metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­bromidomercury(II)]-μ-3,6-bis­­(2-pyridyl­sulfan­yl)pyridazine-κ2N3:N6]

aSchool of Chemistry and Bioengineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China, and bCollege of Chemistry, Chemical Engineering and Material Science, Suzhou University, Suzhou 215123, People's Republic of China
*Correspondence e-mail: songrf@mail.usts.edu.cn

(Received 28 June 2011; accepted 13 July 2011; online 23 July 2011)

In the title coordination polymer, [HgBr2(C14H10N4S2)]n, the HgII atom is four-coordinated in a distorted tetra­hedral geometry by the two N atoms of the pyridyl groups of different 3,6-bis­(2-pyridyl­sulfan­yl)pyridazine ligands and two Br atoms. The bridging function of the cis ligands leads to a helical chain structure along [100].

Related literature

For metal coordination compounds with 3,6-bis­(2-pyridyl­thio) pyridazine, see: Chen et al. (1996[Chen, L., Thompson, L. K. & Bridson, J. N. (1996). Inorg. Chim. Acta, 244, 87-93.]); Mandal et al. (1987[Mandal, S. K., Thompson, L. K., Gabe, E. J., Lee, F. L. & Charland, J.-P. (1987). Inorg. Chem. 26, 2384-2389.], 1988[Mandal, S. K., Thompson, L. K., Gabe, E. J., Charland, J.-P. & Lee, F. L. (1988). Inorg. Chem. 27, 855-859.]); Song et al. (2011[Song, R.-F., Sun, Y.-Y., Yang, J. & Yang, X.-Y. (2011). J. Inorg. Organomet. Polym. 21, 237-243.]); Woon et al. (1986[Woon, T. C., McDonald, R., Mandal, S. K., Thompson, L. K. & Addison, A. W. (1986). J. Chem. Soc. Dalton Trans. pp. 2381-2386.]).

[Scheme 1]

Experimental

Crystal data
  • [HgBr2(C14H10N4S2)]

  • Mr = 658.78

  • Monoclinic, C 2/c

  • a = 16.393 (3) Å

  • b = 12.4954 (19) Å

  • c = 9.7648 (16) Å

  • β = 117.444 (3)°

  • V = 1775.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 13.41 mm−1

  • T = 223 K

  • 0.55 × 0.30 × 0.26 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.013, Tmax = 0.030

  • 5341 measured reflections

  • 2013 independent reflections

  • 1688 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.080

  • S = 1.00

  • 2013 reflections

  • 107 parameters

  • H-atom parameters constrained

  • Δρmax = 1.56 e Å−3

  • Δρmin = −2.20 e Å−3

Data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku, 2001[Rigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, metal complexes of N-containing heterocyclic flexible thioethers ligands especially attracted considerable interest. The ligand 3,6-bis(2-pyridylthio) pyridazine (PTP) is interesting bridging ligand and is able to act as bridges between metal centers to form dinuclear (Chen et al., 1996; Mandal et al., 1987, 1988; Woon et al., 1986) and coordination polymer (Song et al. 2011). Herein, we report the crystal structure of HgII complex (I).

The title complex (I) is one-dimensional chain coordination polymer. Each HgII atom is in a distorted tetrahedral geometry with two N atoms from two different PTP ligands and two bromide (Fig. 1). Its structure is isomorphous with HgI2 complex (Song et al., 2011). Complex (I) has a compressed N—Hg—N angle of 98.8 (2)° and an expanded Br—Hg—Br angle of 140.84 (4)°, whereas for iodide structure the compressed N—Hg—N angle and expanded I—Hg—I angle are 96.6 (2)° and 144.01 (2)° (Song et al., 2011), respectively. As HgI2 complex (Song et al., 2011), HgBr2 units of the complex (I) are connected to each other by cis-PTP ligands through the pyridyl nitrogen atoms into a one-dimensional chain along [100] (Fig. 2). The ligand adopts a pronounced syn twist, creating an angle of 15.3 (1)° between the pyridine planes and angles of 83.2 (1)° between the pyridine planes and the pyridazine plane. The two pyridyl groups in PTP are not coplanar, and the bending of the ligand and its coordination at the Hg(II) center result in one-dimensional chains that adopt a helical twist. The isomorphous structure results from tetrahedral coordination geometry HgII ions.

Related literature top

For metal coordination compounds with 3,6-bis(2-pyridylthio) pyridazine, see: Chen et al. (1996); Mandal et al. (1987, 1988); Song et al. (2011); Woon et al. (1986).

Experimental top

The ligand 3,6-bis(2-pyridylthio) pyridazine (PTP) was prepared according to the general procedure reported by Woon et al. (1986). For preparation of the title compound, a solution of HgBr2 (18.5 mg, 0.05 mmol) in acetone (2 ml) was slowly added to a solution of PTP (15 mg, 0.05 mmol) in CH3OH (2 ml). The mixture was stirred for 0.5 h at room temperature, and then filtered and kept in the refrigerator (-18 C°). After 48 h, yellow prismatic single-crystals (I) of suitable for X-ray analysis was obtained in 67.2% yield. IR (cm-1): 3039.81.w, 2368.58w, 1581.62m, 1450.47m, 1427.32m, 1396.46 s, 833.25w, 771.52 s, 632.65w, 578.64w. Anal. Found: C, 25.53; H, 1.51; N, 8.46. Calcd. For C14H10Br2HgN4S2: C, 25.50; H, 1.32; N, 8.50.

Refinement top

H atoms were included in calculated positions refined as part of a riding with C—H distances of 0.94Å (aromatic H), and with Uiso= 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalStructure (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The the coordination environment of HgII center of complex(I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Perspective view of the 1-D helical chain structure of complex(I).
catena-Poly[[dibromidomercury(II)]-µ-3,6-bis(2- pyridylsulfanyl)pyridazine-κ2N3:N6] top
Crystal data top
[HgBr2(C14H10N4S2)]F(000) = 1216
Mr = 658.78Dx = 2.465 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2ycCell parameters from 2664 reflections
a = 16.393 (3) Åθ = 3.6–27.5°
b = 12.4954 (19) ŵ = 13.41 mm1
c = 9.7648 (16) ÅT = 223 K
β = 117.444 (3)°Prism, yellow
V = 1775.1 (5) Å30.55 × 0.30 × 0.26 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
2013 independent reflections
Radiation source: fine-focus sealed tube1688 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 14.63 pixels mm-1θmax = 27.5°, θmin = 3.6°
ω scansh = 1821
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 916
Tmin = 0.013, Tmax = 0.030l = 1210
5341 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0419P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2013 reflectionsΔρmax = 1.56 e Å3
107 parametersΔρmin = 2.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00186 (14)
Crystal data top
[HgBr2(C14H10N4S2)]V = 1775.1 (5) Å3
Mr = 658.78Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.393 (3) ŵ = 13.41 mm1
b = 12.4954 (19) ÅT = 223 K
c = 9.7648 (16) Å0.55 × 0.30 × 0.26 mm
β = 117.444 (3)°
Data collection top
Rigaku Saturn
diffractometer
2013 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
1688 reflections with I > 2σ(I)
Tmin = 0.013, Tmax = 0.030Rint = 0.032
5341 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.00Δρmax = 1.56 e Å3
2013 reflectionsΔρmin = 2.20 e Å3
107 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.50000.24799 (3)0.25000.03257 (15)
Br10.37219 (4)0.18078 (6)0.00215 (7)0.03794 (19)
S10.63765 (10)0.19500 (16)0.09685 (16)0.0354 (4)
N10.5935 (3)0.3774 (4)0.1882 (5)0.0300 (11)
N20.5304 (3)0.2847 (4)0.1745 (5)0.0282 (11)
C10.6470 (3)0.3344 (5)0.1311 (6)0.0272 (13)
C20.7060 (4)0.3982 (7)0.0995 (7)0.0438 (18)
H2A0.74420.36690.06250.053*
C30.7083 (4)0.5050 (8)0.1218 (7)0.051 (2)
H30.74690.54860.09840.062*
C40.6537 (4)0.5493 (6)0.1790 (7)0.0440 (16)
H40.65300.62360.19370.053*
C50.6000 (4)0.4815 (6)0.2142 (8)0.0427 (16)
H50.56570.51130.25980.051*
C60.5593 (3)0.1942 (5)0.1028 (6)0.0284 (12)
C70.5306 (4)0.0926 (6)0.1734 (7)0.0411 (15)
H70.55250.02870.11760.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0342 (2)0.0283 (2)0.0378 (2)0.0000.01890 (15)0.000
Br10.0372 (3)0.0317 (4)0.0401 (3)0.0041 (3)0.0137 (3)0.0007 (3)
S10.0382 (7)0.0330 (10)0.0332 (7)0.0155 (7)0.0148 (6)0.0078 (7)
N10.029 (2)0.021 (3)0.041 (2)0.003 (2)0.018 (2)0.000 (2)
N20.030 (2)0.019 (3)0.031 (2)0.000 (2)0.0111 (19)0.004 (2)
C10.018 (2)0.035 (4)0.025 (2)0.003 (2)0.007 (2)0.008 (2)
C20.032 (3)0.063 (6)0.043 (3)0.013 (3)0.023 (3)0.009 (3)
C30.050 (4)0.059 (6)0.045 (3)0.032 (4)0.022 (3)0.004 (4)
C40.045 (3)0.029 (4)0.054 (4)0.012 (3)0.019 (3)0.002 (3)
C50.041 (3)0.028 (4)0.066 (4)0.003 (3)0.030 (3)0.004 (3)
C60.028 (3)0.026 (4)0.036 (3)0.008 (2)0.019 (2)0.008 (3)
C70.066 (4)0.015 (3)0.048 (3)0.005 (3)0.030 (3)0.010 (3)
Geometric parameters (Å, º) top
Hg1—N12.485 (5)C2—C31.350 (12)
Hg1—N1i2.485 (5)C2—H2A0.9400
Hg1—Br12.5056 (6)C3—C41.371 (10)
Hg1—Br1i2.5056 (6)C3—H30.9400
S1—C11.767 (7)C4—C51.373 (9)
S1—C61.773 (5)C4—H40.9400
N1—C51.321 (9)C5—H50.9400
N1—C11.349 (7)C6—C71.417 (9)
N2—C61.299 (8)C7—C7ii1.365 (12)
N2—N2ii1.347 (9)C7—H70.9400
C1—C21.394 (9)
N1—Hg1—N1i98.8 (2)C1—C2—H2A120.0
N1—Hg1—Br1108.55 (10)C2—C3—C4119.4 (6)
N1i—Hg1—Br196.77 (10)C2—C3—H3120.3
N1—Hg1—Br1i96.77 (10)C4—C3—H3120.3
N1i—Hg1—Br1i108.55 (10)C3—C4—C5117.8 (7)
Br1—Hg1—Br1i140.84 (4)C3—C4—H4121.1
C1—S1—C699.7 (3)C5—C4—H4121.1
C5—N1—C1117.4 (5)N1—C5—C4124.4 (6)
C5—N1—Hg1126.8 (4)N1—C5—H5117.8
C1—N1—Hg1115.6 (4)C4—C5—H5117.8
C6—N2—N2ii119.5 (4)N2—C6—C7124.2 (5)
N1—C1—C2120.9 (6)N2—C6—S1119.1 (5)
N1—C1—S1117.0 (4)C7—C6—S1116.7 (5)
C2—C1—S1122.0 (5)C7ii—C7—C6116.4 (3)
C3—C2—C1120.0 (6)C7ii—C7—H7121.8
C3—C2—H2A120.0C6—C7—H7121.8
N1i—Hg1—N1—C511.6 (4)S1—C1—C2—C3177.5 (5)
Br1—Hg1—N1—C5111.9 (5)C1—C2—C3—C41.5 (10)
Br1i—Hg1—N1—C598.4 (5)C2—C3—C4—C51.3 (10)
N1i—Hg1—N1—C1172.8 (4)C1—N1—C5—C43.8 (9)
Br1—Hg1—N1—C172.5 (3)Hg1—N1—C5—C4179.3 (5)
Br1i—Hg1—N1—C177.2 (3)C3—C4—C5—N14.1 (10)
C5—N1—C1—C20.7 (8)N2ii—N2—C6—C70.2 (9)
Hg1—N1—C1—C2176.7 (4)N2ii—N2—C6—S1178.8 (5)
C5—N1—C1—S1180.0 (4)C1—S1—C6—N21.6 (4)
Hg1—N1—C1—S13.9 (5)C1—S1—C6—C7177.1 (4)
C6—S1—C1—N196.6 (4)N2—C6—C7—C7ii0.6 (10)
C6—S1—C1—C282.8 (5)S1—C6—C7—C7ii179.2 (6)
N1—C1—C2—C31.9 (9)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y, z1/2.

Experimental details

Crystal data
Chemical formula[HgBr2(C14H10N4S2)]
Mr658.78
Crystal system, space groupMonoclinic, C2/c
Temperature (K)223
a, b, c (Å)16.393 (3), 12.4954 (19), 9.7648 (16)
β (°) 117.444 (3)
V3)1775.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)13.41
Crystal size (mm)0.55 × 0.30 × 0.26
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.013, 0.030
No. of measured, independent and
observed [I > 2σ(I)] reflections
5341, 2013, 1688
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.080, 1.00
No. of reflections2013
No. of parameters107
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.56, 2.20

Computer programs: CrystalClear (Rigaku, 2001), CrystalStructure (Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank Suzhou University of Science and Technology for financial support.

References

First citationChen, L., Thompson, L. K. & Bridson, J. N. (1996). Inorg. Chim. Acta, 244, 87–93.  CSD CrossRef CAS Web of Science Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMandal, S. K., Thompson, L. K., Gabe, E. J., Charland, J.-P. & Lee, F. L. (1988). Inorg. Chem. 27, 855–859.  CSD CrossRef CAS Web of Science Google Scholar
First citationMandal, S. K., Thompson, L. K., Gabe, E. J., Lee, F. L. & Charland, J.-P. (1987). Inorg. Chem. 26, 2384–2389.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, R.-F., Sun, Y.-Y., Yang, J. & Yang, X.-Y. (2011). J. Inorg. Organomet. Polym. 21, 237–243.  Web of Science CSD CrossRef CAS Google Scholar
First citationWoon, T. C., McDonald, R., Mandal, S. K., Thompson, L. K. & Addison, A. W. (1986). J. Chem. Soc. Dalton Trans. pp. 2381–2386.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds