metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1130-m1131

Poly[[μ-aqua-tetra­aquabis(μ-2-hy­droxy-4-oxo­cyclobut-1-ene-1,3-diolato)strontium] hemihydrate]

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri–Constantine, 25000 Algeria, and bSciences Chimiques de Rennes, UMR 6226 CNRS - Université de Rennes 1, Avenue du Général Leclerc, 35042 Rennes cedex, France
*Correspondence e-mail: Bouacida_Sofiane@yahoo.fr

(Received 30 June 2011; accepted 17 July 2011; online 23 July 2011)

In the title coordination polymer, {[Sr(C4HO4)2(H2O)5]·0.5H2O}n, the Sr2+ ion is coordinated by three monodentate hydrogensquarate (hsq) anions and six aqua ligands in a distorted SrO9 monocapped square-anti­prismatic geometry. The hsq anions and water mol­ecules bridge the metal ions into infinite sheets lying parallel to (100). The O atom of the uncoordinated water mol­ecule lies on a crystallographic twofold axis. The packing is stabilized by numerous O—H⋯O hydrogen bonds.

Related literature

For the isostructural mixed-metal Ba/Sr analogue of the title compound and background references, see: Trifa et al. (2011[Trifa, C., Bouhali, A., Bouacida, S., Boudaren, C. & Bataille, T. (2011). Acta Cryst. E67, m275-m276.]).

[Scheme 1]

Experimental

Crystal data
  • [Sr(C4HO4)2(H2O)5]·0.5H2O

  • Mr = 412.81

  • Monoclinic, C 2/c

  • a = 24.885 (3) Å

  • b = 8.8026 (9) Å

  • c = 13.8918 (17) Å

  • β = 119.609 (4)°

  • V = 2645.7 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.15 mm−1

  • T = 150 K

  • 0.57 × 0.27 × 0.10 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan SADABS (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.365, Tmax = 0.660

  • 9165 measured reflections

  • 3006 independent reflections

  • 2243 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.068

  • S = 1.03

  • 3006 reflections

  • 239 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected bond lengths (Å)

Sr1—O1 2.691 (2)
Sr1—O2 2.642 (2)
Sr1—O3 2.690 (2)
Sr1—O4 2.641 (3)
Sr1—O5 2.572 (2)
Sr1—O6 2.6179 (18)
Sr1—O12 2.6646 (16)
Sr1—O14i 2.5906 (16)
Sr1—O3ii 2.7154 (19)
Symmetry codes: (i) x, y+1, z; (ii) -x+2, -y+2, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O9iii 0.76 (4) 2.27 (4) 2.983 (3) 158 (4)
O1—H1B⋯O7iv 0.79 (4) 1.99 (4) 2.715 (2) 153 (4)
O1W—H1W⋯O13ii 0.76 (2) 2.39 (2) 2.801 (2) 115 (2)
O1W—H1W⋯O8v 0.76 (2) 2.51 (3) 3.118 (2) 138 (3)
O2—H2A⋯O14vi 0.92 (4) 1.91 (4) 2.794 (3) 161 (4)
O2—H2B⋯O1Wvii 0.70 (4) 2.52 (4) 3.165 (3) 154 (4)
O3—H3A⋯O13ii 0.93 (4) 1.79 (4) 2.712 (3) 174 (3)
O3—H3B⋯O4viii 0.76 (4) 2.59 (4) 3.172 (3) 136 (3)
O4—H4A⋯O7ix 0.78 (4) 2.01 (4) 2.785 (3) 177 (4)
O4—H4B⋯O1W 0.87 (4) 2.03 (4) 2.871 (3) 163 (3)
O5—H5A⋯O1x 0.72 (4) 2.09 (4) 2.787 (3) 166 (4)
O5—H5B⋯O8xi 0.90 (4) 1.82 (4) 2.716 (3) 175 (4)
O9—H9⋯O12 0.82 1.74 2.548 (3) 169
O11—H11⋯O6vii 0.82 1.77 2.580 (2) 172
Symmetry codes: (ii) -x+2, -y+2, -z+1; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, z+{\script{1\over 2}}]; (vi) -x+2, -y+1, -z+1; (vii) x, y-1, z; (viii) [-x+2, y, -z+{\script{1\over 2}}]; (ix) [-x+{\script{3\over 2}}, -y+{\script{5\over 2}}, -z]; (x) [x, -y+2, z-{\script{1\over 2}}]; (xi) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our ongoing sturctural studies of alkaline-earth squarate coordination networks (Trifa et al., 2011), we now descibe the synthesis and structure of the title compound, (I).

The asymmetric unit of (I) contains one strontium cation, two hydrogensquarate anions, five aqua ligands and a water molecule (Fig. 1): the O-atom of the latter lies on a crystallographic 2-fold axis.

The strontium atom is coordinated by the O atoms from three hydrogensquarate anions and six water molecules. The ninefold coordination polyhedral of Sr can be described as a monocapped square antiprism SrO3(H2O)6 (Fig. 2).

The hydrogensquarate (HSQ) anions bridge two strontium atoms to form a [Sr2 (H2O)12(HSQ)4] dimer (Fig. 3), thus leading a ribbon of formula [Sr (H2O)6(HC4O4)2] running along [101]. The SrO9 polyhedra are linked together by sharing two water molecules in the direction of the b axis to build up layers, in between which are located the free water molecules (Fig. 4). The three-dimensionality is ensured by a network of O—H···O hydrogen bonds (Table 2).

Related literature top

For the isostructural mixed-metal Ba/Sr analogue of the title compound and background references, see: Trifa et al. (2011).

Experimental top

Board colourless single crystals of the title compound were obtained by a hydrothermal reaction of an equimolar ratio (1 mmol) of strontium chloride, squaric acid and and 6 ml of water in a 23 ml Teflon-lined acid digestion bomb (Parr) heated for 3 days at 393 K under autogeneous pressure and then cooled down to room temperature. The product obtained were collected by filtration, thoroughly washed with distilled water and ethanol, and finally dried at room temperature.

Refinement top

All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps and refined isotropically. Except for H atoms for hydroxy groups of hydrogenosquarate (H9 and H11) were introduced in calculated positions and treated as riding on their parent O atom.(with O—H = 0.82Å and Uiso(H) =1.5Ueq(O)), One distance (O—H)of free water molecule are refined with soft constraint, the O—H distance is restrained to 0.85 Å. (O1W—H1W).

Computing details top

Data collection: APEXII (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Drawing of asymetric unit of (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The monocapped square antiprism geometry of the Sr atom [Symmetry code: [(i):2 - x, 2 - y, 1 - z, (ii): x, 1 + y, z.].
[Figure 3] Fig. 3. Coordination between squarates ligands and polyhedron unit
[Figure 4] Fig. 4. The crystal structure of the title compound viewed along the b axis, showing the layers.
Poly[[µ-aqua-tetraaquabis(µ-2-hydroxy-4-oxocyclobut-1-ene- 1,3-diolato)strontium] hemihydrate] top
Crystal data top
[Sr(C4HO4)2(H2O)5]·0.5H2OF(000) = 1656
Mr = 412.81Dx = 2.073 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3634 reflections
a = 24.885 (3) Åθ = 2.5–27.5°
b = 8.8026 (9) ŵ = 4.15 mm1
c = 13.8918 (17) ÅT = 150 K
β = 119.609 (4)°Slab, colourless
V = 2645.7 (5) Å30.57 × 0.27 × 0.10 mm
Z = 8
Data collection top
Bruker APEXII
diffractometer
2243 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
SADABS (Bruker, 2006)
h = 3232
Tmin = 0.365, Tmax = 0.660k = 811
9165 measured reflectionsl = 1718
3006 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0273P)2 + 1.5645P]
where P = (Fo2 + 2Fc2)/3
3006 reflections(Δ/σ)max = 0.001
239 parametersΔρmax = 0.42 e Å3
2 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Sr(C4HO4)2(H2O)5]·0.5H2OV = 2645.7 (5) Å3
Mr = 412.81Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.885 (3) ŵ = 4.15 mm1
b = 8.8026 (9) ÅT = 150 K
c = 13.8918 (17) Å0.57 × 0.27 × 0.10 mm
β = 119.609 (4)°
Data collection top
Bruker APEXII
diffractometer
3006 independent reflections
Absorption correction: multi-scan
SADABS (Bruker, 2006)
2243 reflections with I > 2σ(I)
Tmin = 0.365, Tmax = 0.660Rint = 0.037
9165 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0282 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.42 e Å3
3006 reflectionsΔρmin = 0.51 e Å3
239 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.911042 (8)0.99774 (2)0.338611 (16)0.00988 (8)
O10.83711 (7)1.00426 (19)0.42892 (15)0.0142 (3)
O20.98788 (9)0.7809 (2)0.35213 (18)0.0294 (5)
O31.02876 (8)1.0958 (2)0.44716 (15)0.0192 (4)
O40.92432 (9)1.2071 (3)0.21578 (19)0.0426 (7)
O50.88485 (10)0.8965 (3)0.14660 (16)0.0272 (5)
O60.80135 (7)1.10726 (17)0.20264 (13)0.0145 (4)
O70.68196 (8)1.24431 (17)0.01295 (14)0.0167 (4)
O80.63364 (7)0.90554 (19)0.10260 (15)0.0236 (4)
O90.74969 (7)0.76209 (17)0.11403 (15)0.0170 (4)
H90.78350.7630.17060.025*
O110.80095 (7)0.40021 (18)0.20800 (14)0.0166 (4)
H110.80050.30730.21160.025*
O120.84872 (7)0.73793 (16)0.29979 (14)0.0144 (4)
O130.95937 (8)0.5984 (2)0.52759 (16)0.0318 (5)
O140.91536 (7)0.25641 (17)0.43112 (15)0.0207 (4)
C60.75625 (10)1.0501 (3)0.1175 (2)0.0114 (5)
C70.70216 (10)1.1153 (3)0.0187 (2)0.0130 (5)
C80.67972 (11)0.9580 (3)0.0218 (2)0.0159 (5)
C90.73365 (10)0.9012 (3)0.0776 (2)0.0126 (5)
C110.84871 (10)0.4537 (3)0.2975 (2)0.0135 (5)
C120.86769 (10)0.6055 (3)0.3350 (2)0.0130 (5)
C130.91914 (11)0.5446 (3)0.4401 (2)0.0206 (6)
C140.89846 (10)0.3877 (3)0.3960 (2)0.0165 (5)
O1W11.4700 (3)0.250.0446 (9)
H1B0.8227 (16)0.926 (4)0.432 (3)0.05*
H1A0.8113 (17)1.062 (4)0.401 (3)0.05*
H5B0.8812 (15)0.796 (4)0.134 (3)0.05*
H2A1.0251 (15)0.776 (4)0.417 (3)0.05*
H5A0.8711 (17)0.934 (5)0.094 (3)0.05*
H3B1.0439 (16)1.072 (4)0.414 (3)0.05*
H3A1.0298 (15)1.201 (4)0.453 (3)0.05*
H2B0.9798 (16)0.719 (4)0.316 (3)0.05*
H4A0.8953 (17)1.219 (4)0.158 (3)0.05*
H4B0.9498 (16)1.284 (4)0.241 (3)0.05*
H1W1.0225 (13)1.513 (3)0.3020 (13)0.05*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.00824 (11)0.00952 (13)0.00876 (12)0.00008 (8)0.00180 (8)0.00180 (9)
O10.0145 (8)0.0109 (9)0.0172 (9)0.0003 (7)0.0078 (7)0.0015 (8)
O20.0159 (9)0.0414 (13)0.0193 (11)0.0073 (9)0.0001 (8)0.0139 (9)
O30.0145 (8)0.0236 (10)0.0162 (10)0.0018 (8)0.0050 (7)0.0060 (8)
O40.0184 (10)0.0565 (15)0.0300 (13)0.0138 (10)0.0057 (9)0.0294 (12)
O50.0345 (11)0.0293 (11)0.0111 (10)0.0049 (9)0.0062 (9)0.0023 (9)
O60.0125 (7)0.0102 (8)0.0112 (9)0.0020 (6)0.0015 (7)0.0015 (7)
O70.0195 (9)0.0117 (9)0.0123 (9)0.0056 (7)0.0028 (7)0.0001 (7)
O80.0161 (8)0.0192 (9)0.0174 (10)0.0049 (7)0.0056 (8)0.0093 (8)
O90.0125 (8)0.0095 (8)0.0179 (10)0.0005 (6)0.0008 (7)0.0016 (7)
O110.0128 (8)0.0093 (8)0.0157 (9)0.0018 (7)0.0020 (7)0.0020 (7)
O120.0158 (8)0.0052 (8)0.0142 (9)0.0025 (6)0.0014 (7)0.0023 (7)
O130.0286 (10)0.0163 (9)0.0199 (11)0.0104 (8)0.0113 (8)0.0048 (8)
O140.0169 (9)0.0069 (8)0.0245 (11)0.0008 (6)0.0003 (8)0.0040 (7)
C60.0097 (10)0.0124 (11)0.0106 (12)0.0029 (8)0.0038 (9)0.0007 (9)
C70.0131 (11)0.0132 (12)0.0098 (12)0.0042 (9)0.0035 (10)0.0006 (10)
C80.0156 (11)0.0136 (12)0.0135 (13)0.0038 (9)0.0033 (10)0.0036 (10)
C90.0106 (10)0.0093 (11)0.0146 (12)0.0011 (9)0.0038 (10)0.0018 (10)
C110.0110 (10)0.0085 (10)0.0152 (13)0.0003 (8)0.0021 (10)0.0000 (10)
C120.0132 (11)0.0071 (11)0.0142 (13)0.0013 (9)0.0034 (10)0.0020 (10)
C130.0178 (12)0.0104 (11)0.0209 (15)0.0033 (9)0.0001 (11)0.0031 (10)
C140.0121 (11)0.0102 (11)0.0185 (14)0.0014 (9)0.0008 (10)0.0016 (11)
O1W0.095 (3)0.0180 (16)0.0227 (17)00.031 (2)0
Geometric parameters (Å, º) top
Sr1—O12.691 (2)O2—H2B0.70 (4)
Sr1—O22.642 (2)O3—H3B0.76 (4)
Sr1—O32.690 (2)O3—H3A0.93 (4)
Sr1—O42.641 (3)O4—H4B0.87 (4)
Sr1—O52.572 (2)O4—H4A0.78 (4)
Sr1—O62.6179 (18)O5—H5A0.72 (4)
Sr1—O122.6646 (16)O5—H5B0.90 (4)
Sr1—O14i2.5906 (16)O9—H90.8200
Sr1—O3ii2.7154 (19)O11—H110.8200
O6—C61.265 (3)O1W—H1W0.76 (2)
O7—C71.232 (3)O1W—H1Wiii0.76 (2)
O8—C81.231 (3)C6—C71.483 (4)
O9—C91.310 (3)C6—C91.426 (4)
O11—C111.311 (3)C7—C81.495 (4)
O12—C121.262 (3)C8—C91.458 (4)
O13—C131.225 (3)C11—C141.438 (4)
O14—C141.244 (3)C11—C121.427 (4)
O1—H1A0.76 (4)C12—C131.487 (4)
O1—H1B0.79 (4)C13—C141.495 (4)
O2—H2A0.92 (4)
O1—Sr1—O2128.30 (6)Sr1—O1—H1A112 (3)
O1—Sr1—O3122.53 (6)H2A—O2—H2B117 (4)
O1—Sr1—O4128.24 (7)Sr1—O2—H2A117 (2)
O1—Sr1—O5127.55 (7)Sr1—O2—H2B125 (3)
O1—Sr1—O667.62 (6)H3A—O3—H3B109 (4)
O1—Sr1—O1269.46 (5)Sr1—O3—H3B108 (3)
O1—Sr1—O14i67.69 (6)Sr1—O3—H3A110 (3)
O1—Sr1—O3ii68.26 (6)Sr1ii—O3—H3A103 (2)
O2—Sr1—O369.05 (6)Sr1ii—O3—H3B114 (3)
O2—Sr1—O4103.47 (8)Sr1—O4—H4A115 (3)
O2—Sr1—O568.10 (7)Sr1—O4—H4B125 (2)
O2—Sr1—O6141.02 (6)H4A—O4—H4B115 (4)
O2—Sr1—O1273.90 (6)Sr1—O5—H5A130 (3)
O2—Sr1—O14i138.47 (6)Sr1—O5—H5B120 (2)
O2—Sr1—O3ii73.44 (6)H5A—O5—H5B108 (4)
O3—Sr1—O471.88 (7)C9—O9—H9109.00
O3—Sr1—O5109.90 (7)C11—O11—H11109.00
O3—Sr1—O6138.14 (5)H1W—O1W—H1Wiii120 (3)
O3—Sr1—O12138.82 (5)O6—C6—C7133.8 (2)
O3—Sr1—O14i70.92 (6)O6—C6—C9136.6 (2)
O3—Sr1—O3ii67.95 (6)C7—C6—C989.6 (2)
O4—Sr1—O567.68 (8)O7—C7—C6135.3 (2)
O4—Sr1—O672.28 (7)C6—C7—C889.4 (2)
O4—Sr1—O12135.59 (6)O7—C7—C8135.1 (2)
O4—Sr1—O14i73.70 (7)O8—C8—C7134.2 (2)
O3ii—Sr1—O4137.93 (7)O8—C8—C9137.9 (2)
O5—Sr1—O674.91 (7)C7—C8—C987.9 (2)
O5—Sr1—O1270.66 (7)C6—C9—C893.1 (2)
O5—Sr1—O14i138.26 (7)O9—C9—C6136.3 (2)
O3ii—Sr1—O5138.71 (7)O9—C9—C8130.4 (2)
O6—Sr1—O1282.82 (5)C12—C11—C1493.3 (2)
O6—Sr1—O14i78.88 (5)O11—C11—C12131.6 (2)
O3ii—Sr1—O6135.76 (6)O11—C11—C14135.1 (2)
O12—Sr1—O14i137.07 (6)O12—C12—C13133.6 (2)
O3ii—Sr1—O1284.97 (5)O12—C12—C11136.9 (2)
O3ii—Sr1—O14i81.82 (5)C11—C12—C1389.4 (2)
Sr1—O3—Sr1ii112.05 (7)O13—C13—C12136.0 (2)
Sr1—O6—C6130.94 (16)O13—C13—C14135.3 (2)
Sr1—O12—C12130.20 (17)C12—C13—C1488.6 (2)
Sr1iv—O14—C14134.33 (16)O14—C14—C13135.7 (2)
Sr1—O1—H1B116 (3)C11—C14—C1388.7 (2)
H1A—O1—H1B109 (4)O14—C14—C11135.5 (2)
O1—Sr1—O3—Sr1ii42.91 (9)Sr1—O6—C6—C7157.2 (2)
O2—Sr1—O3—Sr1ii79.97 (8)Sr1—O6—C6—C926.7 (5)
O4—Sr1—O3—Sr1ii167.22 (9)Sr1—O12—C12—C11152.0 (3)
O5—Sr1—O3—Sr1ii135.69 (8)Sr1—O12—C12—C1332.5 (4)
O6—Sr1—O3—Sr1ii134.93 (7)Sr1iv—O14—C14—C1132.9 (5)
O12—Sr1—O3—Sr1ii52.65 (11)Sr1iv—O14—C14—C13150.9 (3)
O14i—Sr1—O3—Sr1ii88.72 (7)O6—C6—C7—O72.1 (6)
O3ii—Sr1—O3—Sr1ii0.00 (6)O6—C6—C7—C8177.7 (3)
O1—Sr1—O6—C6106.5 (2)C9—C6—C7—O7175.2 (3)
O2—Sr1—O6—C617.3 (3)C9—C6—C7—C80.4 (2)
O3—Sr1—O6—C6139.1 (2)O6—C6—C9—O91.8 (6)
O4—Sr1—O6—C6106.9 (2)O6—C6—C9—C8177.6 (3)
O5—Sr1—O6—C636.0 (2)C7—C6—C9—O9175.3 (3)
O12—Sr1—O6—C635.8 (2)C7—C6—C9—C80.5 (2)
O14i—Sr1—O6—C6176.8 (2)O7—C7—C8—O82.0 (6)
O3ii—Sr1—O6—C6111.0 (2)O7—C7—C8—C9175.2 (3)
O1—Sr1—O12—C12112.7 (2)C6—C7—C8—O8177.6 (3)
O2—Sr1—O12—C1230.1 (2)C6—C7—C8—C90.4 (2)
O3—Sr1—O12—C123.6 (2)O8—C8—C9—O91.3 (6)
O4—Sr1—O12—C12123.1 (2)O8—C8—C9—C6177.4 (4)
O5—Sr1—O12—C12102.0 (2)C7—C8—C9—O9175.7 (3)
O6—Sr1—O12—C12178.5 (2)C7—C8—C9—C60.5 (2)
O14i—Sr1—O12—C12116.4 (2)O11—C11—C12—O121.5 (6)
O3ii—Sr1—O12—C1244.1 (2)O11—C11—C12—C13175.3 (3)
O1—Sr1—O14i—C14i112.4 (3)C14—C11—C12—O12178.2 (3)
O2—Sr1—O14i—C14i124.5 (2)C14—C11—C12—C131.4 (2)
O3—Sr1—O14i—C14i108.4 (3)O11—C11—C14—O142.3 (6)
O4—Sr1—O14i—C14i32.4 (3)O11—C11—C14—C13175.1 (3)
O5—Sr1—O14i—C14i9.6 (3)C12—C11—C14—O14178.8 (3)
O6—Sr1—O14i—C14i42.2 (3)C12—C11—C14—C131.4 (2)
O12—Sr1—O14i—C14i108.7 (2)O12—C12—C13—O131.5 (6)
O1—Sr1—O3ii—Sr1ii141.83 (8)O12—C12—C13—C14178.3 (3)
O2—Sr1—O3ii—Sr1ii73.62 (8)C11—C12—C13—O13175.4 (4)
O3—Sr1—O3ii—Sr1ii0.00 (6)C11—C12—C13—C141.4 (2)
O4—Sr1—O3ii—Sr1ii18.28 (14)O13—C13—C14—O141.9 (6)
O5—Sr1—O3ii—Sr1ii95.46 (11)O13—C13—C14—C11175.5 (4)
O6—Sr1—O3ii—Sr1ii137.38 (7)C12—C13—C14—O14178.7 (3)
O12—Sr1—O3ii—Sr1ii148.30 (8)C12—C13—C14—C111.4 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+2, z+1; (iii) x+2, y, z+1/2; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O9v0.76 (4)2.27 (4)2.983 (3)158 (4)
O1—H1B···O7vi0.79 (4)1.99 (4)2.715 (2)153 (4)
O1W—H1W···O13ii0.76 (2)2.39 (2)2.801 (2)115 (2)
O1W—H1W···O8vii0.76 (2)2.51 (3)3.118 (2)138 (3)
O2—H2A···O14viii0.92 (4)1.91 (4)2.794 (3)161 (4)
O2—H2B···O1Wiv0.70 (4)2.52 (4)3.165 (3)154 (4)
O3—H3A···O13ii0.93 (4)1.79 (4)2.712 (3)174 (3)
O3—H3B···O4iii0.76 (4)2.59 (4)3.172 (3)136 (3)
O4—H4A···O7ix0.78 (4)2.01 (4)2.785 (3)177 (4)
O4—H4B···O1W0.87 (4)2.03 (4)2.871 (3)163 (3)
O5—H5A···O1x0.72 (4)2.09 (4)2.787 (3)166 (4)
O5—H5B···O8xi0.90 (4)1.82 (4)2.716 (3)175 (4)
O9—H9···O120.821.742.548 (3)169
O11—H11···O6iv0.821.772.580 (2)172
Symmetry codes: (ii) x+2, y+2, z+1; (iii) x+2, y, z+1/2; (iv) x, y1, z; (v) x+3/2, y+1/2, z+1/2; (vi) x+3/2, y1/2, z+1/2; (vii) x+1/2, y+5/2, z+1/2; (viii) x+2, y+1, z+1; (ix) x+3/2, y+5/2, z; (x) x, y+2, z1/2; (xi) x+3/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula[Sr(C4HO4)2(H2O)5]·0.5H2O
Mr412.81
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)24.885 (3), 8.8026 (9), 13.8918 (17)
β (°) 119.609 (4)
V3)2645.7 (5)
Z8
Radiation typeMo Kα
µ (mm1)4.15
Crystal size (mm)0.57 × 0.27 × 0.10
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
SADABS (Bruker, 2006)
Tmin, Tmax0.365, 0.660
No. of measured, independent and
observed [I > 2σ(I)] reflections
9165, 3006, 2243
Rint0.037
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.068, 1.03
No. of reflections3006
No. of parameters239
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.51

Computer programs: APEXII (Bruker, 2006), SAINT (Bruker, 2006), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX publication routines (Farrugia, 1999).

Selected bond lengths (Å) top
Sr1—O12.691 (2)Sr1—O62.6179 (18)
Sr1—O22.642 (2)Sr1—O122.6646 (16)
Sr1—O32.690 (2)Sr1—O14i2.5906 (16)
Sr1—O42.641 (3)Sr1—O3ii2.7154 (19)
Sr1—O52.572 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O9iii0.76 (4)2.27 (4)2.983 (3)158 (4)
O1—H1B···O7iv0.79 (4)1.99 (4)2.715 (2)153 (4)
O1W—H1W···O13ii0.76 (2)2.39 (2)2.801 (2)115 (2)
O1W—H1W···O8v0.76 (2)2.51 (3)3.118 (2)138 (3)
O2—H2A···O14vi0.92 (4)1.91 (4)2.794 (3)161 (4)
O2—H2B···O1Wvii0.70 (4)2.52 (4)3.165 (3)154 (4)
O3—H3A···O13ii0.93 (4)1.79 (4)2.712 (3)174 (3)
O3—H3B···O4viii0.76 (4)2.59 (4)3.172 (3)136 (3)
O4—H4A···O7ix0.78 (4)2.01 (4)2.785 (3)177 (4)
O4—H4B···O1W0.87 (4)2.03 (4)2.871 (3)163 (3)
O5—H5A···O1x0.72 (4)2.09 (4)2.787 (3)166 (4)
O5—H5B···O8xi0.90 (4)1.82 (4)2.716 (3)175 (4)
O9—H9···O120.821.742.548 (3)169
O11—H11···O6vii0.821.772.580 (2)172
Symmetry codes: (ii) x+2, y+2, z+1; (iii) x+3/2, y+1/2, z+1/2; (iv) x+3/2, y1/2, z+1/2; (v) x+1/2, y+5/2, z+1/2; (vi) x+2, y+1, z+1; (vii) x, y1, z; (viii) x+2, y, z+1/2; (ix) x+3/2, y+5/2, z; (x) x, y+2, z1/2; (xi) x+3/2, y+3/2, z.
 

Acknowledgements

The authors thank Dr Thierry Roisnel, Centre de Diffractométrie X (CDIFX) de Rennes, Université de Rennes 1, France, for his technical assistance with the single-crystal X-ray data collection. This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri–Constantine 25000 Algeria.

References

First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrifa, C., Bouhali, A., Bouacida, S., Boudaren, C. & Bataille, T. (2011). Acta Cryst. E67, m275–m276.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1130-m1131
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds