organic compounds
Ethyl 2-[(carbamothioylamino)imino]propanoate
aNúcleo de Espectroscopia e Estrutura Molecular (NEEM), Department of Chemistry, Federal University of Juiz de Fora, Minas Gerais 36036-900, Brazil, and bDepartment of Chemistry, Federal University of Juiz de Fora, Minas Gerais 36036-900, Brazil
*Correspondence e-mail: charcorrea@gmail.com
The title compound, C6H11N3O2S, consists of a roughly planar molecule (r.m.s deviation from planarity = 0.077 Å for the non-H atoms) and has the S atom in an anti position to the imine N atom. This N atom is the acceptor of a strongly bent internal N—H⋯N hydrogen bond donated by the amino group. In the crystal, molecules are arranged in undulating layers parallel to (010). The molecules are linked via intermolecular amino–carboxyl N—H⋯O hydrogen bonds, forming chains parallel to [001]. The chains are cross-linked by Ncarbazone—H⋯S and C—H⋯S interactions, forming infinite sheets.
Related literature
For the synthesis of thiosemicarbazones, see: Gupta & Narayana (1997); Li et al. (1998); Tarasconi et al. (2000); Holla et al. (2003); Shailendra et al. (2003). For the synthesis, crystal structures and applications of thiosemicarbazones, see: West et al. (1993); Casas et al. (2000); Beraldo (2004); Tenório et al. (2005). For graph-set notation, see: Etter et al. (1990).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: COLLECT (Hooft, 1999); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811026237/qk2014sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811026237/qk2014Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811026237/qk2014Isup3.cml
For preparation of the title compound, 0.188 g of ethyl pyruvate (1.62 mmol) was added to 15 ml of a water-methanol solution (1:2) of thiosemicarbazide hydrochloride (1.48 g, 1.62 mmol) and the mixture was heated at 80 °C for 3 h. After few days, colorless crystals formed at room temperature and were isolated. M.p.: 145 °C. Elemental analysis gave the following results: Calcd. for C6H11O2N3S: C 38.08, H 5.86, N 22.21%; found: C 39.69; H 6.62; N 22.93%.
IR spectral data were obtained with a Bomem MB-102 spectrometer fitted with a CsI beam splitter, using KBr disks and a spectral resolution of 4 cm-1. The main absorption bands are (cm-1): 3442–3204 (νNH); 1709 (νCO); 1600 (νNH + νCN + νCC); 1498 (νCOasym); 1370 (νCN); 1173 (νCOsym); 1119, 1024 (νCS) ; 1105 (νCOC).
C-bound H atoms were included in the riding model approximation with C—H = 0.96 Å and Uiso(H) = 1.5×Uequ(C) for CH3, and 0.97 Å Uiso(H) = 1.2×Uequ(C) for CH2. H atoms of nitrogen atoms were located from an
and were refined unrestrained in x,y,z, and Uiso.Data collection: COLLECT (Hooft, 1999); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).C6H11N3O2S | F(000) = 800 |
Mr = 189.24 | Dx = 1.342 Mg m−3 |
Monoclinic, C2/c | Melting point: 418 K |
Hall symbol: -C 2yc | Mo Kα radiation, λ = 0.71073 Å |
a = 16.682 (3) Å | Cell parameters from 106 reflections |
b = 7.2558 (15) Å | θ = 4.7–22.6° |
c = 17.317 (4) Å | µ = 0.31 mm−1 |
β = 116.63 (3)° | T = 297 K |
V = 1873.8 (7) Å3 | Prism, colourless |
Z = 8 | 0.56 × 0.27 × 0.12 mm |
Bruker–Nonius KappaCCD diffractometer | 1785 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.021 |
Horizonally mounted graphite crystal monochromator | θmax = 27.5°, θmin = 5.3° |
Detector resolution: 9 pixels mm-1 | h = −21→21 |
ω and ϕ scans | k = −9→9 |
15270 measured reflections | l = −22→22 |
2133 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.092 | w = 1/[σ2(Fo2) + (0.0423P)2 + 1.1077P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
2133 reflections | Δρmax = 0.21 e Å−3 |
123 parameters | Δρmin = −0.26 e Å−3 |
C6H11N3O2S | V = 1873.8 (7) Å3 |
Mr = 189.24 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 16.682 (3) Å | µ = 0.31 mm−1 |
b = 7.2558 (15) Å | T = 297 K |
c = 17.317 (4) Å | 0.56 × 0.27 × 0.12 mm |
β = 116.63 (3)° |
Bruker–Nonius KappaCCD diffractometer | 1785 reflections with I > 2σ(I) |
15270 measured reflections | Rint = 0.021 |
2133 independent reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.092 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.21 e Å−3 |
2133 reflections | Δρmin = −0.26 e Å−3 |
123 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.07816 (2) | 0.66899 (7) | 0.18273 (2) | 0.05007 (15) | |
O1 | 0.36286 (7) | 0.42826 (16) | 0.55879 (6) | 0.0453 (3) | |
O2 | 0.29362 (8) | 0.4511 (2) | 0.64308 (7) | 0.0599 (4) | |
N3 | 0.21829 (8) | 0.52146 (17) | 0.42323 (7) | 0.0363 (3) | |
N2 | 0.14791 (8) | 0.57872 (18) | 0.34827 (7) | 0.0394 (3) | |
N1 | 0.23628 (9) | 0.5179 (2) | 0.28107 (9) | 0.0541 (4) | |
C2 | 0.21056 (9) | 0.5244 (2) | 0.49384 (9) | 0.0365 (3) | |
C1 | 0.15936 (9) | 0.5823 (2) | 0.27447 (9) | 0.0368 (3) | |
C4 | 0.29221 (9) | 0.4639 (2) | 0.57299 (9) | 0.0378 (3) | |
C3 | 0.13145 (10) | 0.5866 (3) | 0.50629 (11) | 0.0507 (4) | |
H3A | 0.1298 | 0.7189 | 0.5069 | 0.076* | |
H3B | 0.1365 | 0.5398 | 0.5601 | 0.076* | |
H3C | 0.0773 | 0.5410 | 0.4598 | 0.076* | |
C6 | 0.51684 (12) | 0.3513 (3) | 0.60556 (14) | 0.0644 (5) | |
H6A | 0.4977 | 0.2588 | 0.5613 | 0.097* | |
H6B | 0.5713 | 0.3122 | 0.6537 | 0.097* | |
H6C | 0.5272 | 0.4650 | 0.5831 | 0.097* | |
C5 | 0.44536 (10) | 0.3796 (3) | 0.63469 (11) | 0.0503 (4) | |
H5A | 0.4368 | 0.2677 | 0.6607 | 0.060* | |
H5B | 0.4626 | 0.4777 | 0.6772 | 0.060* | |
H1N | 0.2740 (14) | 0.476 (3) | 0.3288 (14) | 0.061 (6)* | |
H3N | 0.0969 (12) | 0.612 (2) | 0.3430 (11) | 0.045 (4)* | |
H2N | 0.2477 (13) | 0.525 (3) | 0.2361 (14) | 0.060 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0402 (2) | 0.0741 (3) | 0.0365 (2) | 0.00740 (18) | 0.01775 (16) | 0.01065 (17) |
O1 | 0.0387 (5) | 0.0663 (7) | 0.0337 (5) | 0.0055 (5) | 0.0186 (4) | 0.0026 (5) |
O2 | 0.0558 (7) | 0.0988 (10) | 0.0322 (5) | 0.0012 (6) | 0.0260 (5) | −0.0006 (6) |
N3 | 0.0358 (6) | 0.0444 (6) | 0.0318 (5) | −0.0029 (5) | 0.0179 (5) | −0.0016 (5) |
N2 | 0.0344 (6) | 0.0552 (8) | 0.0339 (6) | 0.0028 (5) | 0.0200 (5) | 0.0027 (5) |
N1 | 0.0421 (7) | 0.0910 (12) | 0.0369 (7) | 0.0153 (7) | 0.0246 (6) | 0.0118 (7) |
C2 | 0.0385 (7) | 0.0425 (7) | 0.0343 (6) | −0.0052 (6) | 0.0213 (6) | −0.0043 (6) |
C1 | 0.0352 (6) | 0.0456 (8) | 0.0333 (6) | −0.0042 (6) | 0.0185 (5) | −0.0004 (6) |
C4 | 0.0415 (7) | 0.0440 (8) | 0.0334 (7) | −0.0053 (6) | 0.0216 (6) | −0.0056 (6) |
C3 | 0.0431 (8) | 0.0733 (11) | 0.0454 (8) | 0.0025 (8) | 0.0284 (7) | −0.0012 (8) |
C6 | 0.0447 (9) | 0.0665 (12) | 0.0798 (13) | 0.0050 (8) | 0.0259 (9) | −0.0007 (10) |
C5 | 0.0430 (8) | 0.0574 (10) | 0.0432 (8) | 0.0009 (7) | 0.0128 (7) | 0.0070 (7) |
S1—C1 | 1.6808 (16) | N1—H1N | 0.84 (2) |
O1—C4 | 1.3325 (17) | N1—H2N | 0.88 (2) |
O1—C5 | 1.4577 (19) | N2—H3N | 0.85 (2) |
O2—C4 | 1.2069 (17) | C3—H3A | 0.9600 |
N3—C2 | 1.2860 (17) | C3—H3B | 0.9600 |
N3—N2 | 1.3675 (17) | C3—H3C | 0.9600 |
N2—C1 | 1.3745 (17) | C5—H5A | 0.9700 |
N1—C1 | 1.3217 (19) | C5—H5B | 0.9700 |
C2—C3 | 1.4989 (19) | C6—H6A | 0.9600 |
C2—C4 | 1.501 (2) | C6—H6B | 0.9600 |
C6—C5 | 1.503 (2) | C6—H6C | 0.9600 |
C4—O1—C5 | 115.86 (11) | C2—C3—H3A | 109.00 |
C2—N3—N2 | 119.23 (12) | C2—C3—H3B | 109.00 |
N3—N2—C1 | 118.06 (11) | C2—C3—H3C | 109.00 |
N3—C2—C3 | 127.72 (14) | H3A—C3—H3B | 109.00 |
N3—C2—C4 | 115.25 (12) | H3A—C3—H3C | 109.00 |
C3—C2—C4 | 117.00 (12) | H3B—C3—H3C | 109.00 |
N1—C1—N2 | 116.55 (13) | O1—C5—H5A | 110.00 |
N1—C1—S1 | 123.64 (11) | O1—C5—H5B | 110.00 |
N2—C1—S1 | 119.80 (11) | C6—C5—H5A | 110.00 |
O2—C4—O1 | 123.40 (14) | C6—C5—H5B | 110.00 |
O2—C4—C2 | 122.77 (13) | H5A—C5—H5B | 108.00 |
O1—C4—C2 | 113.83 (11) | C5—C6—H6A | 109.00 |
O1—C5—C6 | 107.52 (14) | C5—C6—H6B | 109.00 |
C1—N1—H1N | 118.9 (17) | C5—C6—H6C | 109.00 |
C1—N1—H2N | 119.2 (15) | H6A—C6—H6B | 109.00 |
H1N—N1—H2N | 122 (2) | H6A—C6—H6C | 109.00 |
C1—N2—H3N | 116.4 (12) | H6B—C6—H6C | 109.00 |
N3—N2—H3N | 125.5 (12) | ||
C5—O1—C4—O2 | −2.7 (2) | N2—N3—C2—C3 | −0.6 (2) |
C5—O1—C4—C2 | 176.48 (14) | N2—N3—C2—C4 | −178.40 (13) |
C4—O1—C5—C6 | −178.14 (15) | N3—C2—C4—O1 | 4.43 (19) |
C1—N2—N3—C2 | 177.04 (14) | N3—C2—C4—O2 | −176.40 (15) |
N3—N2—C1—S1 | −174.66 (11) | C3—C2—C4—O1 | −173.59 (15) |
N3—N2—C1—N1 | 4.4 (2) | C3—C2—C4—O2 | 5.6 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···N3 | 0.84 (2) | 2.24 (2) | 2.610 (2) | 107 (2) |
N1—H2N···O2i | 0.88 (3) | 2.08 (3) | 2.954 (2) | 172 (2) |
N2—H3N···S1ii | 0.85 (2) | 2.78 (2) | 3.623 (2) | 172 (2) |
C3—H3C···S1ii | 0.96 | 2.82 | 3.611 (2) | 141 |
Symmetry codes: (i) x, −y+1, z−1/2; (ii) −x, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C6H11N3O2S |
Mr | 189.24 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 297 |
a, b, c (Å) | 16.682 (3), 7.2558 (15), 17.317 (4) |
β (°) | 116.63 (3) |
V (Å3) | 1873.8 (7) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.31 |
Crystal size (mm) | 0.56 × 0.27 × 0.12 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15270, 2133, 1785 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.092, 1.08 |
No. of reflections | 2133 |
No. of parameters | 123 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.21, −0.26 |
Computer programs: COLLECT (Hooft, 1999), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···N3 | 0.84 (2) | 2.24 (2) | 2.610 (2) | 107 (2) |
N1—H2N···O2i | 0.88 (3) | 2.08 (3) | 2.954 (2) | 172 (2) |
N2—H3N···S1ii | 0.85 (2) | 2.78 (2) | 3.623 (2) | 172 (2) |
C3—H3C···S1ii | 0.96 | 2.82 | 3.611 (2) | 141 |
Symmetry codes: (i) x, −y+1, z−1/2; (ii) −x, y, −z+1/2. |
Acknowledgements
The authors thank CNPq, CAPES, and FAPEMIG (Brazilian agencies) for financial support and also R. G. Bastos (LDRX-IF/UFF) for the X-ray diffraction facilities.
References
Beraldo, H. (2004). Quím. Nova, 27, 461–471. Web of Science CrossRef CAS Google Scholar
Casas, J. S., Tasende, M. S. G. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261. Web of Science CrossRef CAS Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gupta, R. P. & Narayana, N. L. (1997). Pharm. Acta Helv. 72, 43–45. CrossRef CAS PubMed Google Scholar
Holla, B. S., Malini, K. V., Rao, B. S., Sarojini, B. K. & Kumari, N. S. (2003). Eur. J. Med. Chem. 38, 313–318. Web of Science CrossRef PubMed CAS Google Scholar
Hooft, R. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Li, J., Chen, S., Li, X., Niu, C. & Doyle, T. W. (1998). Tetrahedron, 54, 393–400. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Shailendra, N. B., Naqvi, F. & Azam, A. (2003). Bioorg. Med. Chem. Lett. 13, 689–692. PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tarasconi, P., Capacchi, S., Pelosi, G., Cornia, M., Albertini, R., Bonati, A., Dall'Aglio, P. P., Lunghi, P. & Pinelli, S. (2000). Bioorg. Med. Chem. 8, 157–162. Web of Science CrossRef PubMed CAS Google Scholar
Tenório, R. P., Góes, A. J. S., de Lima, A. J. S., de Faria, A. R., Alves, A. J. & de Aquino, T. M. (2005). Quím. Nova, 28, 1030–1037. Google Scholar
West, D. X., Liberta, A., Padhye, S. B., Chikate, R. C., Sonawane, P. B., Kumbhar, A. S. & Yerande, R. G. (1993). Coord. Chem. Rev. 123, 49–71. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiosemicarbazones are a class of substances known for their biological and chemical properties, such as antiviral, antibacterial, antiprotozoal and antitumor activity (West et al., 1993). The enzyme ribonucleoside diphosphate reductase (RDR) (Beraldo, 2004) is an object of attack by thiosemicarbazones, which relates to their tumor control properties. One background for the biological activity of thiosemicarbazones is certainly their ability to form chelates with transition metal ions. The synthesis of thiosemicarbazones is described in several works in the literature (Gupta & Narayana, 1997; Li et al., 1998; Tarasconi et al., 2000; Holla et al., 2003; Shailendra et al., 2003). In context with potential biological activity the crystal structure determination of the title compound, ethyl pyruvate thiosemicarbazone (scheme 1), was of interest. The compound may also be interesting as ligand in coordination chemistry.
Figure 1 shows the ORTEP representation of the asymmetric unit of the title compound. The compound features a fairly planar molecule with a r.m.s deviation from planarity 0.077 Å for the non-hydrogen atoms. The sulfur atom is in anti position to the imine nitrogen N3. The bond lengths in the N—C(S)—N fragment indicate delocalization of the π electrons due to the fact that the C—N and C—S bonds are shorter than tipycal single bonds (around 1.47 and 1.73 Å, respectively) and bigger than corresponding double bonds (around 1.29 and 1.55 Å, respectively) (Casas et al., 2000; Tenório et al., 2005). The molecule is stabilized by the strongly bent intramolecular hydrogen N1—H1n···N3, N1···N3 = 2.610 (2) Å (Table 1).
In the crystal lattice the molecules are arranged in undulating layers parallel to (010). Via the intermolecular hydrogen bond N1—H2n···O2i the molecules are linked to form continuous chains parallel to [001], as visualized in Figure 2. The graph-set representation for this arrangement is N = C(8), (Etter et al., 1990). Each two of these chains are mutually crosslinked by the weak interactions N2—H3n···S1ii, N2···S1ii = 3.623 (2) Å, and C3—H3c···S1ii, C3···S1ii = 3.611 (2) Å, to form infinite ribbons along the c axis, see Table 1 and Fig. 2.