organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(Z)-2-Phenyl­hydrazin-1-yl­­idene]-1-(piperidin-1-yl)propan-2-one

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 21 July 2011; accepted 22 July 2011; online 30 July 2011)

A Z configuration about the imine bond [1.3025 (18) Å] in the title compound, C14H19N3O, allows for the formation of an intra­moleclar N—H⋯N hydrogen bond between the hydrazone H and piperidine N atoms; the carbonyl group is disposed to lie over the piperidine residue, which is in a chair form. A twist between the terminal benzene ring and the hydrazine residue is seen [N—N—C—C torsion angle = 163.81 (12)°]. Helical supra­molecular chains along the c axis mediated by N—H⋯O hydrogen bonds are the most prominent feature of the crystal packing. The chains are connected into layers lying in the ac plane by weak C—H⋯π contacts involving two methyl­ene H atoms and an adjacent benzene ring.

Related literature

For background to the biological activity of amidrazones, see: Frohberg et al. (2006[Frohberg, P., Wagner, C., Meier, R. & Sippl, W. (2006). Tetrahedron, 62, 6050-6060.]); Abdel-Aziz & Mekawey (2009[Abdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 3985-4997.]); Abdel-Aziz et al. (2010[Abdel-Aziz, H. A., Abdel-Wahab, B. F. & Badria, F. A. (2010). Arch. Pharm. 343, 152-159.]). For the synthesis, see: Frohberg et al. (1995[Frohberg, P., Kupfer, C., Stenger, P., Baumeister, U. & Nuhn, P. (1995). Arch. Pharm. 328, 505-516.]).

[Scheme 1]

Experimental

Crystal data
  • C14H19N3O

  • Mr = 245.32

  • Orthorhombic, P 21 21 21

  • a = 9.1195 (2) Å

  • b = 11.9614 (2) Å

  • c = 12.0393 (2) Å

  • V = 1313.27 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.64 mm−1

  • T = 100 K

  • 0.25 × 0.10 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.857, Tmax = 0.969

  • 5335 measured reflections

  • 2589 independent reflections

  • 2482 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.080

  • S = 1.05

  • 2589 reflections

  • 168 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1077 Friedel pairs

  • Flack parameter: −0.1 (3)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C9–C14 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.88 (2) 2.47 (2) 3.2317 (15) 145.6 (17)
N3—H3⋯N1 0.88 (2) 2.242 (19) 2.6340 (16) 106.8 (15)
C2—H2b⋯Cg1ii 0.99 2.77 3.5535 (16) 137
C3—H3a⋯Cg1iii 0.99 2.98 3.9473 (16) 167
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound (I) and related amidrazone derivatives are known to possess biological activity (Frohberg et al., 2006), the motivation for on-going studies in this area (Abdel-Aziz & Mekawey, 2009; Abdel-Aziz et al., 2010). In the molecule of (I), Fig. 1, the configuration about the imine N2C6 bond [1.3025 (18) Å] is Z. This places the hydrazone-N3—H in close proximity to the piperidinyl-N1 enabling the formation of an intramolecular N—H···N hydrogen bond (Table 1). The carbonyl group is disposed to lie over the piperidinyl group which adopts a chair conformation. The benzene group is twisted out of the plane through the hydrazine residue to which it is connected as seen in the value of the N2—N3—C9—C10 torsion angle of 163.81 (12) °. The piperidinyl group is disposed to be almost normal to the rest of the molecule so that the dihedral plane formed through its least-squares plane and that through the O1,N2,N3,C6,C7,C9 atoms is 85.26 (6) °.

In the crystal, molecules are connected into a helical supramolecular chain mediated by N—H···O hydrogen bonds (Table 1). Chains are orientated along the c axis and are connected into a supramolecular array in the ac plane by C—H···π interactions involving methylene-H atoms associated with the bifurcated benzene ring (Table 1 and Fig. 2).

Related literature top

For background to the biological activity of amidrazones, see: Frohberg et al. (2006); Abdel-Aziz & Mekawey (2009); Abdel-Aziz et al. (2010). For the synthesis, see: Frohberg et al. (1995).

Experimental top

This compound was prepared by the reaction of 2-oxo-N'-phenylpropanehydrazonoyl chloride with piperidine (Frohberg et al., 1995). The yellow prisms of (I) were isolated from its ethanol solution by slow evaporation at room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino-H atom was located in a difference Fourier map, and subsequently refined freely.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular array aligned in the ac plane in (I) mediated by N—H···O and C—H···π interactions shown as orange and purple dashed lines, respectively.
1-[(Z)-2-Phenylhydrazin-1-ylidene]-1-(piperidin-1-yl)propan-2-one top
Crystal data top
C14H19N3OF(000) = 528
Mr = 245.32Dx = 1.241 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.5418 Å
Hall symbol: P 2ac 2abCell parameters from 3524 reflections
a = 9.1195 (2) Åθ = 3.7–73.9°
b = 11.9614 (2) ŵ = 0.64 mm1
c = 12.0393 (2) ÅT = 100 K
V = 1313.27 (4) Å3Prism, yellow
Z = 40.25 × 0.10 × 0.05 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2589 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2482 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 10.4041 pixels mm-1θmax = 74.1°, θmin = 5.2°
ω scansh = 117
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1411
Tmin = 0.857, Tmax = 0.969l = 1513
5335 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.2381P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2589 reflectionsΔρmax = 0.12 e Å3
168 parametersΔρmin = 0.20 e Å3
0 restraintsAbsolute structure: Flack (1983), 1077 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.1 (3)
Crystal data top
C14H19N3OV = 1313.27 (4) Å3
Mr = 245.32Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 9.1195 (2) ŵ = 0.64 mm1
b = 11.9614 (2) ÅT = 100 K
c = 12.0393 (2) Å0.25 × 0.10 × 0.05 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2589 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2482 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.969Rint = 0.021
5335 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080Δρmax = 0.12 e Å3
S = 1.05Δρmin = 0.20 e Å3
2589 reflectionsAbsolute structure: Flack (1983), 1077 Friedel pairs
168 parametersAbsolute structure parameter: 0.1 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.78315 (11)0.39621 (8)0.41136 (8)0.0206 (2)
N10.76810 (12)0.50948 (9)0.20177 (9)0.0152 (2)
N20.55012 (12)0.40406 (10)0.18282 (10)0.0161 (2)
N30.52865 (13)0.46113 (10)0.08925 (10)0.0176 (2)
C10.91802 (15)0.46592 (12)0.18446 (12)0.0180 (3)
H1A0.91390.39630.14010.022*
H1B0.96340.44820.25710.022*
C21.01007 (16)0.55293 (12)0.12398 (12)0.0212 (3)
H2A0.97130.56320.04790.025*
H2B1.11230.52580.11790.025*
C31.00881 (16)0.66502 (12)0.18456 (13)0.0221 (3)
H3A1.06140.65760.25610.027*
H3B1.06060.72160.13920.027*
C40.85187 (16)0.70368 (12)0.20604 (13)0.0219 (3)
H4A0.85310.77290.25100.026*
H4B0.80310.72050.13450.026*
C50.76669 (16)0.61340 (11)0.26713 (12)0.0201 (3)
H5A0.81160.59990.34080.024*
H5B0.66430.63820.27880.024*
C60.66729 (15)0.42747 (11)0.24015 (11)0.0159 (3)
C70.68611 (15)0.36763 (12)0.34649 (11)0.0172 (3)
C80.58735 (18)0.27024 (12)0.37224 (12)0.0236 (3)
H8A0.58970.25500.45220.035*
H8B0.62120.20410.33160.035*
H8C0.48680.28820.34970.035*
C90.40458 (15)0.43897 (11)0.02405 (11)0.0158 (3)
C100.36359 (15)0.51634 (12)0.05636 (11)0.0177 (3)
H100.41950.58250.06680.021*
C110.24038 (16)0.49645 (13)0.12146 (11)0.0215 (3)
H110.21260.54900.17680.026*
C120.15788 (17)0.40034 (14)0.10604 (12)0.0246 (3)
H120.07310.38750.15000.030*
C130.19957 (17)0.32311 (13)0.02621 (13)0.0249 (3)
H130.14340.25700.01600.030*
C140.32279 (16)0.34171 (12)0.03888 (12)0.0206 (3)
H140.35120.28840.09330.025*
H30.596 (2)0.5100 (15)0.0692 (16)0.029 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0199 (5)0.0240 (5)0.0178 (5)0.0002 (4)0.0022 (4)0.0007 (4)
N10.0118 (5)0.0150 (5)0.0189 (5)0.0006 (4)0.0002 (4)0.0004 (4)
N20.0153 (5)0.0165 (5)0.0166 (5)0.0009 (5)0.0010 (4)0.0002 (5)
N30.0141 (5)0.0204 (6)0.0184 (5)0.0045 (5)0.0016 (5)0.0037 (5)
C10.0147 (6)0.0190 (7)0.0203 (6)0.0023 (5)0.0022 (6)0.0026 (6)
C20.0151 (6)0.0244 (7)0.0241 (7)0.0003 (6)0.0043 (6)0.0018 (6)
C30.0162 (7)0.0221 (7)0.0280 (7)0.0048 (6)0.0004 (6)0.0034 (6)
C40.0192 (7)0.0167 (6)0.0297 (7)0.0018 (6)0.0014 (6)0.0011 (6)
C50.0179 (7)0.0167 (6)0.0255 (7)0.0009 (6)0.0043 (6)0.0022 (6)
C60.0141 (6)0.0156 (6)0.0178 (6)0.0004 (5)0.0020 (5)0.0018 (5)
C70.0170 (7)0.0175 (7)0.0171 (6)0.0024 (5)0.0017 (5)0.0029 (5)
C80.0299 (8)0.0211 (7)0.0199 (7)0.0047 (6)0.0008 (6)0.0031 (6)
C90.0117 (6)0.0187 (7)0.0171 (6)0.0002 (5)0.0004 (5)0.0039 (5)
C100.0154 (6)0.0203 (6)0.0175 (6)0.0000 (5)0.0019 (5)0.0023 (5)
C110.0177 (7)0.0286 (8)0.0181 (6)0.0044 (6)0.0001 (5)0.0019 (6)
C120.0156 (6)0.0342 (8)0.0241 (7)0.0019 (6)0.0052 (6)0.0072 (6)
C130.0192 (7)0.0248 (7)0.0307 (8)0.0061 (6)0.0009 (6)0.0047 (6)
C140.0180 (7)0.0191 (7)0.0247 (7)0.0034 (6)0.0014 (6)0.0006 (6)
Geometric parameters (Å, º) top
O1—C71.2288 (17)C4—H4B0.9900
N1—C61.4216 (17)C5—H5A0.9900
N1—C51.4712 (17)C5—H5B0.9900
N1—C11.4778 (17)C6—C71.4767 (19)
N2—C61.3025 (18)C7—C81.505 (2)
N2—N31.3317 (16)C8—H8A0.9800
N3—C91.4023 (17)C8—H8B0.9800
N3—H30.88 (2)C8—H8C0.9800
C1—C21.523 (2)C9—C101.391 (2)
C1—H1A0.9900C9—C141.3934 (19)
C1—H1B0.9900C10—C111.390 (2)
C2—C31.526 (2)C10—H100.9500
C2—H2A0.9900C11—C121.386 (2)
C2—H2B0.9900C11—H110.9500
C3—C41.526 (2)C12—C131.386 (2)
C3—H3A0.9900C12—H120.9500
C3—H3B0.9900C13—C141.388 (2)
C4—C51.5201 (19)C13—H130.9500
C4—H4A0.9900C14—H140.9500
C6—N1—C5113.80 (10)N1—C5—H5B109.7
C6—N1—C1113.63 (10)C4—C5—H5B109.7
C5—N1—C1112.42 (10)H5A—C5—H5B108.2
C6—N2—N3117.31 (11)N2—C6—N1120.44 (12)
N2—N3—C9119.69 (11)N2—C6—C7116.78 (12)
N2—N3—H3118.1 (13)N1—C6—C7122.75 (12)
C9—N3—H3122.1 (13)O1—C7—C6119.99 (13)
N1—C1—C2109.67 (11)O1—C7—C8121.03 (12)
N1—C1—H1A109.7C6—C7—C8118.96 (12)
C2—C1—H1A109.7C7—C8—H8A109.5
N1—C1—H1B109.7C7—C8—H8B109.5
C2—C1—H1B109.7H8A—C8—H8B109.5
H1A—C1—H1B108.2C7—C8—H8C109.5
C1—C2—C3111.58 (12)H8A—C8—H8C109.5
C1—C2—H2A109.3H8B—C8—H8C109.5
C3—C2—H2A109.3C10—C9—C14120.06 (13)
C1—C2—H2B109.3C10—C9—N3118.74 (12)
C3—C2—H2B109.3C14—C9—N3121.20 (13)
H2A—C2—H2B108.0C11—C10—C9119.72 (13)
C4—C3—C2110.75 (12)C11—C10—H10120.1
C4—C3—H3A109.5C9—C10—H10120.1
C2—C3—H3A109.5C10—C11—C12120.33 (14)
C4—C3—H3B109.5C10—C11—H11119.8
C2—C3—H3B109.5C12—C11—H11119.8
H3A—C3—H3B108.1C13—C12—C11119.78 (13)
C5—C4—C3110.24 (12)C13—C12—H12120.1
C5—C4—H4A109.6C11—C12—H12120.1
C3—C4—H4A109.6C12—C13—C14120.44 (14)
C5—C4—H4B109.6C12—C13—H13119.8
C3—C4—H4B109.6C14—C13—H13119.8
H4A—C4—H4B108.1C13—C14—C9119.66 (14)
N1—C5—C4109.69 (11)C13—C14—H14120.2
N1—C5—H5A109.7C9—C14—H14120.2
C4—C5—H5A109.7
C6—N2—N3—C9179.73 (12)N2—C6—C7—O1170.31 (12)
C6—N1—C1—C2169.70 (11)N1—C6—C7—O17.84 (19)
C5—N1—C1—C259.23 (15)N2—C6—C7—C811.11 (18)
N1—C1—C2—C354.55 (15)N1—C6—C7—C8170.74 (13)
C1—C2—C3—C453.17 (16)N2—N3—C9—C10163.81 (12)
C2—C3—C4—C554.34 (16)N2—N3—C9—C1416.06 (19)
C6—N1—C5—C4167.80 (11)C14—C9—C10—C110.3 (2)
C1—N1—C5—C461.21 (15)N3—C9—C10—C11179.57 (12)
C3—C4—C5—N157.74 (16)C9—C10—C11—C120.4 (2)
N3—N2—C6—N11.12 (18)C10—C11—C12—C130.8 (2)
N3—N2—C6—C7177.07 (11)C11—C12—C13—C140.4 (2)
C5—N1—C6—N2108.74 (14)C12—C13—C14—C90.3 (2)
C1—N1—C6—N2120.87 (13)C10—C9—C14—C130.7 (2)
C5—N1—C6—C769.34 (15)N3—C9—C14—C13179.22 (13)
C1—N1—C6—C761.04 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 benzene ring.
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.88 (2)2.47 (2)3.2317 (15)145.6 (17)
N3—H3···N10.88 (2)2.242 (19)2.6340 (16)106.8 (15)
C2—H2b···Cg1ii0.992.773.5535 (16)137
C3—H3a···Cg1iii0.992.983.9473 (16)167
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+1, y, z; (iii) x+3/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H19N3O
Mr245.32
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)9.1195 (2), 11.9614 (2), 12.0393 (2)
V3)1313.27 (4)
Z4
Radiation typeCu Kα
µ (mm1)0.64
Crystal size (mm)0.25 × 0.10 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.857, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
5335, 2589, 2482
Rint0.021
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.080, 1.05
No. of reflections2589
No. of parameters168
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.20
Absolute structureFlack (1983), 1077 Friedel pairs
Absolute structure parameter0.1 (3)

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 benzene ring.
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.88 (2)2.47 (2)3.2317 (15)145.6 (17)
N3—H3···N10.88 (2)2.242 (19)2.6340 (16)106.8 (15)
C2—H2b···Cg1ii0.992.773.5535 (16)137
C3—H3a···Cg1iii0.992.983.9473 (16)167
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+1, y, z; (iii) x+3/2, y+1, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: hatem_741@yahoo.com.

Acknowledgements

The authors thank King Saud University and the University of Malaya for supporting this study.

References

First citationAbdel-Aziz, H. A., Abdel-Wahab, B. F. & Badria, F. A. (2010). Arch. Pharm. 343, 152–159.  Google Scholar
First citationAbdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 3985–4997.  Google Scholar
First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFrohberg, P., Kupfer, C., Stenger, P., Baumeister, U. & Nuhn, P. (1995). Arch. Pharm. 328, 505–516.  CrossRef CAS Web of Science Google Scholar
First citationFrohberg, P., Wagner, C., Meier, R. & Sippl, W. (2006). Tetrahedron, 62, 6050–6060.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds