organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-6-(pyrrolidin-1-yl)-4-p-tolyl­pyridine-3,5-dicarbo­nitrile

aPhysics Department, Sri Ram Engineering College, Chennai 602 024, India, bDepartment of Chemistry, Pondichery University, Pondichery 605 014, India, and cDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 14 June 2011; accepted 1 July 2011; online 9 July 2011)

In the title compound, C18H17N5, the pyrrolidine ring adopts an envelope conformation. The pyrrolidine ring is disordered over two sets of sites with occupancy factors of 0.648 (6) and 0.352 (6). The dihedral angles between the pyrrolidine and pyridine rings are 14.6 (3)° for the major component and 16.2 (6)° for the ninor component. The crystal structure is stabilized by inter­molecular N—H⋯N and C—H⋯N inter­actions.

Related literature

For a related structure, see: Wang et al. (2011[Wang, J.-Q., Tang, S.-G. & Guo, C. (2011). Acta Cryst. E67, o56.]). For the biological activity of spiro compounds, see: Kobayashi et al. (1991[Kobayashi, J., Tsuda, S. G., Agmi, K., Shigmori, H., Ishibashi, M., Sasaki, T. & Mikami, Y. (1991). Tetrahedron, 43, 6617-6622.]); James et al. (1991[James, D., Kunz, H. B. & Faulkner, D. (1991). J. Nat. Prod. 54, 1137-1140.]). For the use of 2-amino-3-cyano­pyridines as inter­mediates in the preparation of heterocyclic compounds, see: Shishoo et al. (1983[Shishoo, C. J., Devani, M. B., Bhadti, V. S., Ananthan, S. & Ullas, G. V. (1983). Tetrahedron Lett. pp. 4611-4612.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17N5

  • Mr = 303.37

  • Triclinic, [P \overline 1]

  • a = 7.4005 (5) Å

  • b = 9.0330 (5) Å

  • c = 12.0533 (6) Å

  • α = 87.876 (5)°

  • β = 80.575 (5)°

  • γ = 84.053 (5)°

  • V = 790.43 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.916, Tmax = 0.984

  • 5515 measured reflections

  • 2924 independent reflections

  • 1812 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.119

  • S = 0.95

  • 2924 reflections

  • 222 parameters

  • 48 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N4i 0.86 2.19 3.010 (2) 160
C11—H11⋯N2ii 0.93 2.62 3.531 (2) 166
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008)[Bruker (2008). APEX2 and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.]; cell refinement: SAINT (Bruker, 2008)[Bruker (2008). APEX2 and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.]; data reduction: SAINT[Bruker (2008). APEX2 and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009)[Spek, A. L. (2009). Acta Cryst. D65, 148-155.].

Supporting information


Comment top

Generally the 'spiro'–compounds are naturally occurring substances (Kobayashi et al., 1991; James et al., 1991). Pyridines are of interest because of occurrence of their saturated and partially saturated derivatives in biologically active compounds and natural products such as NAD nucleotides, pyridoxol and pyridine alkaloids. Derivatives of 2-amino-3-cynaopyridine are important compound in the preparation of various hetrocyclic compounds (Shishoo et al., 1983).

The title compound C18H17N5 was prepared from 4–methylbenzaldehyde, malononitrile and pyrrolidine. The reported compound pyridine bearing a pyrrolidine ring at C5 and benzene ring at C3. The X–ray analysis confirms the molecular structure and atom connectivity of the compound, as illustrated in Fig. 1. The pyrrolidine ring adopts an envelope conformation with puckering parameter q2 = 0.333 (8)Å, and ϕ2 = 98.1 (14)°, (Cremer & Pople, 1975) and the maximum deviation of C8 atom is -0.207 (6)Å. Also it has disordered with the occupancy factor of 0.648 (6) / 0.352 (6).

The pyridine ring (N2/C1—C5) forms dihedral angles of 14.6 (3)° and 59.89 (8)° with pyrrolidine (N3/C6—C9) and phenyl ring (C10—C15) respectively. Also the pyrrolidine ring forms a dihedral angle of 73.2 (3)° with phenyl ring. The title compound exibits the structural similarities with the reported related structure (Wang et al., 2011).

The crystal structure is stabilized by N—H···N and C—H···N intermolecular interactions (Table 1). For the symmetry codes, see Table 1 too. The packing view of the reported compound is shown in Fig. 2.

Related literature top

For a related structure, see: Wang et al. (2011). For the biological activity of spiro compounds, see: Kobayashi et al. (1991); James et al. (1991). For the use of 2-amino-3-cyanopyridines as intermediates in the preparation of heterocyclic compounds, see: Shishoo et al. (1983). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

Initially a mixture of 4–methylbenzaldehyde (2 mmoL,0.24 g), malononitrile (3 mmoL, 0.198 g), pyrrolidine (1.5 mmoL, 0.1 g) and was stirred without any solvent at room temperature. A solid appeared immediately which has dissolved in a minimum amount (3 ml) of ethanol and the solution was refluxed until completion of the reaction (monitered by TLC). The reaction mixture was cooled. Ethanol was evaporated under reduced pressure and the residue was extracted with dicholoromethane (3 x 10 ml). Evaporation of solvent left the crude solid which was subjected to silica gel column chromatography [25%/75% ethyl acetate/hexane] and the product was recrysallized from dichloromethane.

Refinement top

The H atoms were placed in idealized positions and allowed to ride on the parent atoms, with C—H bond lengths fixed to 0.93Å (Aromatic H), 0.96Å (methyl H), 0.97Å (methylene H), 0.86Å (N—H) and Uiso(H) = 1.2–1.5Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are present as small spheres of arbitary radius. Only major moiety of pyrrolidine is presented for clarity.
[Figure 2] Fig. 2. The packing arrangement of the title compound viewed down. Dashed lines indicates the N—H···N and C—H···N interactions.
2-Amino-6-(pyrrolidin-1-yl)-4-p-tolylpyridine-3,5-dicarbonitrile top
Crystal data top
C18H17N5Z = 2
Mr = 303.37F(000) = 320
Triclinic, P1Dx = 1.275 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4005 (5) ÅCell parameters from 2784 reflections
b = 9.0330 (5) Åθ = 2.8–25.5°
c = 12.0533 (6) ŵ = 0.08 mm1
α = 87.876 (5)°T = 295 K
β = 80.575 (5)°Block, colourless
γ = 84.053 (5)°0.30 × 0.25 × 0.20 mm
V = 790.43 (8) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2924 independent reflections
Radiation source: fine–focus sealed tube1812 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and ϕ scansθmax = 25.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.916, Tmax = 0.984k = 106
5515 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0686P)2]
where P = (Fo2 + 2Fc2)/3
2924 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.20 e Å3
48 restraintsΔρmin = 0.22 e Å3
Crystal data top
C18H17N5γ = 84.053 (5)°
Mr = 303.37V = 790.43 (8) Å3
Triclinic, P1Z = 2
a = 7.4005 (5) ÅMo Kα radiation
b = 9.0330 (5) ŵ = 0.08 mm1
c = 12.0533 (6) ÅT = 295 K
α = 87.876 (5)°0.30 × 0.25 × 0.20 mm
β = 80.575 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2924 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1812 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.984Rint = 0.026
5515 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04448 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 0.95Δρmax = 0.20 e Å3
2924 reflectionsΔρmin = 0.22 e Å3
222 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2478 (2)0.39231 (19)0.48703 (14)0.0311 (4)
C20.2350 (2)0.50607 (19)0.40420 (14)0.0299 (4)
C30.2438 (2)0.65256 (19)0.43307 (14)0.0287 (4)
C40.2583 (2)0.68285 (19)0.54390 (14)0.0295 (4)
C50.2649 (2)0.56120 (19)0.62372 (14)0.0293 (4)
C60.2432 (9)0.7131 (12)0.7968 (9)0.0461 (15)0.648 (6)
H6A0.13270.77290.78200.055*0.648 (6)
H6B0.34720.77160.77820.055*0.648 (6)
C70.2226 (9)0.6588 (7)0.9190 (4)0.0691 (15)0.648 (6)
H7A0.27710.72360.96380.083*0.648 (6)
H7B0.09390.65570.95080.083*0.648 (6)
C80.3238 (8)0.5040 (6)0.9150 (3)0.0563 (11)0.648 (6)
H8A0.27480.44370.97900.068*0.648 (6)
H8B0.45420.50840.91510.068*0.648 (6)
C90.2914 (10)0.4408 (11)0.8058 (7)0.0390 (12)0.648 (6)
H9A0.39470.37180.77410.047*0.648 (6)
H9B0.18000.39050.81690.047*0.648 (6)
C6'0.301 (2)0.715 (3)0.7863 (18)0.0461 (15)0.352 (6)
H6'10.19650.78910.78590.055*0.352 (6)
H6'20.41140.75690.74820.055*0.352 (6)
C7'0.3223 (17)0.6648 (14)0.9056 (9)0.0691 (15)0.352 (6)
H7'10.45100.64160.91240.083*0.352 (6)
H7'20.26800.74100.95900.083*0.352 (6)
C8'0.2208 (14)0.5274 (12)0.9249 (7)0.0563 (11)0.352 (6)
H8'10.27250.46000.97870.068*0.352 (6)
H8'20.09140.55360.95310.068*0.352 (6)
C9'0.243 (2)0.463 (2)0.8208 (15)0.0390 (12)0.352 (6)
H9'10.13430.41470.81360.047*0.352 (6)
H9'20.34770.38730.81320.047*0.352 (6)
C100.2397 (2)0.77241 (18)0.34444 (14)0.0311 (4)
C110.0942 (3)0.7948 (2)0.28509 (15)0.0401 (5)
H110.00630.73990.30450.048*
C120.0959 (3)0.8974 (2)0.19760 (16)0.0475 (5)
H120.00410.91070.15930.057*
C130.2424 (3)0.9812 (2)0.16525 (15)0.0416 (5)
C140.3849 (3)0.9602 (2)0.22687 (16)0.0478 (5)
H140.48421.01650.20820.057*
C150.3855 (3)0.8584 (2)0.31535 (15)0.0395 (5)
H150.48360.84770.35530.047*
C160.2469 (4)1.0884 (2)0.06669 (17)0.0647 (7)
H16A0.32791.16260.07430.097*
H16B0.12521.13560.06450.097*
H16C0.29071.03540.00160.097*
C170.2191 (3)0.4648 (2)0.29346 (16)0.0400 (5)
C180.2644 (3)0.8343 (2)0.57125 (14)0.0367 (5)
N10.2465 (2)0.24897 (16)0.46085 (13)0.0465 (5)
H1A0.25500.18010.51150.056*
H1B0.23720.22620.39350.056*
N20.26256 (19)0.41952 (15)0.59258 (11)0.0333 (4)
N30.2732 (2)0.57631 (16)0.73317 (12)0.0370 (4)
N40.2699 (3)0.95712 (19)0.58907 (14)0.0591 (5)
N50.2055 (3)0.4201 (2)0.20790 (15)0.0654 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0345 (10)0.0243 (10)0.0349 (11)0.0038 (8)0.0068 (8)0.0012 (8)
C20.0353 (10)0.0275 (10)0.0272 (9)0.0050 (8)0.0057 (7)0.0028 (8)
C30.0287 (9)0.0263 (10)0.0308 (9)0.0035 (8)0.0043 (7)0.0024 (8)
C40.0347 (10)0.0244 (9)0.0300 (10)0.0044 (8)0.0061 (8)0.0015 (8)
C50.0296 (10)0.0298 (10)0.0292 (10)0.0041 (8)0.0066 (8)0.0027 (8)
C60.065 (4)0.0426 (13)0.032 (2)0.011 (4)0.006 (3)0.0053 (14)
C70.109 (4)0.066 (2)0.0320 (18)0.008 (4)0.009 (3)0.0056 (15)
C80.063 (3)0.076 (2)0.0343 (15)0.017 (3)0.016 (2)0.0116 (15)
C90.048 (4)0.037 (3)0.027 (3)0.010 (3)0.001 (2)0.0050 (19)
C6'0.065 (4)0.0426 (13)0.032 (2)0.011 (4)0.006 (3)0.0053 (14)
C7'0.109 (4)0.066 (2)0.0320 (18)0.008 (4)0.009 (3)0.0056 (15)
C8'0.063 (3)0.076 (2)0.0343 (15)0.017 (3)0.016 (2)0.0116 (15)
C9'0.048 (4)0.037 (3)0.027 (3)0.010 (3)0.001 (2)0.0050 (19)
C100.0423 (11)0.0238 (10)0.0267 (9)0.0039 (8)0.0047 (8)0.0028 (8)
C110.0449 (12)0.0404 (12)0.0372 (11)0.0111 (9)0.0106 (9)0.0078 (9)
C120.0590 (13)0.0473 (13)0.0381 (11)0.0014 (11)0.0180 (10)0.0089 (10)
C130.0663 (14)0.0285 (11)0.0285 (10)0.0015 (10)0.0056 (10)0.0038 (8)
C140.0653 (14)0.0372 (12)0.0418 (11)0.0217 (10)0.0031 (10)0.0077 (9)
C150.0466 (12)0.0392 (11)0.0360 (10)0.0135 (9)0.0117 (9)0.0058 (9)
C160.103 (2)0.0465 (14)0.0421 (12)0.0053 (13)0.0091 (12)0.0139 (11)
C170.0561 (13)0.0298 (11)0.0351 (11)0.0083 (9)0.0089 (9)0.0030 (9)
C180.0499 (12)0.0307 (11)0.0299 (10)0.0054 (9)0.0074 (9)0.0039 (8)
N10.0766 (12)0.0255 (9)0.0401 (9)0.0073 (8)0.0172 (8)0.0030 (7)
N20.0442 (9)0.0267 (9)0.0302 (8)0.0047 (7)0.0101 (7)0.0042 (7)
N30.0529 (10)0.0337 (9)0.0257 (8)0.0053 (8)0.0105 (7)0.0013 (7)
N40.1006 (16)0.0303 (11)0.0475 (11)0.0096 (10)0.0134 (10)0.0014 (8)
N50.1054 (16)0.0584 (13)0.0359 (10)0.0146 (11)0.0165 (10)0.0068 (9)
Geometric parameters (Å, º) top
C1—N21.329 (2)C7'—C8'1.508 (16)
C1—N11.345 (2)C7'—H7'10.9700
C1—C21.413 (2)C7'—H7'20.9700
C2—C31.391 (2)C8'—C9'1.38 (2)
C2—C171.426 (2)C8'—H8'10.9700
C3—C41.397 (2)C8'—H8'20.9700
C3—C101.494 (2)C9'—N31.453 (19)
C4—C181.426 (2)C9'—H9'10.9700
C4—C51.436 (2)C9'—H9'20.9700
C5—N31.343 (2)C10—C111.382 (2)
C5—N21.350 (2)C10—C151.386 (2)
C6—N31.457 (11)C11—C121.377 (3)
C6—C71.523 (12)C11—H110.9300
C6—H6A0.9700C12—C131.381 (3)
C6—H6B0.9700C12—H120.9300
C7—C81.515 (9)C13—C141.380 (3)
C7—H7A0.9700C13—C161.503 (3)
C7—H7B0.9700C14—C151.382 (3)
C8—C91.518 (11)C14—H140.9300
C8—H8A0.9700C15—H150.9300
C8—H8B0.9700C16—H16A0.9600
C9—N31.486 (10)C16—H16B0.9600
C9—H9A0.9700C16—H16C0.9600
C9—H9B0.9700C17—N51.144 (2)
C6'—N31.48 (2)C18—N41.144 (2)
C6'—C7'1.52 (3)N1—H1A0.8600
C6'—H6'10.9700N1—H1B0.8600
C6'—H6'20.9700
N2—C1—N1116.85 (15)C9'—C8'—H8'1110.7
N2—C1—C2122.80 (15)C7'—C8'—H8'1110.7
N1—C1—C2120.35 (15)C9'—C8'—H8'2110.7
C3—C2—C1118.84 (15)C7'—C8'—H8'2110.7
C3—C2—C17122.85 (16)H8'1—C8'—H8'2108.8
C1—C2—C17118.29 (15)C8'—C9'—N3109.3 (14)
C2—C3—C4118.92 (15)C8'—C9'—H9'1109.8
C2—C3—C10119.08 (15)N3—C9'—H9'1109.8
C4—C3—C10122.00 (15)C8'—C9'—H9'2109.8
C3—C4—C18117.60 (15)N3—C9'—H9'2109.8
C3—C4—C5118.67 (15)H9'1—C9'—H9'2108.3
C18—C4—C5123.73 (15)C11—C10—C15118.23 (16)
N3—C5—N2114.48 (14)C11—C10—C3120.58 (15)
N3—C5—C4124.32 (15)C15—C10—C3121.11 (16)
N2—C5—C4121.20 (15)C12—C11—C10120.90 (18)
N3—C6—C7103.8 (7)C12—C11—H11119.6
N3—C6—H6A111.0C10—C11—H11119.6
C7—C6—H6A111.0C11—C12—C13121.73 (19)
N3—C6—H6B111.0C11—C12—H12119.1
C7—C6—H6B111.0C13—C12—H12119.1
H6A—C6—H6B109.0C14—C13—C12116.77 (17)
C8—C7—C6104.8 (5)C14—C13—C16121.75 (19)
C8—C7—H7A110.8C12—C13—C16121.5 (2)
C6—C7—H7A110.8C13—C14—C15122.44 (18)
C8—C7—H7B110.8C13—C14—H14118.8
C6—C7—H7B110.8C15—C14—H14118.8
H7A—C7—H7B108.9C14—C15—C10119.89 (18)
C7—C8—C9104.7 (4)C14—C15—H15120.1
C7—C8—H8A110.8C10—C15—H15120.1
C9—C8—H8A110.8C13—C16—H16A109.5
C7—C8—H8B110.8C13—C16—H16B109.5
C9—C8—H8B110.8H16A—C16—H16B109.5
H8A—C8—H8B108.9C13—C16—H16C109.5
N3—C9—C8102.4 (6)H16A—C16—H16C109.5
N3—C9—H9A111.3H16B—C16—H16C109.5
C8—C9—H9A111.3N5—C17—C2174.4 (2)
N3—C9—H9B111.3N4—C18—C4177.49 (19)
C8—C9—H9B111.3C1—N1—H1A120.0
H9A—C9—H9B109.2C1—N1—H1B120.0
N3—C6'—C7'103.1 (14)H1A—N1—H1B120.0
N3—C6'—H6'1111.1C1—N2—C5119.50 (14)
C7'—C6'—H6'1111.1C5—N3—C9'126.0 (8)
N3—C6'—H6'2111.1C5—N3—C6127.7 (5)
C7'—C6'—H6'2111.1C9'—N3—C6102.6 (8)
H6'1—C6'—H6'2109.1C5—N3—C6'125.6 (9)
C8'—C7'—C6'104.2 (11)C9'—N3—C6'108.3 (12)
C8'—C7'—H7'1110.9C6—N3—C6'16.9 (8)
C6'—C7'—H7'1110.9C5—N3—C9119.2 (4)
C8'—C7'—H7'2110.9C9'—N3—C915.9 (6)
C6'—C7'—H7'2110.9C6—N3—C9112.7 (6)
H7'1—C7'—H7'2108.9C6'—N3—C9114.2 (10)
C9'—C8'—C7'105.2 (11)
N2—C1—C2—C32.0 (3)C16—C13—C14—C15177.78 (18)
N1—C1—C2—C3177.54 (16)C13—C14—C15—C100.4 (3)
N2—C1—C2—C17179.85 (16)C11—C10—C15—C141.9 (3)
N1—C1—C2—C170.6 (3)C3—C10—C15—C14174.71 (17)
C1—C2—C3—C42.3 (2)N1—C1—N2—C5179.88 (15)
C17—C2—C3—C4179.63 (17)C2—C1—N2—C50.3 (2)
C1—C2—C3—C10177.00 (16)N3—C5—N2—C1177.57 (15)
C17—C2—C3—C101.0 (3)C4—C5—N2—C12.2 (2)
C2—C3—C4—C18179.12 (16)N2—C5—N3—C9'13.0 (7)
C10—C3—C4—C181.6 (2)C4—C5—N3—C9'166.8 (7)
C2—C3—C4—C50.5 (2)N2—C5—N3—C6167.4 (4)
C10—C3—C4—C5178.81 (16)C4—C5—N3—C612.4 (4)
C3—C4—C5—N3177.95 (16)N2—C5—N3—C6'171.6 (8)
C18—C4—C5—N31.7 (3)C4—C5—N3—C6'8.6 (8)
C3—C4—C5—N21.8 (2)N2—C5—N3—C94.0 (4)
C18—C4—C5—N2178.55 (16)C4—C5—N3—C9176.2 (4)
N3—C6—C7—C824.5 (6)C8'—C9'—N3—C5166.2 (7)
C6—C7—C8—C934.4 (7)C8'—C9'—N3—C66.7 (12)
C7—C8—C9—N330.0 (6)C8'—C9'—N3—C6'9.8 (14)
N3—C6'—C7'—C8'25.3 (12)C8'—C9'—N3—C9124 (5)
C6'—C7'—C8'—C9'32.1 (14)C7—C6—N3—C5166.3 (3)
C7'—C8'—C9'—N326.1 (14)C7—C6—N3—C9'7.2 (8)
C2—C3—C10—C1157.6 (2)C7—C6—N3—C6'105 (5)
C4—C3—C10—C11123.05 (19)C7—C6—N3—C95.7 (6)
C2—C3—C10—C15118.87 (19)C7'—C6'—N3—C5173.4 (6)
C4—C3—C10—C1560.5 (2)C7'—C6'—N3—C9'10.5 (12)
C15—C10—C11—C121.5 (3)C7'—C6'—N3—C683 (4)
C3—C10—C11—C12175.07 (17)C7'—C6'—N3—C95.3 (11)
C10—C11—C12—C130.3 (3)C8—C9—N3—C5172.1 (3)
C11—C12—C13—C141.7 (3)C8—C9—N3—C9'68 (4)
C11—C12—C13—C16177.43 (19)C8—C9—N3—C615.2 (6)
C12—C13—C14—C151.4 (3)C8—C9—N3—C6'3.1 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N4i0.862.193.010 (2)160
C11—H11···N2ii0.932.623.531 (2)166
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H17N5
Mr303.37
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.4005 (5), 9.0330 (5), 12.0533 (6)
α, β, γ (°)87.876 (5), 80.575 (5), 84.053 (5)
V3)790.43 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.916, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
5515, 2924, 1812
Rint0.026
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.119, 0.95
No. of reflections2924
No. of parameters222
No. of restraints48
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.22

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N4i0.862.193.010 (2)160
C11—H11···N2ii0.932.623.531 (2)166
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1.
 

Acknowledgements

SAIB and KS thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationBruker (2008). APEX2 and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJames, D., Kunz, H. B. & Faulkner, D. (1991). J. Nat. Prod. 54, 1137–1140.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKobayashi, J., Tsuda, S. G., Agmi, K., Shigmori, H., Ishibashi, M., Sasaki, T. & Mikami, Y. (1991). Tetrahedron, 43, 6617–6622.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShishoo, C. J., Devani, M. B., Bhadti, V. S., Ananthan, S. & Ullas, G. V. (1983). Tetrahedron Lett. pp. 4611–4612.  CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-Q., Tang, S.-G. & Guo, C. (2011). Acta Cryst. E67, o56.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds