organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-Di­chloro-1-(3,3,6-tri­methyl-9-oxo-1,5-di­aza­bi­cyclo­[4.3.0]nonan-5-yl)ethanone

aCollege of Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
*Correspondence e-mail: yefei@neau.edu.cn

(Received 27 June 2011; accepted 7 July 2011; online 13 July 2011)

In the title mol­ecule, C12H18Cl2N2O2, the six-membered ring is in a chair conformation and the five-membered ring is in an envelope conformation. In the crystal, weak inter­molecular bifurcated (C—H)2⋯O hydrogen bonds connect mol­ecules into chains along [010].

Related literature

For synthetic applications of 1,5-diaza­bicyclo compounds, see: Hutton & Bartlett (2007)[Hutton, C. A. & Bartlett, P. A. (2007). J. Org. Chem. 72, 6865-6872.]; Koptelov et al. (2011[Koptelov, Y. B., Saik, S. P., Molchanov, A. P. & Selivanov, S. I. (2011). Russ. J. Org. Chem. 47, 421-432.]); Taylor et al. (2010[Taylor, J. E., Jones, M. D., Williams, J. M. J. & Bull, S. D. (2010). Org. Lett. 12, 5740-5743.]). For the bioactivity of N-dichloro­acety diaza­bicyclo derivatives, see: Burton et al. (1994[Burton, J. D., Maness, E. P., Monks, D. W. & Robinson, D. K. (1994). Pestic. Biochem. Phys. 48, 163-172.]); Hatzios (2004[Hatzios, K. K. (2004). Weed Sci. 52, 454-467.]); Loniovereror (1993[Loniovereror, G. L. (1993). Weed Res. 33, 311-318.]). For the synthetic procedure, see: Sun & Ye (2010[Sun, T. F. & Ye, F. (2010). Chem. Online, 73, 669-672.]).

[Scheme 1]

Experimental

Crystal data
  • C12H18Cl2N2O2

  • Mr = 293.18

  • Monoclinic, P 21 /c

  • a = 9.4442 (18) Å

  • b = 14.116 (3) Å

  • c = 11.7555 (16) Å

  • β = 115.067 (11)°

  • V = 1419.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 298 K

  • 0.42 × 0.40 × 0.28 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.832, Tmax = 0.884

  • 10829 measured reflections

  • 3492 independent reflections

  • 2556 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.129

  • S = 1.04

  • 3492 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.98 2.23 3.200 (3) 170
C3—H3B⋯O2i 0.97 2.50 3.390 (2) 153
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,5-Diazabicyclo compounds are important synthetic targets due to their biological activity (Hutton & Bartlett, 2007, Koptelov et al., 2011) and catalytic activity (Taylor et al., 2010). It was discovered that N-dichloroacetyl-1,5-diazabicyclo compounds act as herbicide safeners and these compounds have drawn widespread attention in agricultural biochemistry (Burton et al., 1994, Hatzios, 2004, Loniovereror, 1993). As a part of our ongoing investigation on the bioactivities of safeners we have determined the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. In the crystal, weak interolecular bifurcated (C—H)2···O hydrogen bonds connect molecules into one-dimensional chains along [010]. (Fig. 2).

Related literature top

For synthetic applications of 1,5-diazabicyclo compounds, see: Hutton & Bartlett (2007); Koptelov et al. (2011); Taylor et al. (2010). For the bioactivity of N-dichloroacety diazabicyclo derivatives, see: Burton et al. (1994); Hatzios (2004); Loniovereror (1993). For the synthetic procedure, see: Sun & Ye (2010).

Experimental top

The title compound was prepared according to the literature procedure (Sun et al., 2010). The single-crystal suitable for X-ray structural analysis was obtained by slow evaporation of a solution of the title compound in petroleum ether and ethyl acetate at room temperature.

Refinement top

All H atoms were initially located in a difference Fourier map. The C—H atoms were then constrained to an ideal geometry, with C—H distances of 0.96-98 Å, and Uiso(H) = 1.2-1.5Ueq(C). There is a relatively short H···H contact ca. 1.87Å. This appears to be influenced by the hydrogen bonding.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure showing the weak intermolecular C—H···O hydrogen bonds as dashed lines.
2,2-Dichloro-1-(3,3,6-trimethyl-9-oxo-1,5-diazabicyclo[4.3.0]nonan-5-yl)ethanone top
Crystal data top
C12H18Cl2N2O2F(000) = 616
Mr = 293.18Dx = 1.372 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3515 reflections
a = 9.4442 (18) Åθ = 2.4–27.1°
b = 14.116 (3) ŵ = 0.45 mm1
c = 11.7555 (16) ÅT = 298 K
β = 115.067 (11)°Block, colourless
V = 1419.6 (4) Å30.42 × 0.40 × 0.28 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3492 independent reflections
Radiation source: fine-focus sealed tube2556 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.832, Tmax = 0.884k = 1818
10829 measured reflectionsl = 915
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0683P)2 + 0.2384P]
where P = (Fo2 + 2Fc2)/3
3492 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C12H18Cl2N2O2V = 1419.6 (4) Å3
Mr = 293.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4442 (18) ŵ = 0.45 mm1
b = 14.116 (3) ÅT = 298 K
c = 11.7555 (16) Å0.42 × 0.40 × 0.28 mm
β = 115.067 (11)°
Data collection top
Bruker SMART CCD
diffractometer
3492 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2556 reflections with I > 2σ(I)
Tmin = 0.832, Tmax = 0.884Rint = 0.027
10829 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
3492 reflectionsΔρmin = 0.48 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.38732 (6)0.01048 (4)0.34216 (5)0.05901 (18)
Cl20.21200 (7)0.01735 (4)0.07141 (6)0.0696 (2)
O10.43042 (15)0.18995 (10)0.24212 (16)0.0618 (4)
O20.06902 (18)0.54370 (10)0.24058 (16)0.0638 (4)
N10.17907 (15)0.24099 (9)0.17670 (13)0.0342 (3)
N20.10521 (16)0.40443 (10)0.15860 (14)0.0388 (3)
C10.2408 (2)0.07096 (12)0.21585 (17)0.0419 (4)
H10.14280.07030.22570.050*
C20.29300 (19)0.17366 (12)0.21273 (17)0.0399 (4)
C30.01328 (18)0.21728 (12)0.09737 (15)0.0364 (4)
H3A0.00290.21470.01020.044*
H3B0.00890.15490.12050.044*
C40.10098 (18)0.28847 (12)0.10984 (15)0.0366 (4)
C50.2656 (2)0.26170 (16)0.0151 (2)0.0581 (5)
H5A0.26990.26150.06790.087*
H5B0.29130.19980.03460.087*
H5C0.33920.30700.01930.087*
C60.0909 (2)0.28828 (14)0.24271 (18)0.0485 (4)
H6A0.16450.33290.24800.073*
H6B0.11480.22610.26270.073*
H6C0.01280.30570.30110.073*
C70.0579 (2)0.38544 (12)0.07744 (17)0.0419 (4)
H7A0.12350.43370.08930.050*
H7B0.07420.38660.00980.050*
C80.22976 (19)0.33990 (11)0.16558 (16)0.0367 (4)
C90.2611 (2)0.34929 (15)0.04896 (19)0.0516 (5)
H9A0.29910.41190.04570.077*
H9B0.33800.30350.05250.077*
H9C0.16600.33840.02470.077*
C100.3679 (2)0.37342 (13)0.28688 (18)0.0477 (4)
H10A0.46550.36950.27840.057*
H10B0.37630.33530.35820.057*
C110.3290 (2)0.47623 (14)0.3029 (2)0.0531 (5)
H11A0.37840.51950.26660.064*
H11B0.36280.49170.39090.064*
C120.1545 (2)0.48091 (12)0.23385 (19)0.0454 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0585 (3)0.0609 (3)0.0632 (3)0.0227 (2)0.0313 (3)0.0199 (2)
Cl20.0747 (4)0.0676 (4)0.0629 (4)0.0028 (3)0.0257 (3)0.0219 (3)
O10.0345 (7)0.0509 (8)0.0934 (12)0.0021 (6)0.0206 (7)0.0014 (7)
O20.0683 (9)0.0460 (7)0.0921 (12)0.0003 (7)0.0483 (9)0.0128 (8)
N10.0325 (7)0.0336 (6)0.0362 (7)0.0005 (5)0.0141 (6)0.0005 (5)
N20.0405 (8)0.0346 (7)0.0426 (8)0.0015 (6)0.0189 (6)0.0034 (6)
C10.0399 (9)0.0389 (9)0.0505 (10)0.0074 (7)0.0226 (8)0.0032 (8)
C20.0360 (9)0.0392 (8)0.0431 (9)0.0025 (7)0.0156 (8)0.0012 (7)
C30.0345 (8)0.0391 (8)0.0329 (8)0.0000 (6)0.0116 (7)0.0019 (7)
C40.0336 (8)0.0387 (8)0.0359 (8)0.0028 (6)0.0133 (7)0.0029 (7)
C50.0363 (10)0.0621 (12)0.0633 (13)0.0026 (9)0.0089 (9)0.0008 (10)
C60.0567 (11)0.0495 (10)0.0487 (11)0.0041 (8)0.0313 (9)0.0047 (8)
C70.0418 (9)0.0404 (9)0.0412 (9)0.0073 (7)0.0153 (8)0.0097 (7)
C80.0367 (8)0.0344 (8)0.0414 (9)0.0001 (6)0.0189 (7)0.0026 (7)
C90.0573 (11)0.0563 (11)0.0524 (11)0.0039 (9)0.0342 (10)0.0030 (9)
C100.0419 (10)0.0461 (10)0.0507 (11)0.0072 (8)0.0153 (9)0.0024 (8)
C110.0530 (11)0.0509 (11)0.0594 (12)0.0123 (9)0.0278 (10)0.0129 (9)
C120.0565 (11)0.0381 (9)0.0533 (11)0.0051 (8)0.0345 (10)0.0008 (8)
Geometric parameters (Å, º) top
Cl1—C11.7627 (18)C5—H5B0.9600
Cl2—C11.7715 (19)C5—H5C0.9600
O1—C21.215 (2)C6—H6A0.9600
O2—C121.224 (2)C6—H6B0.9600
N1—C21.362 (2)C6—H6C0.9600
N1—C31.482 (2)C7—H7A0.9700
N1—C81.499 (2)C7—H7B0.9700
N2—C121.348 (2)C8—C91.526 (2)
N2—C71.452 (2)C8—C101.544 (2)
N2—C81.462 (2)C9—H9A0.9600
C1—C21.537 (2)C9—H9B0.9600
C1—H10.9800C9—H9C0.9600
C3—C41.527 (2)C10—C111.528 (3)
C3—H3A0.9700C10—H10A0.9700
C3—H3B0.9700C10—H10B0.9700
C4—C71.522 (2)C11—C121.499 (3)
C4—C61.524 (2)C11—H11A0.9700
C4—C51.528 (2)C11—H11B0.9700
C5—H5A0.9600
C2—N1—C3121.54 (13)C4—C6—H6C109.5
C2—N1—C8115.95 (13)H6A—C6—H6C109.5
C3—N1—C8116.53 (12)H6B—C6—H6C109.5
C12—N2—C7123.66 (15)N2—C7—C4108.86 (13)
C12—N2—C8114.61 (15)N2—C7—H7A109.9
C7—N2—C8121.72 (14)C4—C7—H7A109.9
C2—C1—Cl1109.38 (12)N2—C7—H7B109.9
C2—C1—Cl2107.50 (13)C4—C7—H7B109.9
Cl1—C1—Cl2110.34 (9)H7A—C7—H7B108.3
C2—C1—H1109.9N2—C8—N1107.82 (13)
Cl1—C1—H1109.9N2—C8—C9110.68 (14)
Cl2—C1—H1109.9N1—C8—C9110.48 (14)
O1—C2—N1124.36 (16)N2—C8—C10101.88 (14)
O1—C2—C1119.10 (15)N1—C8—C10112.40 (13)
N1—C2—C1116.54 (14)C9—C8—C10113.16 (15)
N1—C3—C4113.10 (13)C8—C9—H9A109.5
N1—C3—H3A109.0C8—C9—H9B109.5
C4—C3—H3A109.0H9A—C9—H9B109.5
N1—C3—H3B109.0C8—C9—H9C109.5
C4—C3—H3B109.0H9A—C9—H9C109.5
H3A—C3—H3B107.8H9B—C9—H9C109.5
C7—C4—C6110.55 (14)C11—C10—C8104.57 (15)
C7—C4—C3107.05 (14)C11—C10—H10A110.8
C6—C4—C3110.96 (14)C8—C10—H10A110.8
C7—C4—C5109.74 (15)C11—C10—H10B110.8
C6—C4—C5110.41 (16)C8—C10—H10B110.8
C3—C4—C5108.05 (15)H10A—C10—H10B108.9
C4—C5—H5A109.5C12—C11—C10104.01 (15)
C4—C5—H5B109.5C12—C11—H11A111.0
H5A—C5—H5B109.5C10—C11—H11A111.0
C4—C5—H5C109.5C12—C11—H11B111.0
H5A—C5—H5C109.5C10—C11—H11B111.0
H5B—C5—H5C109.5H11A—C11—H11B109.0
C4—C6—H6A109.5O2—C12—N2124.68 (19)
C4—C6—H6B109.5O2—C12—C11126.95 (18)
H6A—C6—H6B109.5N2—C12—C11108.34 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.982.233.200 (3)170
C3—H3B···O2i0.972.503.390 (2)153
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H18Cl2N2O2
Mr293.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.4442 (18), 14.116 (3), 11.7555 (16)
β (°) 115.067 (11)
V3)1419.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.42 × 0.40 × 0.28
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.832, 0.884
No. of measured, independent and
observed [I > 2σ(I)] reflections
10829, 3492, 2556
Rint0.027
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.129, 1.04
No. of reflections3492
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.48

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.982.233.200 (3)170
C3—H3B···O2i0.972.503.390 (2)153
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

We thank the Heilongjiang Province Foundation for Young Scholars (QC2009C44) for generously supporting this study.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurton, J. D., Maness, E. P., Monks, D. W. & Robinson, D. K. (1994). Pestic. Biochem. Phys. 48, 163–172.  CrossRef Web of Science Google Scholar
First citationHatzios, K. K. (2004). Weed Sci. 52, 454–467.  Web of Science CrossRef CAS Google Scholar
First citationHutton, C. A. & Bartlett, P. A. (2007). J. Org. Chem. 72, 6865–6872.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKoptelov, Y. B., Saik, S. P., Molchanov, A. P. & Selivanov, S. I. (2011). Russ. J. Org. Chem. 47, 421–432.  Web of Science CrossRef CAS Google Scholar
First citationLoniovereror, G. L. (1993). Weed Res. 33, 311–318.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, T. F. & Ye, F. (2010). Chem. Online, 73, 669–672.  CAS Google Scholar
First citationTaylor, J. E., Jones, M. D., Williams, J. M. J. & Bull, S. D. (2010). Org. Lett. 12, 5740–5743.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds