmin = 5.1°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1010
Tmin = 0.683, Tmax = 1.000l = 1111
8374 measured reflections3 standard reflections every 30 min
2443 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.01P)2 + 0.25P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2443 reflectionsΔρmax = 0.29 e Å3
136 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.058 (3)
Crystal data top
[Mg(C3H7NO)4(H2O)2]Cl2γ = 111.563 (4)°
Mr = 423.62V = 532.51 (4) Å3
Triclinic, P1Z = 1
a = 8.0284 (3) ÅMo Kα radiation
b = 8.0748 (3) ŵ = 0.37 mm1
c = 8.8373 (4) ÅT = 113 K
α = 90.803 (3)°0.40 × 0.25 × 0.10 mm
β = 91.330 (3)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2381 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Rint = 0.017
Tmin = 0.683, Tmax = 1.0003 standard reflections every 30 min
8374 measured reflections intensity decay: none
2443 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.29 e Å3
2443 reflectionsΔρmin = 0.18 e Å3
136 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.44 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (Oxford Diffraction, 2010).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg0.00000.00000.00000.00919 (10)
Cl0.24638 (3)0.39591 (3)0.17847 (3)0.01591 (8)
O10.24626 (9)0.07858 (9)0.10106 (8)0.01376 (14)
C110.37264 (12)0.22376 (12)0.12339 (10)0.01210 (18)
H110.3638 (16)0.3329 (16)0.0934 (13)0.014 (3)*
N10.52502 (10)0.23979 (10)0.19295 (9)0.01220 (16)
C120.66252 (13)0.41472 (13)0.22648 (12)0.0181 (2)
H1210.62170.50550.19100.027*
H1220.77050.42410.17670.027*
H1230.68580.42960.33380.027*
C130.56012 (13)0.08489 (13)0.24367 (13)0.0190 (2)
H1310.46360.02160.20970.029*
H1320.56960.08770.35220.029*
H1330.67020.08620.20260.029*
O20.11438 (9)0.09777 (9)0.20529 (7)0.01321 (14)
C210.04046 (12)0.16098 (12)0.30109 (10)0.01128 (18)
H210.0740 (16)0.1740 (15)0.2843 (13)0.012 (3)*
N20.10760 (11)0.21837 (10)0.43429 (9)0.01286 (17)
C220.00617 (15)0.27866 (13)0.54511 (11)0.0188 (2)
H2210.09770.28680.49890.028*
H2220.03060.19530.62920.028*
H2230.08010.39360.58020.028*
C230.28056 (14)0.21630 (14)0.47797 (12)0.0186 (2)
H2310.34730.20650.38930.028*
H2320.34590.32460.52820.028*
H2330.26250.11640.54530.028*
O30.02957 (10)0.24245 (9)0.04443 (8)0.01385 (15)
H310.094 (2)0.2735 (19)0.0112 (17)0.030 (4)*
H320.046 (2)0.333 (2)0.0815 (19)0.039 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg0.0095 (2)0.0089 (2)0.0092 (2)0.00346 (16)0.00043 (15)0.00063 (15)
Cl0.01812 (12)0.01091 (11)0.01905 (13)0.00586 (9)0.00115 (8)0.00009 (8)
O10.0110 (3)0.0130 (3)0.0159 (3)0.0029 (3)0.0024 (2)0.0007 (3)
C110.0140 (4)0.0124 (4)0.0107 (4)0.0057 (4)0.0016 (3)0.0010 (3)
N10.0102 (4)0.0101 (4)0.0154 (4)0.0026 (3)0.0004 (3)0.0009 (3)
C120.0130 (4)0.0135 (4)0.0240 (5)0.0008 (4)0.0002 (4)0.0050 (4)
C130.0130 (4)0.0159 (5)0.0294 (6)0.0071 (4)0.0036 (4)0.0018 (4)
O20.0143 (3)0.0143 (3)0.0119 (3)0.0063 (3)0.0014 (2)0.0027 (2)
C210.0127 (4)0.0081 (4)0.0122 (4)0.0030 (3)0.0005 (3)0.0013 (3)
N20.0161 (4)0.0115 (4)0.0108 (4)0.0048 (3)0.0011 (3)0.0006 (3)
C220.0289 (5)0.0159 (5)0.0131 (5)0.0099 (4)0.0020 (4)0.0022 (4)
C230.0185 (5)0.0189 (5)0.0171 (5)0.0050 (4)0.0074 (4)0.0003 (4)
O30.0161 (3)0.0106 (3)0.0154 (3)0.0058 (3)0.0029 (3)0.0009 (3)
Geometric parameters (Å, º) top
Mg—O1i2.0221 (6)C13—H1320.9600
Mg—O12.0221 (6)C13—H1330.9600
Mg—O22.0839 (7)O2—C211.2413 (11)
Mg—O2i2.0839 (7)C21—N21.3237 (12)
Mg—O3i2.0899 (7)C21—H210.977 (12)
Mg—O32.0899 (7)N2—C231.4557 (12)
O1—C111.2461 (11)N2—C221.4584 (12)
C11—N11.3182 (12)C22—H2210.9600
C11—H110.951 (12)C22—H2220.9600
N1—C131.4539 (12)C22—H2230.9600
N1—C121.4589 (12)C23—H2310.9600
C12—H1210.9600C23—H2320.9600
C12—H1220.9600C23—H2330.9600
C12—H1230.9600O3—H310.810 (16)
C13—H1310.9600O3—H320.817 (17)
O1i—Mg—O1180.00 (2)H122—C12—H123109.5
O1i—Mg—O289.71 (3)N1—C13—H131109.5
O1—Mg—O290.29 (3)N1—C13—H132109.5
O1i—Mg—O2i90.29 (3)H131—C13—H132109.5
O1—Mg—O2i89.71 (3)N1—C13—H133109.5
O2—Mg—O2i180.00 (6)H131—C13—H133109.5
O1i—Mg—O3i86.14 (3)H132—C13—H133109.5
O1—Mg—O3i93.86 (3)C21—O2—Mg123.01 (6)
O2—Mg—O3i89.34 (3)O2—C21—N2124.11 (9)
O2i—Mg—O3i90.66 (3)O2—C21—H21122.6 (7)
O1i—Mg—O393.86 (3)N2—C21—H21113.3 (7)
O1—Mg—O386.14 (3)C21—N2—C23121.50 (8)
O2—Mg—O390.66 (3)C21—N2—C22120.72 (8)
O2i—Mg—O389.34 (3)C23—N2—C22117.73 (8)
O3i—Mg—O3180.00 (4)N2—C22—H221109.5
C11—O1—Mg135.31 (6)N2—C22—H222109.5
O1—C11—N1123.58 (9)H221—C22—H222109.5
O1—C11—H11121.5 (7)N2—C22—H223109.5
N1—C11—H11114.9 (7)H221—C22—H223109.5
C11—N1—C13121.47 (8)H222—C22—H223109.5
C11—N1—C12121.02 (8)N2—C23—H231109.5
C13—N1—C12117.48 (8)N2—C23—H232109.5
N1—C12—H121109.5H231—C23—H232109.5
N1—C12—H122109.5N2—C23—H233109.5
H121—C12—H122109.5H231—C23—H233109.5
N1—C12—H123109.5H232—C23—H233109.5
H121—C12—H123109.5H31—O3—H32106.7 (15)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···Cl0.810 (16)2.348 (16)3.1528 (8)172.6 (14)
O3—H32···Clii0.817 (17)2.326 (18)3.1408 (8)175.4 (15)
Symmetry code: (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Mg(C3H7NO)4(H2O)2]Cl2
Mr423.62
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)8.0284 (3), 8.0748 (3), 8.8373 (4)
α, β, γ (°)90.803 (3), 91.330 (3), 111.563 (4)
V3)532.51 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.40 × 0.25 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.683, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8374, 2443, 2381
Rint0.017
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.048, 1.07
No. of reflections2443
No. of parameters136
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.18

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Crystal Impact, 2009), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Mg—O12.0221 (6)Mg—O32.0899 (7)
Mg—O22.0839 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···Cl0.810 (16)2.348 (16)3.1528 (8)172.6 (14)
O3—H32···Cli0.817 (17)2.326 (18)3.1408 (8)175.4 (15)
Symmetry code: (i) x, y1, z.
 

References

First citationAakeröy, C., Champness, N. R. & Janiak, C. (2010). CrystEngComm, 12, 22–43.  Google Scholar
First citationCastro, L. F., Almeida, T. C., Soares Júnior, A. L., Yoshida, M. I., Machado, F. C., Diniz, R. & de Oliveira, L. F. C. (2010). Vib. Spectrosc. 54, 112–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrystal Impact (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.  Web of Science CSD CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJaniak, C., Scharmann, T. G., Günther, W., Hinrichs, W. & Lentz, D. (1996). Chem. Ber. 129, 991–995.  CrossRef CAS Web of Science Google Scholar
First citationLebioda, Ł. & Lewiński, K. (1980). Acta Cryst. B36, 693–695.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPavanello, L., Marigo, A., Bresadola, S. & Valle, G. (1995). Main Group Met. Chem. 18, 9–19.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1109-m1110
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds