organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Ethyl N′-(3-hy­dr­oxy­benzyl­­idene)hydrazine­carboxyl­ate dihydrate

aCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, bResearch Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, cHangzhou Fist Chemical Co. Ltd, Xiaoshan, Hangzhou 310007, People's Republic of China, and dLinjiang College, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: zgdhxc@126.com

(Received 23 June 2011; accepted 26 June 2011; online 2 July 2011)

The asymmetric unit of the title compound, C10H12N2O3·2H2O, contains two organic mol­ecules with similar conformations and four water mol­ecules. Each organic mol­ecule is close to planar (r.m.s. deviations = 0.035 and 0.108 Å) and adopts a trans conformation with respect to its C=N bond. In the crystal, the components are linked into a three-dimensional network by N—H⋯O, O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds, some of which are bifurcated. An R22(8) loop occurs between adjacent organic mol­ecules.

Related literature

For general background to benzaldehyde­hydrazone derivatives, see: Parashar et al. (1988[Parashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim Acta, 151, 201-208.]); Hadjoudis et al. (1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345-1360.]); Borg et al. (1999[Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331-4342.]). For a related structure, see: Shang et al. (2007[Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N2O3·2H2O

  • Mr = 244.25

  • Monoclinic, P 21 /c

  • a = 12.8074 (10) Å

  • b = 21.9101 (18) Å

  • c = 8.9048 (7) Å

  • β = 96.490 (3)°

  • V = 2482.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 223 K

  • 0.20 × 0.19 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.989

  • 22432 measured reflections

  • 4819 independent reflections

  • 3377 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.126

  • S = 0.95

  • 4819 reflections

  • 341 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O6i 0.86 2.29 3.0968 (18) 157
N4—H4N⋯O3 0.86 2.24 3.0849 (18) 167
O6—H6⋯O4W 0.82 1.90 2.675 (2) 157
C3—H3⋯O5 0.93 2.51 3.422 (2) 168
O1W—H1A⋯O2Wii 0.84 (3) 2.04 (3) 2.874 (3) 178 (3)
O1W—H1B⋯O2Wiii 0.91 (3) 1.99 (3) 2.906 (2) 177 (3)
O2W—H2A⋯O4 0.91 (3) 2.02 (3) 2.899 (2) 163 (2)
O2W—H2B⋯O1iv 0.85 (3) 2.25 (3) 2.9268 (19) 136 (2)
O2W—H2B⋯N1iv 0.85 (3) 2.41 (3) 3.165 (2) 148 (2)
O3W—H3A⋯O4iii 0.89 (3) 2.27 (3) 2.9417 (19) 132 (2)
O3W—H3A⋯N3iii 0.89 (3) 2.38 (3) 3.200 (2) 153 (3)
O3W—H3B⋯O1 0.90 (3) 2.10 (3) 2.991 (2) 171 (3)
O4W—H4B⋯O3Wv 0.98 (6) 1.84 (6) 2.819 (3) 173 (5)
O4W—H4A⋯O3Wiv 0.81 (3) 2.15 (3) 2.955 (2) 169 (3)
Symmetry codes: (i) x-1, y, z+1; (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzaldehydehydrazone derivatives have received considerable attentions for a long time due to their pharmacological activity (Parashar et al., 1988) and their photochromic properties(Hadjoudis et al., 1987). Meanwhile, it's an important intermidiate of 1,3,4-oxadiazoles, which have been reported to be versatile compounds with many properties (Borg et al., 1999). As a further investigation of this type of derivatives, we report herein the crystal structure of the title compound.

The title compound, C10H12N2O3 .2H2O, crystallizes with two very similar independent molecules in the asymmetric unit. Each independent molecule adopts a trans configuration with respect to the CN bond. The N1/N2/O1/O2/C7-C10 and N3/N4/O4/O5/C17-C20 planes form dihedral angles of 2.56 (10)° and 8.02 (8)°, respectively, with the C1—C6 and C1—C16 planes. The bond lengths and angles of the main molecule agree with those observed for (E)-Methyl N'-(4-hydroxybenzylidene)hydrazinecarboxylate (Shang et al., 2007).

In the crystal, molecules are linked into three-dimensional network by N—H···O,O—H···O,C—H···O and O—H···N hydrogen bonds (Table 1, Fig.2).

Related literature top

For general background to benzaldehydehydrazone derivatives, see: Parashar et al. (1988); Hadjoudis et al. (1987); Borg et al. (1999). For a related structure, see: Shang et al. (2007).

Experimental top

3-hydroxybenzaldehyde (1.22g, 0.01mol) and ethyl hydrazinecarboxylate(1.04g, 0.01mol) were dissolved in stirred methanol (30ml) and left for 3h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 88% yield. Colourless blocks of (I) were obtained by slow evaporation of a ethanol solution at room temperature (m.p. 438-441 K).

Refinement top

H atoms of the water molecule were located in a difference map and were refined with O-H distances restrained to 0.81 (3) Å,0.84 (3) Å, 0.85 (3) Å, 0.90 (3) Å, 0.91 (3) Å, 0.95 (3) Åand 0.98 (3) Å, H atoms were included in the riding model approximation with N-H = 0.86Å and O-H=0.82Å. C-bound H atoms were positioned geometrically (C-H = 0.93Å and 0.96Å) and refined using a riding model, with Uiso(H) = 1.2-1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing 40% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed approximately down the a axis. Dashed lines indicate hydrogen bonds. H atoms not intervening in H-bonding were eliminated for clarity.
(E)-Ethyl N'-(3-hydroxybenzylidene)hydrazinecarboxylate dihydrate top
Crystal data top
C10H12N2O3·2H2OF(000) = 1040
Mr = 244.25Dx = 1.307 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4819 reflections
a = 12.8074 (10) Åθ = 1.6–25.0°
b = 21.9101 (18) ŵ = 0.11 mm1
c = 8.9048 (7) ÅT = 223 K
β = 96.490 (3)°Block, colourless
V = 2482.8 (3) Å30.20 × 0.19 × 0.18 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
4819 independent reflections
Radiation source: fine-focus sealed tube3377 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1515
Tmin = 0.977, Tmax = 0.989k = 2627
22432 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0615P)2 + 0.604P]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
4819 reflectionsΔρmax = 0.16 e Å3
341 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0022 (6)
Crystal data top
C10H12N2O3·2H2OV = 2482.8 (3) Å3
Mr = 244.25Z = 8
Monoclinic, P21/cMo Kα radiation
a = 12.8074 (10) ŵ = 0.11 mm1
b = 21.9101 (18) ÅT = 223 K
c = 8.9048 (7) Å0.20 × 0.19 × 0.18 mm
β = 96.490 (3)°
Data collection top
Bruker SMART CCD
diffractometer
4819 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3377 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.989Rint = 0.036
22432 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.16 e Å3
4819 reflectionsΔρmin = 0.14 e Å3
341 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C100.09028 (17)0.12370 (9)1.3239 (3)0.0742 (6)
H10A0.10200.08061.33190.111*
H10B0.15450.14341.28420.111*
H10C0.06700.14001.42210.111*
O1W0.42004 (14)0.30255 (7)0.7045 (2)0.0734 (5)
O2W0.68695 (13)0.73071 (8)0.58510 (19)0.0723 (4)
O3W0.14922 (13)0.05421 (8)1.0133 (2)0.0770 (5)
O4W0.98022 (17)0.48067 (8)0.3000 (2)0.0847 (5)
H2A0.694 (2)0.6903 (13)0.607 (3)0.100 (9)*
H1A0.387 (2)0.2930 (13)0.621 (4)0.112 (12)*
H1B0.386 (2)0.2811 (13)0.772 (3)0.114 (10)*
H2B0.745 (2)0.7398 (11)0.554 (3)0.096 (9)*
H3A0.213 (3)0.0450 (13)0.989 (3)0.125 (11)*
H4A0.938 (3)0.5007 (15)0.341 (3)0.122 (12)*
H3B0.150 (2)0.0953 (15)1.023 (3)0.133 (12)*
H4B1.041 (5)0.472 (3)0.374 (6)0.28 (3)*
C10.28335 (13)0.39669 (8)0.9118 (2)0.0477 (4)
H10.28710.35580.88490.057*
C20.34613 (13)0.43925 (8)0.8508 (2)0.0507 (4)
C30.33908 (16)0.49999 (8)0.8888 (3)0.0667 (6)
H30.38130.52870.84800.080*
C40.26972 (18)0.51811 (9)0.9868 (3)0.0793 (7)
H40.26460.55921.01120.095*
C50.20760 (16)0.47581 (8)1.0491 (3)0.0670 (6)
H50.16080.48841.11550.080*
C60.21479 (13)0.41483 (7)1.0130 (2)0.0480 (4)
C70.14945 (14)0.37163 (8)1.0848 (2)0.0536 (5)
H70.10460.38681.15110.064*
C80.07698 (13)0.22053 (8)1.1273 (2)0.0506 (4)
C90.00809 (14)0.13484 (8)1.2203 (2)0.0547 (5)
H9A0.05750.11551.25950.066*
H9B0.03030.11831.12070.066*
C110.77878 (13)0.39363 (8)0.4056 (2)0.0483 (4)
H110.79010.43500.39060.058*
C120.83693 (13)0.35064 (8)0.3377 (2)0.0513 (4)
C130.81986 (16)0.28929 (9)0.3588 (3)0.0669 (6)
H130.85880.26050.31250.080*
C140.74537 (18)0.27088 (9)0.4480 (3)0.0791 (7)
H140.73410.22950.46230.095*
C150.68699 (16)0.31331 (8)0.5169 (3)0.0669 (6)
H150.63650.30040.57730.080*
C160.70352 (13)0.37501 (8)0.4961 (2)0.0483 (4)
C170.64060 (14)0.41813 (8)0.5720 (2)0.0529 (5)
H170.58580.40290.62120.063*
C180.59999 (13)0.56870 (8)0.6705 (2)0.0478 (4)
C190.52938 (14)0.65317 (8)0.7918 (2)0.0552 (5)
H19A0.51110.67800.70250.066*
H19B0.59920.66460.83660.066*
C200.45141 (16)0.66243 (9)0.9025 (3)0.0696 (6)
H20A0.45110.70460.93170.104*
H20B0.47040.63760.99020.104*
H20C0.38270.65100.85670.104*
N10.15055 (11)0.31441 (6)1.06170 (17)0.0508 (4)
N20.08175 (12)0.28158 (7)1.13816 (19)0.0604 (4)
H20.04130.30041.19360.073*
N30.65632 (10)0.47535 (6)0.57456 (16)0.0480 (4)
N40.58747 (11)0.50831 (6)0.65046 (18)0.0543 (4)
H4N0.53590.49010.68540.065*
O10.12881 (11)0.18908 (6)1.05295 (17)0.0687 (4)
O20.00520 (9)0.20017 (5)1.21202 (15)0.0578 (4)
O30.41697 (10)0.42375 (6)0.75455 (16)0.0694 (4)
H3C0.41540.38670.74090.104*
O40.66657 (10)0.59992 (5)0.62166 (16)0.0600 (4)
O50.52645 (9)0.58923 (5)0.75261 (16)0.0579 (4)
O60.91245 (10)0.36631 (6)0.24827 (17)0.0721 (4)
H60.91880.40350.24740.086 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C100.0782 (14)0.0505 (12)0.1003 (17)0.0111 (10)0.0373 (13)0.0089 (11)
O1W0.0912 (11)0.0552 (9)0.0780 (12)0.0013 (8)0.0280 (11)0.0056 (8)
O2W0.0765 (10)0.0610 (10)0.0868 (11)0.0007 (8)0.0417 (9)0.0052 (8)
O3W0.0635 (9)0.0624 (10)0.1118 (13)0.0038 (7)0.0396 (9)0.0021 (9)
O4W0.0879 (12)0.0599 (10)0.1142 (15)0.0092 (8)0.0454 (12)0.0058 (9)
C10.0481 (9)0.0356 (9)0.0620 (11)0.0014 (7)0.0182 (8)0.0010 (8)
C20.0505 (10)0.0451 (10)0.0601 (11)0.0003 (8)0.0220 (8)0.0027 (8)
C30.0721 (13)0.0414 (11)0.0938 (16)0.0056 (9)0.0409 (12)0.0067 (10)
C40.0957 (16)0.0370 (10)0.1155 (19)0.0006 (10)0.0575 (15)0.0041 (11)
C50.0732 (13)0.0435 (11)0.0930 (16)0.0030 (9)0.0476 (12)0.0037 (10)
C60.0463 (9)0.0396 (9)0.0608 (11)0.0005 (7)0.0179 (8)0.0021 (8)
C70.0520 (10)0.0439 (10)0.0702 (13)0.0006 (8)0.0301 (9)0.0017 (9)
C80.0487 (10)0.0424 (10)0.0641 (12)0.0002 (8)0.0208 (9)0.0022 (8)
C90.0596 (11)0.0377 (9)0.0693 (13)0.0040 (8)0.0179 (9)0.0027 (8)
C110.0500 (9)0.0389 (9)0.0586 (11)0.0006 (7)0.0171 (8)0.0023 (8)
C120.0490 (9)0.0453 (10)0.0632 (11)0.0006 (8)0.0215 (8)0.0053 (8)
C130.0677 (12)0.0437 (11)0.0959 (16)0.0051 (9)0.0386 (11)0.0112 (10)
C140.0901 (15)0.0365 (10)0.120 (2)0.0013 (10)0.0539 (14)0.0020 (11)
C150.0716 (12)0.0425 (11)0.0944 (16)0.0034 (9)0.0437 (12)0.0001 (10)
C160.0463 (9)0.0421 (9)0.0590 (11)0.0023 (7)0.0174 (8)0.0028 (8)
C170.0490 (10)0.0458 (11)0.0680 (12)0.0006 (8)0.0253 (9)0.0024 (9)
C180.0459 (9)0.0449 (10)0.0550 (11)0.0017 (7)0.0156 (8)0.0055 (8)
C190.0565 (10)0.0356 (9)0.0757 (13)0.0021 (8)0.0175 (9)0.0074 (9)
C200.0687 (12)0.0515 (12)0.0933 (16)0.0045 (10)0.0290 (12)0.0180 (11)
N10.0482 (8)0.0416 (8)0.0667 (10)0.0036 (6)0.0247 (7)0.0024 (7)
N20.0621 (9)0.0418 (9)0.0857 (12)0.0043 (7)0.0448 (9)0.0020 (8)
N30.0462 (8)0.0434 (8)0.0573 (9)0.0035 (6)0.0190 (7)0.0056 (7)
N40.0508 (8)0.0408 (8)0.0766 (11)0.0019 (6)0.0308 (8)0.0107 (7)
O10.0744 (9)0.0447 (7)0.0956 (11)0.0005 (6)0.0471 (8)0.0044 (7)
O20.0606 (7)0.0382 (6)0.0807 (9)0.0043 (5)0.0344 (7)0.0017 (6)
O30.0766 (9)0.0517 (8)0.0894 (10)0.0078 (6)0.0513 (8)0.0038 (7)
O40.0623 (8)0.0471 (7)0.0762 (9)0.0043 (6)0.0321 (7)0.0032 (6)
O50.0558 (7)0.0389 (7)0.0846 (9)0.0018 (5)0.0320 (7)0.0125 (6)
O60.0766 (9)0.0526 (9)0.0970 (11)0.0015 (7)0.0529 (8)0.0098 (7)
Geometric parameters (Å, º) top
C10—C91.496 (2)C9—H9B0.9700
C10—H10A0.9600C11—C121.382 (2)
C10—H10B0.9600C11—C161.386 (2)
C10—H10C0.9600C11—H110.9300
O1W—H1A0.84 (3)C12—O61.365 (2)
O1W—H1B0.91 (3)C12—C131.378 (3)
O2W—H2A0.91 (3)C13—C141.370 (3)
O2W—H2B0.85 (3)C13—H130.9300
O3W—H3A0.89 (3)C14—C151.380 (3)
O3W—H3B0.90 (3)C14—H140.9300
O4W—H4A0.81 (3)C15—C161.384 (2)
O4W—H4B0.98 (6)C15—H150.9300
C1—C21.382 (2)C16—C171.456 (2)
C1—C61.386 (2)C17—N31.270 (2)
C1—H10.9300C17—H170.9300
C2—O31.359 (2)C18—O41.212 (2)
C2—C31.379 (3)C18—O51.3339 (19)
C3—C41.372 (3)C18—N41.342 (2)
C3—H30.9300C19—O51.443 (2)
C4—C51.378 (3)C19—C201.494 (2)
C4—H40.9300C19—H19A0.9700
C5—C61.380 (2)C19—H19B0.9700
C5—H50.9300C20—H20A0.9600
C6—C71.458 (2)C20—H20B0.9600
C7—N11.271 (2)C20—H20C0.9600
C7—H70.9300N1—N21.3759 (18)
C8—O11.206 (2)N2—H20.8600
C8—O21.3303 (19)N3—N41.3750 (18)
C8—N21.342 (2)N4—H4N0.8600
C9—O21.444 (2)O3—H3C0.8200
C9—H9A0.9700O6—H60.8200
C9—C10—H10A109.5O6—C12—C11122.46 (16)
C9—C10—H10B109.5C13—C12—C11120.25 (16)
H10A—C10—H10B109.5C14—C13—C12119.85 (17)
C9—C10—H10C109.5C14—C13—H13120.1
H10A—C10—H10C109.5C12—C13—H13120.1
H10B—C10—H10C109.5C13—C14—C15120.52 (18)
H1A—O1W—H1B103 (3)C13—C14—H14119.7
H2A—O2W—H2B103 (2)C15—C14—H14119.7
H3A—O3W—H3B104 (3)C14—C15—C16119.99 (17)
H4A—O4W—H4B109 (4)C14—C15—H15120.0
C2—C1—C6120.13 (16)C16—C15—H15120.0
C2—C1—H1119.9C11—C16—C15119.49 (15)
C6—C1—H1119.9C11—C16—C17122.43 (15)
O3—C2—C3117.57 (15)C15—C16—C17118.08 (15)
O3—C2—C1122.59 (15)N3—C17—C16123.66 (15)
C3—C2—C1119.83 (16)N3—C17—H17118.2
C4—C3—C2120.04 (17)C16—C17—H17118.2
C4—C3—H3120.0O4—C18—O5125.14 (16)
C2—C3—H3120.0O4—C18—N4125.94 (15)
C3—C4—C5120.39 (18)O5—C18—N4108.92 (14)
C3—C4—H4119.8O5—C19—C20106.88 (14)
C5—C4—H4119.8O5—C19—H19A110.3
C4—C5—C6120.05 (17)C20—C19—H19A110.3
C4—C5—H5120.0O5—C19—H19B110.3
C6—C5—H5120.0C20—C19—H19B110.3
C5—C6—C1119.53 (15)H19A—C19—H19B108.6
C5—C6—C7118.03 (15)C19—C20—H20A109.5
C1—C6—C7122.43 (15)C19—C20—H20B109.5
N1—C7—C6123.50 (15)H20A—C20—H20B109.5
N1—C7—H7118.3C19—C20—H20C109.5
C6—C7—H7118.3H20A—C20—H20C109.5
O1—C8—O2125.35 (16)H20B—C20—H20C109.5
O1—C8—N2125.86 (16)C7—N1—N2114.59 (14)
O2—C8—N2108.80 (14)C8—N2—N1120.80 (14)
O2—C9—C10106.76 (14)C8—N2—H2119.6
O2—C9—H9A110.4N1—N2—H2119.6
C10—C9—H9A110.4C17—N3—N4114.73 (14)
O2—C9—H9B110.4C18—N4—N3120.63 (14)
C10—C9—H9B110.4C18—N4—H4N119.7
H9A—C9—H9B108.6N3—N4—H4N119.7
C12—C11—C16119.90 (16)C8—O2—C9117.01 (13)
C12—C11—H11120.0C2—O3—H3C109.5
C16—C11—H11120.0C18—O5—C19117.34 (13)
O6—C12—C13117.29 (15)C12—O6—H6109.5
C6—C1—C2—O3177.98 (18)C12—C11—C16—C17179.33 (18)
C6—C1—C2—C31.1 (3)C14—C15—C16—C110.1 (3)
O3—C2—C3—C4179.3 (2)C14—C15—C16—C17179.6 (2)
C1—C2—C3—C40.1 (3)C11—C16—C17—N37.5 (3)
C2—C3—C4—C50.7 (4)C15—C16—C17—N3172.2 (2)
C3—C4—C5—C60.1 (4)C6—C7—N1—N2178.90 (17)
C4—C5—C6—C11.2 (3)O1—C8—N2—N10.5 (3)
C4—C5—C6—C7178.4 (2)O2—C8—N2—N1179.68 (16)
C2—C1—C6—C51.8 (3)C7—N1—N2—C8178.09 (19)
C2—C1—C6—C7177.82 (18)C16—C17—N3—N4179.20 (17)
C5—C6—C7—N1179.1 (2)O4—C18—N4—N33.2 (3)
C1—C6—C7—N10.6 (3)O5—C18—N4—N3177.24 (15)
C16—C11—C12—O6179.59 (17)C17—N3—N4—C18175.34 (18)
C16—C11—C12—C130.5 (3)O1—C8—O2—C92.9 (3)
O6—C12—C13—C14179.7 (2)N2—C8—O2—C9177.33 (16)
C11—C12—C13—C140.4 (3)C10—C9—O2—C8178.68 (17)
C12—C13—C14—C150.1 (4)O4—C18—O5—C192.9 (3)
C13—C14—C15—C160.0 (4)N4—C18—O5—C19177.54 (16)
C12—C11—C16—C150.4 (3)C20—C19—O5—C18171.15 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O6i0.862.293.0968 (18)157
N4—H4N···O30.862.243.0849 (18)167
O6—H6···O4W0.821.902.675 (2)157
C3—H3···O50.932.513.422 (2)168
O1W—H1A···O2Wii0.84 (3)2.04 (3)2.874 (3)178 (3)
O1W—H1B···O2Wiii0.91 (3)1.99 (3)2.906 (2)177 (3)
O2W—H2A···O40.91 (3)2.02 (3)2.899 (2)163 (2)
O2W—H2B···O1iv0.85 (3)2.25 (3)2.9268 (19)136 (2)
O2W—H2B···N1iv0.85 (3)2.41 (3)3.165 (2)148 (2)
O3W—H3A···O4iii0.89 (3)2.27 (3)2.9417 (19)132 (2)
O3W—H3A···N3iii0.89 (3)2.38 (3)3.200 (2)153 (3)
O3W—H3B···O10.90 (3)2.10 (3)2.991 (2)171 (3)
O4W—H4B···O3Wv0.98 (6)1.84 (6)2.819 (3)173 (5)
O4W—H4A···O3Wiv0.81 (3)2.15 (3)2.955 (2)169 (3)
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y1/2, z+3/2; (iv) x+1, y+1/2, z+3/2; (v) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H12N2O3·2H2O
Mr244.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)12.8074 (10), 21.9101 (18), 8.9048 (7)
β (°) 96.490 (3)
V3)2482.8 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.19 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.977, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
22432, 4819, 3377
Rint0.036
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.126, 0.95
No. of reflections4819
No. of parameters341
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.14

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O6i0.862.293.0968 (18)157
N4—H4N···O30.862.243.0849 (18)167
O6—H6···O4W0.821.902.675 (2)157
C3—H3···O50.932.513.422 (2)168
O1W—H1A···O2Wii0.84 (3)2.04 (3)2.874 (3)178 (3)
O1W—H1B···O2Wiii0.91 (3)1.99 (3)2.906 (2)177 (3)
O2W—H2A···O40.91 (3)2.02 (3)2.899 (2)163 (2)
O2W—H2B···O1iv0.85 (3)2.25 (3)2.9268 (19)136 (2)
O2W—H2B···N1iv0.85 (3)2.41 (3)3.165 (2)148 (2)
O3W—H3A···O4iii0.89 (3)2.27 (3)2.9417 (19)132 (2)
O3W—H3A···N3iii0.89 (3)2.38 (3)3.200 (2)153 (3)
O3W—H3B···O10.90 (3)2.10 (3)2.991 (2)171 (3)
O4W—H4B···O3Wv0.98 (6)1.84 (6)2.819 (3)173 (5)
O4W—H4A···O3Wiv0.81 (3)2.15 (3)2.955 (2)169 (3)
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y1/2, z+3/2; (iv) x+1, y+1/2, z+3/2; (v) x+1, y+1/2, z1/2.
 

Acknowledgements

The authors thank Hangzhou Vocational and Technical College, China, for financial support.

References

First citationBorg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331–4342.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationParashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim Acta, 151, 201–208.  CrossRef CAS Web of Science Google Scholar
First citationShang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds