organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

p-Tolyl bis­­(cyclo­hexyl­amido)­phosphinate

aFaculty of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran, and bDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran
*Correspondence e-mail: a.raissi_shabari@yahoo.com

(Received 13 July 2011; accepted 22 July 2011; online 30 July 2011)

The P atom in the title mol­ecule, C19H31N2O2P, is in a distorted tetra­hedral configuration with the bond angles in the range 101.48 (10)–118.58 (9)°. The N—H units have a syn orientation with respect to one another. In the crystal, mol­ecules are connected via two different inter­molecular N—H⋯O(P) hydrogen bonds into chains along the a axis in which the O atom of the P=O group acts as a double acceptor.

Related literature

For background to phospho­ramidate compounds, see: Pourayoubi et al. (2011[Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265-o272.]). For bond lengths in related structures, see: Sabbaghi et al. (2011[Sabbaghi, F., Pourayoubi, M., Karimi Ahmadabad, F. & Parvez, M. (2011). Acta Cryst. E67, o1502.]); Rudd et al. (1996[Rudd, M. D., Lindeman, S. V. & Husebye, S. (1996). Acta Chem. Scand. 50, 759-774.]). For double hydrogen-bond acceptors, see: Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]).

[Scheme 1]

Experimental

Crystal data
  • C19H31N2O2P

  • Mr = 350.43

  • Monoclinic, P 21 /a

  • a = 9.131 (5) Å

  • b = 19.333 (5) Å

  • c = 11.291 (5) Å

  • β = 99.247 (5)°

  • V = 1967.3 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 291 K

  • 0.38 × 0.12 × 0.08 mm

Data collection
  • Stoe IPDS II image plate diffractometer

  • Absorption correction: multi-scan [MULABS (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])] Tmin = 0.992, Tmax = 1.000

  • 14835 measured reflections

  • 5296 independent reflections

  • 1925 reflections with I > 2σ(I)

  • Rint = 0.091

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.090

  • S = 0.76

  • 5296 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.76 2.23 2.969 (3) 163
N2—H2⋯O1i 0.75 2.25 2.975 (3) 162
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The structure determination of title compound was performed as a part of a project in our laboratory on the synthesis of new phosphoramidate compounds (Pourayoubi et al., 2011).

The PO (1.4670 (17) Å), P—O (1.6105 (17) Å) and P—N (1.6131 (19) Å and 1.6152 (18) Å) bond lengths and the C—O—P (123.52 (15)°) and C—N—P (125.28 (16)° and 123.76 (16)°) angles match those found for other compounds with the [(N)(N)P(O)(O)] skeleton (Sabbaghi et al., 2011).

The tetrahedral configuration of phosphorus atom is significantly distorted (Fig. 1) as it has been noted for other phosphoramides and their chalco-derivatives (Rudd et al., 1996); the bond angles at the P atom vary in the range from 101.48 (10)° [for O2—P1—N2 angle] to 118.58 (9)° [for O1—P1—N2 angle]. Cyclohexyl groups are in a chair conformation with the adjacent NH groups oriented equatorially.

The O atom of the PO group acts as a double hydrogen-bond acceptor (Steiner, 2002). In the crystal structure, each molecule is hydrogen-bonded to two adjacent molecules through [N—H]2···O(P) hydrogen bonds forming linear chains parallel to [100] (Fig. 2, Table 1).

Related literature top

For background to phosphoramidate compounds, see: Pourayoubi et al. (2011). For bond lengths in related structures, see: Sabbaghi et al. (2011); Rudd et al. (1996). For double hydrogen-bond acceptors, see: Steiner (2002).

Experimental top

Synthesis of 4-CH3–C6H4–O–P(O)Cl2 4-CH3–C6H4–O–H (0.18 mol) and P(O)Cl3 (0.54 mol) were refluxed for 8 h and afterwards the excess of P(O)Cl3 was removed in vacuum.

Synthesis of title compound To a solution of 4-CH3–C6H4–O–P(O)Cl2 (2 mmol) in chloroform (20 ml), a solution of cyclohexylamine (8 mmol) in chloroform (15 ml) was added at 273 K. After 4 h of stirring, the solvent was evaporated in vacuum. The solid was washed with distilled water, and then re-crystallized from a mixture of CHCl3/n-C7H16. Single crystals, suitable for crystallography, were obtained from a solution of the title compound in acetonitrile after slow evaporation at room temperature.

Refinement top

Though the H-atoms were visible in difference fourier maps they were included in geometrically idealized positions with C—H distances = 0.93, 0.96, 0.97 and 0.98 Å for aryl, methyl, methylene and methine type H-atoms, respectively and N-H = 0.75-0.76Å. The H-atoms were assigned Uiso = 1.5 times Ueq methyl C atom and 1.2 times Ueq of the rest of the parent atoms (C/N).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids shown at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing showing the formation of chains through N—H···O hydrogen bonds (shown as dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
1-{[bis(phenylamino)phosphoryl]oxy}-4-methylbenzene top
Crystal data top
C19H31N2O2PF(000) = 760
Mr = 350.43Dx = 1.183 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2yabCell parameters from 3912 reflections
a = 9.131 (5) Åθ = 1.8–29.5°
b = 19.333 (5) ŵ = 0.15 mm1
c = 11.291 (5) ÅT = 291 K
β = 99.247 (5)°Block, colourless
V = 1967.3 (15) Å30.38 × 0.12 × 0.08 mm
Z = 4
Data collection top
Stoe IPDS II image plate
diffractometer
5296 independent reflections
Radiation source: fine-focus sealed tube1925 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
Detector resolution: 0.15 mm pixels mm-1θmax = 29.2°, θmin = 1.8°
ω scansh = 129
Absorption correction: multi-scan
[MULABS (Blessing, 1995) in PLATON (Spek, 2009)]
k = 2226
Tmin = 0.992, Tmax = 1.000l = 1515
14835 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 0.76 w = 1/[σ2(Fo2) + (0.0255P)2]
where P = (Fo2 + 2Fc2)/3
5296 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C19H31N2O2PV = 1967.3 (15) Å3
Mr = 350.43Z = 4
Monoclinic, P21/aMo Kα radiation
a = 9.131 (5) ŵ = 0.15 mm1
b = 19.333 (5) ÅT = 291 K
c = 11.291 (5) Å0.38 × 0.12 × 0.08 mm
β = 99.247 (5)°
Data collection top
Stoe IPDS II image plate
diffractometer
5296 independent reflections
Absorption correction: multi-scan
[MULABS (Blessing, 1995) in PLATON (Spek, 2009)]
1925 reflections with I > 2σ(I)
Tmin = 0.992, Tmax = 1.000Rint = 0.091
14835 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 0.76Δρmax = 0.21 e Å3
5296 reflectionsΔρmin = 0.26 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.71746 (8)0.80003 (4)0.50141 (5)0.03970 (16)
O10.87988 (16)0.79943 (9)0.51391 (11)0.0481 (4)
O20.66002 (18)0.87739 (8)0.46763 (13)0.0530 (5)
N10.6357 (2)0.74705 (11)0.40180 (15)0.0540 (6)
H10.56950.72860.42040.065*
N20.6418 (2)0.78465 (10)0.61857 (13)0.0488 (6)
H20.57530.76130.60760.059*
C10.7075 (3)0.71015 (13)0.31259 (16)0.0433 (6)
H1A0.79440.73700.29940.052*
C20.7592 (3)0.63929 (14)0.3529 (2)0.0637 (8)
H2A0.67530.61250.37000.076*
H2B0.83010.64290.42640.076*
C30.8310 (4)0.60189 (16)0.2589 (2)0.0779 (9)
H3A0.85960.55570.28700.093*
H3B0.91990.62640.24650.093*
C40.7244 (3)0.59729 (16)0.1408 (2)0.0749 (9)
H4A0.77380.57560.08060.090*
H4B0.63970.56900.15130.090*
C50.6727 (4)0.66822 (17)0.0996 (2)0.0755 (9)
H5A0.60100.66440.02660.091*
H5B0.75650.69470.08130.091*
C60.6017 (3)0.70671 (14)0.19495 (17)0.0579 (7)
H6A0.57530.75320.16720.070*
H6B0.51160.68310.20700.070*
C70.6472 (3)0.83281 (12)0.71992 (17)0.0434 (6)
H7A0.71470.87060.70740.052*
C80.7099 (3)0.79764 (16)0.83611 (18)0.0739 (9)
H8A0.80940.78150.83180.089*
H8B0.64940.75770.84730.089*
C90.7148 (4)0.84609 (17)0.94366 (19)0.0768 (10)
H9A0.75120.82101.01680.092*
H9B0.78300.88380.93660.092*
C100.5655 (4)0.87468 (17)0.9507 (2)0.0772 (10)
H10A0.57210.90651.01780.093*
H10B0.49900.83740.96420.093*
C110.5044 (4)0.91182 (17)0.8365 (2)0.0913 (11)
H11A0.56600.95170.82710.110*
H11B0.40510.92820.84100.110*
C120.4996 (3)0.86385 (16)0.7272 (2)0.0715 (9)
H12A0.42850.82710.73210.086*
H12B0.46620.89000.65450.086*
C130.7349 (3)0.92389 (13)0.40431 (19)0.0448 (6)
C140.7785 (4)0.98514 (16)0.4565 (2)0.0709 (9)
H14A0.76140.99460.53380.085*
C150.8477 (4)1.03306 (16)0.3956 (2)0.0788 (10)
H15A0.87681.07490.43270.095*
C160.8753 (3)1.02153 (15)0.2822 (2)0.0572 (7)
C170.8292 (3)0.95964 (15)0.2303 (2)0.0596 (8)
H17A0.84520.95040.15260.072*
C180.7597 (3)0.91060 (14)0.2906 (2)0.0566 (7)
H18A0.72980.86870.25380.068*
C190.9524 (4)1.07473 (16)0.2168 (3)0.0979 (12)
H19A1.04891.08410.26140.147*
H19B0.89501.11660.20840.147*
H19C0.96231.05750.13880.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0361 (3)0.0466 (4)0.0374 (3)0.0011 (4)0.0089 (2)0.0014 (3)
O10.0345 (10)0.0549 (12)0.0549 (9)0.0006 (10)0.0065 (7)0.0005 (8)
O20.0502 (12)0.0530 (12)0.0600 (10)0.0080 (10)0.0210 (8)0.0112 (8)
N10.0438 (13)0.0734 (16)0.0488 (10)0.0117 (12)0.0196 (9)0.0200 (10)
N20.0561 (13)0.0520 (15)0.0416 (9)0.0139 (12)0.0182 (9)0.0067 (9)
C10.0433 (14)0.0487 (18)0.0403 (11)0.0051 (14)0.0141 (10)0.0057 (11)
C20.073 (2)0.066 (2)0.0506 (14)0.0140 (18)0.0063 (13)0.0064 (14)
C30.083 (3)0.067 (2)0.084 (2)0.029 (2)0.0128 (17)0.0021 (16)
C40.081 (2)0.071 (2)0.0782 (19)0.003 (2)0.0282 (17)0.0296 (17)
C50.092 (2)0.088 (3)0.0452 (14)0.011 (2)0.0089 (14)0.0147 (15)
C60.0702 (18)0.0572 (18)0.0452 (12)0.0103 (17)0.0056 (12)0.0002 (13)
C70.0493 (17)0.0437 (16)0.0391 (12)0.0108 (13)0.0127 (11)0.0037 (11)
C80.084 (2)0.088 (2)0.0474 (14)0.028 (2)0.0033 (13)0.0066 (15)
C90.085 (2)0.101 (3)0.0421 (14)0.013 (2)0.0043 (14)0.0095 (14)
C100.083 (2)0.100 (3)0.0533 (16)0.006 (2)0.0253 (15)0.0225 (15)
C110.092 (3)0.107 (3)0.0727 (19)0.041 (2)0.0048 (17)0.0266 (18)
C120.065 (2)0.094 (2)0.0522 (15)0.0257 (19)0.0001 (13)0.0125 (15)
C130.0411 (16)0.0481 (18)0.0457 (13)0.0065 (14)0.0084 (11)0.0076 (12)
C140.110 (3)0.058 (2)0.0485 (15)0.009 (2)0.0244 (16)0.0067 (14)
C150.109 (3)0.058 (2)0.0689 (18)0.021 (2)0.0120 (18)0.0091 (15)
C160.0531 (19)0.057 (2)0.0602 (16)0.0057 (17)0.0047 (13)0.0123 (15)
C170.067 (2)0.068 (2)0.0466 (14)0.0009 (17)0.0162 (13)0.0010 (14)
C180.0625 (19)0.0537 (19)0.0560 (15)0.0107 (16)0.0168 (13)0.0086 (13)
C190.102 (3)0.089 (3)0.103 (2)0.028 (2)0.018 (2)0.0294 (19)
Geometric parameters (Å, º) top
P1—O11.4670 (17)C8—C91.528 (3)
P1—O21.6105 (17)C8—H8A0.9700
P1—N11.6131 (19)C8—H8B0.9700
P1—N21.6152 (18)C9—C101.486 (4)
O2—C131.394 (3)C9—H9A0.9700
N1—C11.472 (3)C9—H9B0.9700
N1—H10.7593C10—C111.503 (4)
N2—C71.470 (3)C10—H10A0.9700
N2—H20.7510C10—H10B0.9700
C1—C21.496 (3)C11—C121.539 (3)
C1—C61.513 (3)C11—H11A0.9700
C1—H1A0.9800C11—H11B0.9700
C2—C31.517 (3)C12—H12A0.9700
C2—H2A0.9700C12—H12B0.9700
C2—H2B0.9700C13—C141.354 (3)
C3—C41.522 (3)C13—C181.364 (3)
C3—H3A0.9700C14—C151.367 (4)
C3—H3B0.9700C14—H14A0.9300
C4—C51.500 (4)C15—C161.362 (3)
C4—H4A0.9700C15—H15A0.9300
C4—H4B0.9700C16—C171.369 (3)
C5—C61.536 (3)C16—C191.505 (4)
C5—H5A0.9700C17—C181.380 (3)
C5—H5B0.9700C17—H17A0.9300
C6—H6A0.9700C18—H18A0.9300
C6—H6B0.9700C19—H19A0.9600
C7—C121.490 (3)C19—H19B0.9600
C7—C81.506 (3)C19—H19C0.9600
C7—H7A0.9800
O1—P1—O2108.41 (10)C7—C8—C9112.0 (2)
O1—P1—N1114.19 (10)C7—C8—H8A109.2
O2—P1—N1109.13 (10)C9—C8—H8A109.2
O1—P1—N2118.58 (9)C7—C8—H8B109.2
O2—P1—N2101.48 (10)C9—C8—H8B109.2
N1—P1—N2104.07 (11)H8A—C8—H8B107.9
C13—O2—P1123.52 (15)C10—C9—C8111.1 (2)
C1—N1—P1125.28 (16)C10—C9—H9A109.4
C1—N1—H1115.1C8—C9—H9A109.4
P1—N1—H1113.9C10—C9—H9B109.4
C7—N2—P1123.76 (16)C8—C9—H9B109.4
C7—N2—H2115.8H9A—C9—H9B108.0
P1—N2—H2114.6C9—C10—C11110.4 (2)
N1—C1—C2112.93 (18)C9—C10—H10A109.6
N1—C1—C6109.3 (2)C11—C10—H10A109.6
C2—C1—C6110.6 (2)C9—C10—H10B109.6
N1—C1—H1A107.9C11—C10—H10B109.6
C2—C1—H1A107.9H10A—C10—H10B108.1
C6—C1—H1A107.9C10—C11—C12111.1 (3)
C1—C2—C3112.0 (2)C10—C11—H11A109.4
C1—C2—H2A109.2C12—C11—H11A109.4
C3—C2—H2A109.2C10—C11—H11B109.4
C1—C2—H2B109.2C12—C11—H11B109.4
C3—C2—H2B109.2H11A—C11—H11B108.0
H2A—C2—H2B107.9C7—C12—C11112.2 (2)
C2—C3—C4110.7 (2)C7—C12—H12A109.2
C2—C3—H3A109.5C11—C12—H12A109.2
C4—C3—H3A109.5C7—C12—H12B109.2
C2—C3—H3B109.5C11—C12—H12B109.2
C4—C3—H3B109.5H12A—C12—H12B107.9
H3A—C3—H3B108.1C14—C13—C18119.5 (2)
C5—C4—C3110.1 (2)C14—C13—O2118.4 (2)
C5—C4—H4A109.6C18—C13—O2122.0 (2)
C3—C4—H4A109.6C13—C14—C15120.1 (2)
C5—C4—H4B109.6C13—C14—H14A120.0
C3—C4—H4B109.6C15—C14—H14A120.0
H4A—C4—H4B108.2C16—C15—C14122.1 (3)
C4—C5—C6111.9 (2)C16—C15—H15A118.9
C4—C5—H5A109.2C14—C15—H15A118.9
C6—C5—H5A109.2C15—C16—C17117.1 (3)
C4—C5—H5B109.2C15—C16—C19121.4 (3)
C6—C5—H5B109.2C17—C16—C19121.5 (3)
H5A—C5—H5B107.9C16—C17—C18121.6 (2)
C1—C6—C5110.8 (2)C16—C17—H17A119.2
C1—C6—H6A109.5C18—C17—H17A119.2
C5—C6—H6A109.5C13—C18—C17119.6 (2)
C1—C6—H6B109.5C13—C18—H18A120.2
C5—C6—H6B109.5C17—C18—H18A120.2
H6A—C6—H6B108.1C16—C19—H19A109.5
N2—C7—C12112.36 (19)C16—C19—H19B109.5
N2—C7—C8110.7 (2)H19A—C19—H19B109.5
C12—C7—C8110.73 (19)C16—C19—H19C109.5
N2—C7—H7A107.6H19A—C19—H19C109.5
C12—C7—H7A107.6H19B—C19—H19C109.5
C8—C7—H7A107.6
O1—P1—O2—C1329.02 (19)N2—C7—C8—C9179.1 (2)
N1—P1—O2—C1395.91 (19)C12—C7—C8—C953.9 (3)
N2—P1—O2—C13154.63 (17)C7—C8—C9—C1056.4 (3)
O1—P1—N1—C111.6 (2)C8—C9—C10—C1157.2 (3)
O2—P1—N1—C1109.9 (2)C9—C10—C11—C1256.4 (3)
N2—P1—N1—C1142.37 (19)N2—C7—C12—C11177.5 (2)
O1—P1—N2—C770.6 (2)C8—C7—C12—C1153.2 (3)
O2—P1—N2—C748.0 (2)C10—C11—C12—C755.1 (4)
N1—P1—N2—C7161.28 (18)P1—O2—C13—C14121.7 (2)
P1—N1—C1—C294.3 (2)P1—O2—C13—C1861.1 (3)
P1—N1—C1—C6142.1 (2)C18—C13—C14—C150.4 (4)
N1—C1—C2—C3179.3 (2)O2—C13—C14—C15177.7 (3)
C6—C1—C2—C356.4 (3)C13—C14—C15—C160.1 (5)
C1—C2—C3—C457.1 (3)C14—C15—C16—C170.7 (5)
C2—C3—C4—C556.1 (3)C14—C15—C16—C19179.6 (3)
C3—C4—C5—C655.9 (3)C15—C16—C17—C180.9 (4)
N1—C1—C6—C5179.8 (2)C19—C16—C17—C18179.5 (3)
C2—C1—C6—C554.8 (3)C14—C13—C18—C170.2 (4)
C4—C5—C6—C155.7 (3)O2—C13—C18—C17177.4 (2)
P1—N2—C7—C12110.5 (2)C16—C17—C18—C130.4 (4)
P1—N2—C7—C8125.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.762.232.969 (3)163
N2—H2···O1i0.752.252.975 (3)162
Symmetry code: (i) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC19H31N2O2P
Mr350.43
Crystal system, space groupMonoclinic, P21/a
Temperature (K)291
a, b, c (Å)9.131 (5), 19.333 (5), 11.291 (5)
β (°) 99.247 (5)
V3)1967.3 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.38 × 0.12 × 0.08
Data collection
DiffractometerStoe IPDS II image plate
diffractometer
Absorption correctionMulti-scan
[MULABS (Blessing, 1995) in PLATON (Spek, 2009)]
Tmin, Tmax0.992, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14835, 5296, 1925
Rint0.091
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.090, 0.76
No. of reflections5296
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.26

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.762.232.969 (3)162.8
N2—H2···O1i0.752.252.975 (3)161.7
Symmetry code: (i) x1/2, y+3/2, z.
 

Acknowledgements

Support of this investigation by North Tehran Branch, Islamic Azad University, is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265–o272.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRudd, M. D., Lindeman, S. V. & Husebye, S. (1996). Acta Chem. Scand. 50, 759–774.  CrossRef CAS Web of Science Google Scholar
First citationSabbaghi, F., Pourayoubi, M., Karimi Ahmadabad, F. & Parvez, M. (2011). Acta Cryst. E67, o1502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationStoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds