metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[1-benzyl-3-(4-methyl­phen­yl)imidazol-2-yl­­idene]silver(I) hexa­fluorido­phosphate

aDepartment of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou 635000, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: greatwall520@163.com

(Received 15 June 2011; accepted 4 July 2011; online 23 July 2011)

The title silver N-heterocyclic carbene compound, [Ag(C17H16N2)2]PF6, crystallizes as a mononuclear salt. The two imidazole rings, which are almost coplanar [maximum deviation from the least squares plane of 0.05 (2) Å], are linked by the Ag atom with a C—Ag—C angle of 178.60 (9)°. In the crystal, C—H⋯F hydrogen bonds, weak ππ inter­actions [centroid–centroid distances = 3.921 (1) and 3.813 (3) Å] and C—H⋯π inter­actions lead to a supermolecular structure.

Related literature

For the first silver N-heterocyclic carbene, see: Arduengo et al. (1993[Arduengo, A. J. III, Dias, H. V. R., Calabrese, J. C. & Davidson, F. (1993). Organometallics, 12, 3405-3409.]). For the role of N-heterocyclic carbene ligands in organometallic chemistry, see: Lin et al. (2009[Lin, J. C. Y., Huang, R. T. W., Lee, C. S., Bhattacharyya, A., Hwang, W. S. & Lin, I. J. B. (2009). Chem. Rev. 109, 3561-3598.]). For applications of silver N-heterocyclic carbenes, see: Nebioglu et al. (2007)[Nebioglu, A. K., Panzner, M. J., Tessier, C. A., Cannon, C. L. & Young, W. J. (2007). Coord. Chem. Rev. 251, 884-895.]; Samantaray et al. (2007[Samantaray, M. K., Katiyar, V., Pang, K., Nanavati, H. & Ghosh, P. (2007). J. Organomet. Chem. 692, 1672-1682.]). For Ag—C bond lengths, see: Wang, Xu et al. (2005)[Wang, J. W., Xu, F. B., Li, Q. S., Song, H. B. & Zhang, Z. Z. (2005). Inorg. Chem. Commun. 8, 1053-1055.]. For the synthesis of the title compound, see: Liu et al. (2003[Liu, J. P., Chen, J. B., Zhao, J. F., Zhao, Y. H., Li, L. & Zhang, H. B. (2003). Synthesis, 17, 2661-2666.]); Wang, Song et al. (2005[Wang, J. W., Song, H. B., Li, Q. S., Xu, F. B. & Zhang, Z. Z. (2005). Inorg. Chim. Acta, 358, 3653-3658.]). For a related structure, see: Catalano & Etogo (2007[Catalano, V. J. & Etogo, A. O. (2007). Inorg. Chem. 46, 5608-5615.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C17H16N2)2]PF6

  • Mr = 749.48

  • Monoclinic, P 21 /c

  • a = 9.692 (2) Å

  • b = 16.312 (4) Å

  • c = 20.227 (5) Å

  • β = 93.469 (3)°

  • V = 3192.1 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn CCD area detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.865, Tmax = 0.916

  • 21677 measured reflections

  • 5636 independent reflections

  • 4775 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.081

  • S = 1.01

  • 5636 reflections

  • 417 parameters

  • H-atom parameters constrained

  • Δρmax = 1.29 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯F1i 0.95 2.54 3.120 (6) 119
C26—H26⋯F5ii 0.95 2.40 3.222 (1) 144
C34—H34A⋯F1iii 0.98 2.53 3.276 (8) 133
C27—H27⋯Cg3ii 0.95 2.50 3.295 (1) 140
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: CrystalClear (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]).

Supporting information


Comment top

The discivery of first silver N-heterocyclic carbene (NHC) in 1993 by Arduengo (Arduengo et al., 1993) led to its rapid use in organometallic chemistry (Lin et al., 2009). silver NHCs can be used in various fields such as medical chemistry, Catalysis et al. (Nebioglu et al., 2007; Samantaray et al., 2007). Herein we report the crystal structure of the title silver NHC compound.

In the title compound, the silver(I) atom lies on a non-crystallographic twofold axis. The Ag—C bond lengths are close to literature values (Wang, Xu et al., 2005). The silver coordination geometry is almost linear with a C—Ag—C angle of 178.60 (9) °. The two five membered rings are almost co-planar with C9 showing the maximum deviation from the least squares plane of 0.05 Å. The silver atom is 0.07 Å out of this plane and the C11–C16 and C28–C33 rings make angles of 46.61 ° and 41.77 ° repectively with it.

In the crystal there are C—H···F hydrogen bonds and ππ interactions which contribute to supermolecular structure. (Fig. 2) The ππ interactions are between rings N3/C25/N4/C26/C27 and N1/C8/N2/C9/C10 and rings C11–C16 and C28–C33 with the ring centroids being separated by 3.921 Å and 3.813 Å, respectively. [symmetry code: 1-X,1/2+Y,1/2-Z and 1-X,-1/2+Y,1/2-Z.] In addition C—H···π interactions involving the imidazole and benzene rings are also observed.

Related literature top

For the first silver N-heterocyclic carbene, see: Arduengo et al.(1993). For the role of N-heterocyclic carbene ligands in organometallic chemistry, see: Lin et al. (2009). For applications of silver N-heterocyclic carbenes, see: Nebioglu et al. (2007); Samantaray et al. (2007). For Ag—C bond lengths, see: Wang, Xu et al. (2005). For the synthesis of the title compound, see: Liu et al. (2003); Wang, Song et al. (2005). For a related structure, see: Catalano & Etogo (2007).

Experimental top

The title compound was prepared according to the reported procedures (Liu et al. 2003; Wang, Song et al. 2005). Colourless single crystals suitable for X-ray diffraction were obtained by recrystallization from dichloromethane and diethyl ether.

Refinement top

H atoms were placed in calculated positions with C—H = 0.95–0.99 Å, and refined in the riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2004); cell refinement: CrystalClear (Rigaku/MSC, 2004); data reduction: CrystalClear (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound. The displacement ellipsoids are drawn at 30% probability level. C-bound H atoms have been omitted For clarity.
[Figure 2] Fig. 2. Crystal packing of the title compound, view down the a axis, showing the cations and anions linked via C—H···F interactions (dashed lines).H-atoms not involved in these interactions have been omitted for clarity.
Bis[1-benzyl-3-(4-methylphenyl)imidazol-2-ylidene]silver(I) hexafluoridophosphate top
Crystal data top
[Ag(C17H16N2)2]PF6F(000) = 1520
Mr = 749.48Dx = 1.560 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.692 (2) ÅCell parameters from 11560 reflections
b = 16.312 (4) Åθ = 1.6–27.9°
c = 20.227 (5) ŵ = 0.75 mm1
β = 93.469 (3)°T = 113 K
V = 3192.1 (12) Å3Prism, colorless
Z = 40.20 × 0.18 × 0.12 mm
Data collection top
Rigaku Saturn CCD area detector
diffractometer
5636 independent reflections
Radiation source: rotating anode4775 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.043
Detector resolution: 14.63 pixels mm-1θmax = 25.0°, θmin = 1.6°
ω and ϕ scansh = 117
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2004)
k = 1919
Tmin = 0.865, Tmax = 0.916l = 2224
21677 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0457P)2]
where P = (Fo2 + 2Fc2)/3
5636 reflections(Δ/σ)max = 0.002
417 parametersΔρmax = 1.29 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Ag(C17H16N2)2]PF6V = 3192.1 (12) Å3
Mr = 749.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.692 (2) ŵ = 0.75 mm1
b = 16.312 (4) ÅT = 113 K
c = 20.227 (5) Å0.20 × 0.18 × 0.12 mm
β = 93.469 (3)°
Data collection top
Rigaku Saturn CCD area detector
diffractometer
5636 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2004)
4775 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 0.916Rint = 0.043
21677 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.01Δρmax = 1.29 e Å3
5636 reflectionsΔρmin = 0.38 e Å3
417 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.41572 (2)0.859060 (11)0.816377 (9)0.02055 (8)
N10.2579 (2)1.00527 (12)0.74697 (10)0.0201 (5)
N20.4069 (2)1.04857 (12)0.82125 (10)0.0201 (5)
N30.5671 (2)0.71360 (12)0.88999 (11)0.0218 (5)
N40.4187 (2)0.66895 (13)0.81610 (10)0.0203 (5)
C10.3421 (3)0.91678 (15)0.61584 (14)0.0236 (6)
H10.39710.88910.64930.028*
C20.3847 (3)0.91908 (15)0.55177 (14)0.0269 (6)
H20.46780.89250.54130.032*
C30.3058 (3)0.96022 (16)0.50299 (14)0.0282 (7)
H30.33450.96190.45890.034*
C40.1846 (3)0.99894 (16)0.51871 (13)0.0273 (6)
H40.13071.02770.48550.033*
C50.1421 (3)0.99574 (16)0.58290 (13)0.0237 (6)
H50.05871.02220.59330.028*
C60.2194 (3)0.95459 (14)0.63189 (13)0.0211 (6)
C70.1735 (3)0.95170 (15)0.70193 (13)0.0240 (6)
H7A0.07560.96890.70190.029*
H7B0.18000.89460.71840.029*
C80.3559 (3)0.97862 (15)0.79212 (13)0.0194 (6)
C90.3392 (3)1.11697 (15)0.79473 (13)0.0230 (6)
H90.35561.17240.80740.028*
C100.2466 (3)1.09047 (15)0.74812 (14)0.0248 (6)
H100.18511.12320.72100.030*
C110.5114 (3)1.05048 (15)0.87445 (13)0.0215 (6)
C120.4931 (3)1.10008 (17)0.92862 (14)0.0296 (7)
H120.41311.13350.93020.035*
C130.5936 (3)1.10046 (17)0.98088 (14)0.0320 (7)
H130.58191.13531.01780.038*
C140.7096 (3)1.05160 (17)0.98046 (13)0.0279 (6)
C150.7260 (3)1.00243 (16)0.92519 (13)0.0257 (6)
H150.80520.96830.92400.031*
C160.6293 (3)1.00224 (15)0.87199 (13)0.0232 (6)
H160.64330.96950.83420.028*
C170.8157 (3)1.0520 (2)1.03823 (15)0.0394 (8)
H17A0.85001.10801.04580.059*
H17B0.89291.01611.02840.059*
H17C0.77321.03231.07800.059*
C180.8641 (3)0.77442 (17)0.86335 (14)0.0329 (7)
H180.80720.79990.82940.040*
C191.0014 (3)0.7597 (2)0.85337 (16)0.0423 (8)
H191.03800.77420.81250.051*
C201.0861 (3)0.72373 (19)0.90282 (17)0.0424 (8)
H201.18100.71420.89620.051*
C211.0310 (3)0.70167 (18)0.96223 (16)0.0376 (8)
H211.08820.67690.99640.045*
C220.8923 (3)0.71589 (16)0.97149 (14)0.0284 (7)
H220.85480.70041.01200.034*
C230.8082 (3)0.75253 (15)0.92215 (13)0.0232 (6)
C240.6570 (3)0.76661 (15)0.93234 (13)0.0261 (6)
H24A0.63950.75610.97930.031*
H24B0.63380.82460.92260.031*
C250.4730 (3)0.73940 (15)0.84277 (13)0.0219 (6)
C260.4790 (3)0.60099 (15)0.84766 (13)0.0239 (6)
H260.45820.54510.83820.029*
C270.5712 (3)0.62885 (15)0.89357 (14)0.0250 (6)
H270.62880.59680.92310.030*
C280.3152 (3)0.66399 (15)0.76335 (13)0.0214 (6)
C290.3165 (3)0.71662 (15)0.70946 (13)0.0243 (6)
H290.38850.75580.70670.029*
C300.2120 (3)0.71147 (15)0.65974 (14)0.0284 (7)
H300.21160.74870.62360.034*
C310.1089 (3)0.65370 (15)0.66140 (14)0.0256 (6)
C320.1107 (3)0.59955 (16)0.71508 (14)0.0259 (6)
H320.04130.55860.71650.031*
C330.2115 (3)0.60464 (15)0.76600 (13)0.0229 (6)
H330.21050.56820.80260.027*
C340.0037 (3)0.64745 (17)0.60683 (15)0.0359 (7)
H34A0.06460.69530.60830.054*
H34B0.05760.59740.61280.054*
H34C0.03780.64550.56390.054*
P10.76650 (7)0.85484 (4)0.67062 (3)0.02175 (17)
F10.84018 (19)0.77564 (9)0.70222 (8)0.0389 (4)
F20.89576 (18)0.86984 (11)0.62716 (9)0.0443 (5)
F30.69599 (18)0.79928 (10)0.61225 (8)0.0374 (4)
F40.63656 (18)0.83735 (13)0.71351 (9)0.0523 (5)
F50.6920 (2)0.93310 (10)0.63843 (9)0.0517 (5)
F60.83605 (18)0.90927 (9)0.72922 (8)0.0357 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.02564 (13)0.01226 (11)0.02389 (13)0.00213 (8)0.00264 (9)0.00104 (8)
N10.0228 (12)0.0150 (10)0.0228 (12)0.0007 (10)0.0041 (10)0.0013 (9)
N20.0236 (12)0.0145 (11)0.0228 (12)0.0016 (9)0.0050 (10)0.0008 (9)
N30.0234 (12)0.0171 (11)0.0249 (13)0.0034 (10)0.0022 (10)0.0021 (9)
N40.0227 (12)0.0136 (10)0.0248 (13)0.0027 (9)0.0038 (10)0.0031 (9)
C10.0221 (14)0.0163 (12)0.0320 (16)0.0006 (12)0.0016 (12)0.0035 (11)
C20.0247 (15)0.0221 (14)0.0346 (17)0.0020 (12)0.0063 (13)0.0044 (12)
C30.0301 (16)0.0279 (15)0.0268 (16)0.0100 (13)0.0018 (13)0.0051 (12)
C40.0291 (16)0.0268 (14)0.0248 (16)0.0093 (13)0.0088 (13)0.0009 (12)
C50.0168 (14)0.0222 (13)0.0315 (16)0.0028 (12)0.0027 (12)0.0027 (12)
C60.0206 (14)0.0147 (12)0.0278 (15)0.0066 (11)0.0007 (12)0.0017 (11)
C70.0215 (14)0.0193 (13)0.0310 (16)0.0040 (12)0.0009 (12)0.0013 (11)
C80.0198 (14)0.0186 (13)0.0204 (14)0.0005 (11)0.0048 (12)0.0002 (11)
C90.0262 (15)0.0122 (12)0.0314 (16)0.0034 (12)0.0066 (13)0.0013 (11)
C100.0231 (15)0.0168 (13)0.0349 (17)0.0038 (12)0.0057 (13)0.0049 (11)
C110.0256 (15)0.0175 (13)0.0219 (14)0.0019 (12)0.0045 (12)0.0015 (11)
C120.0301 (16)0.0281 (15)0.0308 (17)0.0078 (13)0.0041 (14)0.0043 (12)
C130.0380 (18)0.0334 (16)0.0250 (16)0.0053 (14)0.0048 (14)0.0066 (13)
C140.0288 (16)0.0313 (15)0.0239 (15)0.0017 (13)0.0029 (12)0.0043 (12)
C150.0218 (15)0.0225 (14)0.0333 (16)0.0021 (12)0.0067 (13)0.0036 (12)
C160.0257 (15)0.0176 (13)0.0270 (15)0.0005 (12)0.0073 (12)0.0030 (11)
C170.0378 (19)0.0473 (19)0.0327 (18)0.0019 (16)0.0003 (15)0.0002 (14)
C180.0410 (19)0.0330 (16)0.0245 (16)0.0019 (15)0.0001 (14)0.0027 (12)
C190.042 (2)0.051 (2)0.0350 (19)0.0101 (17)0.0121 (16)0.0057 (15)
C200.0267 (17)0.047 (2)0.055 (2)0.0058 (15)0.0118 (16)0.0201 (17)
C210.0300 (17)0.0363 (17)0.045 (2)0.0046 (15)0.0115 (15)0.0100 (14)
C220.0349 (17)0.0234 (14)0.0265 (16)0.0014 (13)0.0008 (13)0.0017 (12)
C230.0285 (15)0.0143 (12)0.0264 (15)0.0014 (12)0.0007 (12)0.0053 (11)
C240.0328 (16)0.0218 (14)0.0232 (15)0.0033 (13)0.0010 (13)0.0025 (11)
C250.0229 (15)0.0191 (13)0.0240 (15)0.0027 (12)0.0039 (12)0.0001 (11)
C260.0263 (15)0.0154 (13)0.0305 (16)0.0058 (12)0.0067 (13)0.0066 (11)
C270.0261 (15)0.0186 (13)0.0307 (16)0.0067 (12)0.0047 (13)0.0050 (11)
C280.0234 (15)0.0153 (12)0.0259 (15)0.0060 (12)0.0045 (12)0.0019 (11)
C290.0320 (16)0.0148 (12)0.0263 (15)0.0015 (12)0.0043 (13)0.0002 (11)
C300.0417 (18)0.0171 (13)0.0263 (16)0.0061 (13)0.0015 (14)0.0036 (11)
C310.0282 (16)0.0225 (14)0.0260 (15)0.0076 (13)0.0000 (12)0.0057 (11)
C320.0266 (15)0.0195 (14)0.0321 (16)0.0012 (12)0.0064 (13)0.0025 (12)
C330.0257 (15)0.0186 (13)0.0251 (15)0.0014 (12)0.0077 (12)0.0016 (11)
C340.0393 (19)0.0317 (16)0.0362 (19)0.0047 (14)0.0022 (15)0.0054 (13)
P10.0225 (4)0.0188 (3)0.0241 (4)0.0008 (3)0.0027 (3)0.0009 (3)
F10.0516 (11)0.0235 (8)0.0403 (10)0.0065 (8)0.0081 (9)0.0006 (7)
F20.0345 (10)0.0628 (12)0.0370 (11)0.0186 (9)0.0119 (8)0.0025 (9)
F30.0408 (10)0.0368 (9)0.0336 (10)0.0077 (8)0.0071 (8)0.0050 (7)
F40.0329 (11)0.0815 (14)0.0443 (12)0.0074 (10)0.0168 (9)0.0011 (10)
F50.0726 (14)0.0287 (9)0.0514 (12)0.0177 (10)0.0154 (10)0.0024 (8)
F60.0487 (11)0.0246 (8)0.0330 (10)0.0020 (8)0.0046 (8)0.0071 (7)
Geometric parameters (Å, º) top
Ag1—C82.085 (2)C16—H160.9500
Ag1—C252.090 (2)C17—H17A0.9800
N1—C81.349 (3)C17—H17B0.9800
N1—C101.395 (3)C17—H17C0.9800
N1—C71.474 (3)C18—C191.380 (4)
N2—C81.363 (3)C18—C231.383 (4)
N2—C91.386 (3)C18—H180.9500
N2—C111.433 (3)C19—C201.385 (4)
N3—C251.348 (3)C19—H190.9500
N3—C271.385 (3)C20—C211.392 (4)
N3—C241.466 (3)C20—H200.9500
N4—C251.362 (3)C21—C221.387 (4)
N4—C261.390 (3)C21—H210.9500
N4—C281.422 (3)C22—C231.385 (4)
C1—C21.384 (4)C22—H220.9500
C1—C61.395 (4)C23—C241.510 (4)
C1—H10.9500C24—H24A0.9900
C2—C31.385 (4)C24—H24B0.9900
C2—H20.9500C26—C271.329 (4)
C3—C41.387 (4)C26—H260.9500
C3—H30.9500C27—H270.9500
C4—C51.387 (4)C28—C291.388 (4)
C4—H40.9500C28—C331.399 (4)
C5—C61.380 (4)C29—C301.386 (4)
C5—H50.9500C29—H290.9500
C6—C71.511 (3)C30—C311.376 (4)
C7—H7A0.9900C30—H300.9500
C7—H7B0.9900C31—C321.399 (4)
C9—C101.333 (4)C31—C341.508 (4)
C9—H90.9500C32—C331.378 (4)
C10—H100.9500C32—H320.9500
C11—C121.382 (4)C33—H330.9500
C11—C161.391 (4)C34—H34A0.9800
C12—C131.393 (4)C34—H34B0.9800
C12—H120.9500C34—H34C0.9800
C13—C141.379 (4)P1—F51.5867 (17)
C13—H130.9500P1—F11.5913 (17)
C14—C151.393 (4)P1—F21.5923 (18)
C14—C171.509 (4)P1—F61.5971 (16)
C15—C161.384 (4)P1—F41.5977 (18)
C15—H150.9500P1—F31.6077 (17)
C8—Ag1—C25178.60 (9)C19—C18—H18119.6
C8—N1—C10111.3 (2)C23—C18—H18119.6
C8—N1—C7124.7 (2)C18—C19—C20120.2 (3)
C10—N1—C7124.1 (2)C18—C19—H19119.9
C8—N2—C9110.8 (2)C20—C19—H19119.9
C8—N2—C11124.4 (2)C19—C20—C21119.4 (3)
C9—N2—C11124.7 (2)C19—C20—H20120.3
C25—N3—C27111.4 (2)C21—C20—H20120.3
C25—N3—C24125.6 (2)C22—C21—C20119.9 (3)
C27—N3—C24123.0 (2)C22—C21—H21120.0
C25—N4—C26110.5 (2)C20—C21—H21120.0
C25—N4—C28125.7 (2)C23—C22—C21120.5 (3)
C26—N4—C28123.9 (2)C23—C22—H22119.8
C2—C1—C6120.8 (2)C21—C22—H22119.8
C2—C1—H1119.6C18—C23—C22119.1 (3)
C6—C1—H1119.6C18—C23—C24120.8 (2)
C1—C2—C3119.8 (3)C22—C23—C24120.1 (2)
C1—C2—H2120.1N3—C24—C23112.2 (2)
C3—C2—H2120.1N3—C24—H24A109.2
C2—C3—C4119.7 (3)C23—C24—H24A109.2
C2—C3—H3120.1N3—C24—H24B109.2
C4—C3—H3120.1C23—C24—H24B109.2
C5—C4—C3120.1 (3)H24A—C24—H24B107.9
C5—C4—H4120.0N3—C25—N4104.2 (2)
C3—C4—H4120.0N3—C25—Ag1129.10 (18)
C6—C5—C4120.7 (3)N4—C25—Ag1126.64 (19)
C6—C5—H5119.6C27—C26—N4107.1 (2)
C4—C5—H5119.6C27—C26—H26126.4
C5—C6—C1118.8 (2)N4—C26—H26126.4
C5—C6—C7120.7 (2)C26—C27—N3106.8 (2)
C1—C6—C7120.5 (2)C26—C27—H27126.6
N1—C7—C6112.2 (2)N3—C27—H27126.6
N1—C7—H7A109.2C29—C28—C33119.9 (3)
C6—C7—H7A109.2C29—C28—N4120.9 (2)
N1—C7—H7B109.2C33—C28—N4119.1 (2)
C6—C7—H7B109.2C30—C29—C28119.4 (3)
H7A—C7—H7B107.9C30—C29—H29120.3
N1—C8—N2104.2 (2)C28—C29—H29120.3
N1—C8—Ag1129.43 (18)C31—C30—C29121.6 (3)
N2—C8—Ag1126.36 (19)C31—C30—H30119.2
C10—C9—N2107.2 (2)C29—C30—H30119.2
C10—C9—H9126.4C30—C31—C32118.5 (3)
N2—C9—H9126.4C30—C31—C34121.6 (3)
C9—C10—N1106.5 (2)C32—C31—C34120.0 (3)
C9—C10—H10126.7C33—C32—C31121.1 (3)
N1—C10—H10126.7C33—C32—H32119.4
C12—C11—C16120.3 (3)C31—C32—H32119.4
C12—C11—N2119.3 (2)C32—C33—C28119.4 (2)
C16—C11—N2120.4 (2)C32—C33—H33120.3
C11—C12—C13119.2 (3)C28—C33—H33120.3
C11—C12—H12120.4C31—C34—H34A109.5
C13—C12—H12120.4C31—C34—H34B109.5
C14—C13—C12121.7 (3)H34A—C34—H34B109.5
C14—C13—H13119.1C31—C34—H34C109.5
C12—C13—H13119.1H34A—C34—H34C109.5
C13—C14—C15118.0 (3)H34B—C34—H34C109.5
C13—C14—C17120.7 (3)F5—P1—F1179.27 (11)
C15—C14—C17121.3 (3)F5—P1—F290.20 (11)
C16—C15—C14121.4 (3)F1—P1—F289.85 (10)
C16—C15—H15119.3F5—P1—F691.05 (9)
C14—C15—H15119.3F1—P1—F689.67 (9)
C15—C16—C11119.4 (2)F2—P1—F690.77 (10)
C15—C16—H16120.3F5—P1—F490.71 (11)
C11—C16—H16120.3F1—P1—F489.21 (11)
C14—C17—H17A109.5F2—P1—F4178.48 (11)
C14—C17—H17B109.5F6—P1—F490.43 (10)
H17A—C17—H17B109.5F5—P1—F389.41 (10)
C14—C17—H17C109.5F1—P1—F389.87 (9)
H17A—C17—H17C109.5F2—P1—F389.71 (10)
H17B—C17—H17C109.5F6—P1—F3179.34 (10)
C19—C18—C23120.8 (3)F4—P1—F389.09 (10)
C6—C1—C2—C30.8 (4)C23—C18—C19—C201.0 (5)
C1—C2—C3—C40.1 (4)C18—C19—C20—C210.8 (5)
C2—C3—C4—C50.6 (4)C19—C20—C21—C220.1 (4)
C3—C4—C5—C60.3 (4)C20—C21—C22—C230.5 (4)
C4—C5—C6—C10.6 (4)C19—C18—C23—C220.4 (4)
C4—C5—C6—C7179.5 (2)C19—C18—C23—C24178.3 (3)
C2—C1—C6—C51.1 (4)C21—C22—C23—C180.3 (4)
C2—C1—C6—C7179.9 (2)C21—C22—C23—C24179.1 (2)
C8—N1—C7—C6104.8 (3)C25—N3—C24—C23117.8 (3)
C10—N1—C7—C675.0 (3)C27—N3—C24—C2361.1 (3)
C5—C6—C7—N1106.0 (3)C18—C23—C24—N368.3 (3)
C1—C6—C7—N172.9 (3)C22—C23—C24—N3110.4 (3)
C10—N1—C8—N20.5 (3)C27—N3—C25—N40.6 (3)
C7—N1—C8—N2179.3 (2)C24—N3—C25—N4178.4 (2)
C10—N1—C8—Ag1177.56 (18)C27—N3—C25—Ag1177.84 (19)
C7—N1—C8—Ag12.6 (4)C24—N3—C25—Ag13.1 (4)
C9—N2—C8—N10.9 (3)C26—N4—C25—N30.6 (3)
C11—N2—C8—N1177.8 (2)C28—N4—C25—N3179.3 (2)
C9—N2—C8—Ag1177.31 (17)C26—N4—C25—Ag1177.89 (17)
C11—N2—C8—Ag10.4 (3)C28—N4—C25—Ag12.2 (4)
C25—Ag1—C8—N1103 (4)C8—Ag1—C25—N375 (4)
C25—Ag1—C8—N275 (4)C8—Ag1—C25—N4103 (4)
C8—N2—C9—C100.9 (3)C25—N4—C26—C270.4 (3)
C11—N2—C9—C10177.8 (2)C28—N4—C26—C27179.5 (2)
N2—C9—C10—N10.5 (3)N4—C26—C27—N30.0 (3)
C8—N1—C10—C90.0 (3)C25—N3—C27—C260.4 (3)
C7—N1—C10—C9179.8 (2)C24—N3—C27—C26178.7 (2)
C8—N2—C11—C12133.5 (3)C25—N4—C28—C2940.1 (4)
C9—N2—C11—C1243.0 (4)C26—N4—C28—C29139.7 (3)
C8—N2—C11—C1645.7 (3)C25—N4—C28—C33140.4 (3)
C9—N2—C11—C16137.7 (3)C26—N4—C28—C3339.8 (3)
C16—C11—C12—C130.6 (4)C33—C28—C29—C302.1 (4)
N2—C11—C12—C13178.7 (2)N4—C28—C29—C30178.4 (2)
C11—C12—C13—C141.1 (4)C28—C29—C30—C312.0 (4)
C12—C13—C14—C151.4 (4)C29—C30—C31—C320.3 (4)
C12—C13—C14—C17178.9 (3)C29—C30—C31—C34179.2 (3)
C13—C14—C15—C160.1 (4)C30—C31—C32—C331.3 (4)
C17—C14—C15—C16179.7 (3)C34—C31—C32—C33179.2 (2)
C14—C15—C16—C111.7 (4)C31—C32—C33—C281.2 (4)
C12—C11—C16—C152.0 (4)C29—C28—C33—C320.6 (4)
N2—C11—C16—C15177.3 (2)N4—C28—C33—C32179.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9···F1i0.952.543.120 (6)119
C26—H26···F5ii0.952.403.222 (1)144
C34—H34A···F1iii0.982.533.276 (8)133
C27—H27···Cg3ii0.952.503.295 (1)140
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ag(C17H16N2)2]PF6
Mr749.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)9.692 (2), 16.312 (4), 20.227 (5)
β (°) 93.469 (3)
V3)3192.1 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn CCD area detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2004)
Tmin, Tmax0.865, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
21677, 5636, 4775
Rint0.043
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.081, 1.01
No. of reflections5636
No. of parameters417
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.29, 0.38

Computer programs: CrystalClear (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2004).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9···F1i0.952.53623.120 (6)119
C26—H26···F5ii0.952.40133.222 (1)144
C34—H34A···F1iii0.982.52723.276 (8)133
C27—H27···Cg3ii0.952.50373.295 (1)140
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z.
 

Acknowledgements

DBQ thanks the Scientific Researching Fund Projects of China West Normal University (grant No. 06B003) and the Youth Fund Projects of Sichuan Educational Department (grant No. 2006B039).

References

First citationArduengo, A. J. III, Dias, H. V. R., Calabrese, J. C. & Davidson, F. (1993). Organometallics, 12, 3405–3409.  CSD CrossRef CAS Web of Science Google Scholar
First citationCatalano, V. J. & Etogo, A. O. (2007). Inorg. Chem. 46, 5608–5615.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLin, J. C. Y., Huang, R. T. W., Lee, C. S., Bhattacharyya, A., Hwang, W. S. & Lin, I. J. B. (2009). Chem. Rev. 109, 3561–3598.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, J. P., Chen, J. B., Zhao, J. F., Zhao, Y. H., Li, L. & Zhang, H. B. (2003). Synthesis, 17, 2661–2666.  Google Scholar
First citationNebioglu, A. K., Panzner, M. J., Tessier, C. A., Cannon, C. L. & Young, W. J. (2007). Coord. Chem. Rev. 251, 884–895.  Google Scholar
First citationRigaku/MSC (2004). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSamantaray, M. K., Katiyar, V., Pang, K., Nanavati, H. & Ghosh, P. (2007). J. Organomet. Chem. 692, 1672–1682.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J. W., Song, H. B., Li, Q. S., Xu, F. B. & Zhang, Z. Z. (2005). Inorg. Chim. Acta, 358, 3653–3658.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, J. W., Xu, F. B., Li, Q. S., Song, H. B. & Zhang, Z. Z. (2005). Inorg. Chem. Commun. 8, 1053–1055.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds