organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2-(4-Methylbenzoyl)phenyl](4-methylphenyl)methanone

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 7 July 2011; accepted 18 July 2011; online 23 July 2011)

The asymmetric unit of the title compound, C22H18O2, contains one half-mol­ecule, the complete mol­ecule being generated by the operation of a crystallographic twofold rotation axis. The carbonyl group and the two C atoms attached to it forms inter­planar angles of 23.67 (7)° with the methyl-substituted phenyl ring and 50.74 (8)° with the central ring. In the crystal, mol­ecules are linked into infinite chains along the b-axis direction by inter­molecular C—H⋯O inter­actions, generating R22(10) graph-set motifs.

Related literature

For the uses and biological importance of diketones, see: Bennett et al. (1999[Bennett, I., Broom, N. J. P., Cassels, R., Elder, J. S., Masson, N. D. & O'Hanlon, P. J. (1999). Bioorg. Med. Chem. Lett. 9, 1847-1852.]); Sato et al. (2008[Sato, K., Yamazoe, S., Yamamoto, R., Ohata, S., Tarui, A., Omote, M., Kumadaki, I. & Ando, A. (2008). Org. Lett. 10, 2405-2408.]). For related structures, see: Muto et al. (2010[Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.]); Khan et al. (2009[Khan, F. N., Manivel, P., Prabakaran, K., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2745.]); For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]); Macrae et al. (2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). For graph-set notation: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18O2

  • Mr = 314.36

  • Monoclinic, C 2/c

  • a = 20.7432 (13) Å

  • b = 7.7564 (4) Å

  • c = 11.3946 (6) Å

  • β = 114.314 (5)°

  • V = 1670.70 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.984

  • 17689 measured reflections

  • 2133 independent reflections

  • 1729 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.154

  • S = 1.03

  • 2133 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.93 2.62 3.4305 (17) 145
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009)[Spek, A. L. (2009). Acta Cryst. D65, 148-155.].

Supporting information


Comment top

Diketones are popular in organic synthesis, for their applications in biology and medicine. They are known to exhibit antioxidants, antitumour and antibacterial activities (Bennett et al., 1999). They are also key intermediates in the preparation of various heterocyclic compounds (Sato et al., 2008).

The title compound C22H18O2, contains one half molecule in the asymmetric unit, the complete molecule being generated by twofold rotation, with direction [0 1 0], having symmetry code: (i) -x+1, y, -z+3/2. X-ray analysis confirms the molecular structure and atom connectivity of the compound as illustrated in (Fig. 1). The carbonyl group (C3/C4/C5/O1) forms an interplanar angle of 23.67 (7)° with the phenyl ring (C5/C6/C7/C8/C9/C10). The deviation of atom O1 from the phenyl ring (C5/C6/C7/C8/C9/C10) is -0.4719 (19)Å (Nardelli, 1983). The title compound exhibits structural similarities with the already reported related structures (Muto et al., 2010; Khan et al., 2009).

The central phenyl ring (C1/C2/C3/C1i/C2i/C3i) forms dihedral angles of 67.14 (17)° and 50.74 (8)° with the phenyl ring (C5/C6/C7/C8/C9/C10) and the mean plane of the carbonyl group (C3/C4/C5/O1), respectively. The dihedral angle between the phenyl rings (C5/C6/C7/C8/C9/C10) and (C5i/C6i/C7i/C8i/C9i/C10i) is 82.83 (2)° (Macrae et al., 2008), and thus they are almost orthogonal to each other.

The crystal packing is stabilized by C—H···O intermolecular interactions. The molecules are linked into infinite chains along the b axis via C1—H1···O1ii hydrogen bonds, generating the R22(10) graphset motifs (Bernstein et al., 1995). The symmetry code: (ii) x, -1+y, z (look Table 1). The packing view of the compound is shown in (Fig. 2).

Related literature top

For the uses and biological importance of diketones, see: Bennett et al. (1999); Sato et al. (2008); For related structures, see: Muto et al. (2010); Khan et al. (2009); For asymmetry parameters, see: Nardelli (1983); Macrae et al. (2008). For graph-set notation: Bernstein et al. (1995).

Experimental top

To a stirred suspension of benzo[c]furan, 1,3-bis(4-methylphenyl)-4,7-dihydro-2-benzofuran (3 g, 9.554 mmol) in dry THF (20 ml), lead tetra acetate (4.23 g, 9.5 mmol) was added and refluxed at 343 K for half an hour. The reaction mixture was then poured into water (200 ml) and extracted with ethyl acetate (2 x 20 ml), washed with brine solution and dried (Na2SO4). The removal of solvent in vacuo followed by crystallization from methanol afforded the title compound, (4-methylphenyl){2-[(4-methylphenyl)carbonyl]phenyl}methanone as a colourless solid.

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.93–0.96Å and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for methyl atoms and Uiso(H) = 1.2Ueq(C) for the aryl atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are shown at 30% probability level. The H atoms are presented as a small spheres of arbitrary radius. Related atoms have symmetry code: (i) -x+1, y, -z+3/2.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down c axis, showing molecules linked along b axis. Intermolecular hydrogen bonds are shown in as dashed lines.
[2-(4-Methylbenzoyl)phenyl](4-methylphenyl)methanone top
Crystal data top
C22H18O2F(000) = 664
Mr = 314.36Dx = 1.250 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2133 reflections
a = 20.7432 (13) Åθ = 2.2–28.6°
b = 7.7564 (4) ŵ = 0.08 mm1
c = 11.3946 (6) ÅT = 295 K
β = 114.314 (5)°Block, colourless
V = 1670.70 (17) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2133 independent reflections
Radiation source: fine-focus sealed tube1729 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ω–scansθmax = 28.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2727
Tmin = 0.977, Tmax = 0.984k = 1010
17689 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0914P)2 + 0.4904P]
where P = (Fo2 + 2Fc2)/3
2133 reflections(Δ/σ)max = 0.005
110 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C22H18O2V = 1670.70 (17) Å3
Mr = 314.36Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.7432 (13) ŵ = 0.08 mm1
b = 7.7564 (4) ÅT = 295 K
c = 11.3946 (6) Å0.30 × 0.25 × 0.20 mm
β = 114.314 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2133 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1729 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.984Rint = 0.076
17689 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
2133 reflectionsΔρmin = 0.28 e Å3
110 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.47990 (8)0.45596 (18)0.68469 (16)0.0577 (4)
H10.46690.55980.64030.069*
C20.45881 (7)0.30216 (17)0.61934 (13)0.0493 (3)
H20.43100.30300.53120.059*
C30.47868 (6)0.14603 (15)0.68400 (11)0.0375 (3)
C40.46029 (6)0.01963 (15)0.61000 (11)0.0380 (3)
C50.38557 (6)0.05007 (15)0.52013 (11)0.0384 (3)
C60.37060 (7)0.16656 (18)0.41976 (13)0.0478 (3)
H60.40740.22210.40830.057*
C70.30152 (8)0.2002 (2)0.33701 (13)0.0535 (4)
H70.29240.27660.26910.064*
C80.24545 (7)0.12297 (18)0.35264 (13)0.0508 (4)
C90.26051 (7)0.0089 (2)0.45387 (14)0.0529 (4)
H90.22360.04330.46680.063*
C100.32965 (7)0.02856 (18)0.53609 (13)0.0474 (3)
H100.33870.10720.60270.057*
C110.17032 (9)0.1623 (3)0.26113 (19)0.0739 (5)
H11A0.16960.26220.21090.111*
H11B0.14250.18410.30930.111*
H11C0.15090.06560.20500.111*
O10.50637 (5)0.12345 (12)0.62240 (9)0.0503 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0579 (8)0.0333 (6)0.0742 (10)0.0053 (6)0.0195 (7)0.0101 (6)
C20.0496 (7)0.0405 (7)0.0470 (7)0.0063 (5)0.0091 (6)0.0084 (5)
C30.0360 (5)0.0337 (6)0.0368 (6)0.0015 (4)0.0088 (5)0.0008 (4)
C40.0414 (6)0.0359 (6)0.0318 (6)0.0023 (4)0.0100 (5)0.0016 (4)
C50.0405 (6)0.0371 (6)0.0324 (6)0.0011 (4)0.0097 (5)0.0003 (4)
C60.0487 (7)0.0482 (7)0.0442 (7)0.0033 (5)0.0167 (6)0.0096 (5)
C70.0557 (8)0.0531 (8)0.0437 (7)0.0116 (6)0.0125 (6)0.0121 (6)
C80.0450 (7)0.0493 (7)0.0471 (7)0.0084 (6)0.0079 (6)0.0061 (5)
C90.0418 (7)0.0575 (8)0.0566 (8)0.0040 (6)0.0176 (6)0.0025 (6)
C100.0484 (7)0.0482 (7)0.0416 (7)0.0025 (5)0.0143 (5)0.0049 (5)
C110.0483 (8)0.0751 (11)0.0757 (11)0.0150 (7)0.0028 (8)0.0027 (9)
O10.0479 (5)0.0442 (5)0.0487 (5)0.0100 (4)0.0098 (4)0.0032 (4)
Geometric parameters (Å, º) top
C1—C1i1.374 (3)C6—H60.9300
C1—C21.379 (2)C7—C81.383 (2)
C1—H10.9300C7—H70.9300
C2—C31.3890 (16)C8—C91.384 (2)
C2—H20.9300C8—C111.507 (2)
C3—C3i1.396 (2)C9—C101.383 (2)
C3—C41.4975 (16)C9—H90.9300
C4—O11.2128 (15)C10—H100.9300
C4—C51.4832 (16)C11—H11A0.9600
C5—C101.3872 (18)C11—H11B0.9600
C5—C61.3887 (17)C11—H11C0.9600
C6—C71.3778 (19)
C1i—C1—C2120.07 (8)C6—C7—C8121.50 (13)
C1i—C1—H1120.0C6—C7—H7119.2
C2—C1—H1120.0C8—C7—H7119.2
C1—C2—C3120.60 (12)C7—C8—C9118.11 (12)
C1—C2—H2119.7C7—C8—C11120.53 (14)
C3—C2—H2119.7C9—C8—C11121.36 (15)
C2—C3—C3i119.31 (7)C10—C9—C8120.95 (13)
C2—C3—C4119.89 (10)C10—C9—H9119.5
C3i—C3—C4120.54 (6)C8—C9—H9119.5
O1—C4—C5121.61 (11)C9—C10—C5120.58 (12)
O1—C4—C3119.89 (10)C9—C10—H10119.7
C5—C4—C3118.48 (10)C5—C10—H10119.7
C10—C5—C6118.59 (11)C8—C11—H11A109.5
C10—C5—C4122.14 (11)C8—C11—H11B109.5
C6—C5—C4119.21 (11)H11A—C11—H11B109.5
C7—C6—C5120.25 (13)C8—C11—H11C109.5
C7—C6—H6119.9H11A—C11—H11C109.5
C5—C6—H6119.9H11B—C11—H11C109.5
C1i—C1—C2—C31.0 (3)C10—C5—C6—C71.1 (2)
C1—C2—C3—C3i1.0 (2)C4—C5—C6—C7178.36 (12)
C1—C2—C3—C4175.06 (13)C5—C6—C7—C81.4 (2)
C2—C3—C4—O1125.83 (13)C6—C7—C8—C90.5 (2)
C3i—C3—C4—O148.2 (2)C6—C7—C8—C11179.79 (14)
C2—C3—C4—C552.62 (16)C7—C8—C9—C100.8 (2)
C3i—C3—C4—C5133.37 (15)C11—C8—C9—C10178.91 (14)
O1—C4—C5—C10156.10 (13)C8—C9—C10—C51.2 (2)
C3—C4—C5—C1025.47 (17)C6—C5—C10—C90.2 (2)
O1—C4—C5—C621.08 (18)C4—C5—C10—C9177.00 (12)
C3—C4—C5—C6157.35 (12)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1ii0.932.623.4305 (17)145
Symmetry code: (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC22H18O2
Mr314.36
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)20.7432 (13), 7.7564 (4), 11.3946 (6)
β (°) 114.314 (5)
V3)1670.70 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.977, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
17689, 2133, 1729
Rint0.076
(sin θ/λ)max1)0.673
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.154, 1.03
No. of reflections2133
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.28

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.623.4305 (17)145.4
Symmetry code: (i) x, y1, z.
 

Acknowledgements

PN and KS thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection and Dr V. Murugan, Head of the Department of Physics, RKM Vivekananda College, for providing facilities in the department for carrying out this work.

References

First citationBennett, I., Broom, N. J. P., Cassels, R., Elder, J. S., Masson, N. D. & O'Hanlon, P. J. (1999). Bioorg. Med. Chem. Lett. 9, 1847–1852.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKhan, F. N., Manivel, P., Prabakaran, K., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2745.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMuto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSato, K., Yamazoe, S., Yamamoto, R., Ohata, S., Tarui, A., Omote, M., Kumadaki, I. & Ando, A. (2008). Org. Lett. 10, 2405–2408.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds