organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{8-[4-(Bromo­meth­yl)benzo­yl]-2,7-dimeth­­oxy­naphthalen-1-yl}[4-(bromo­meth­yl)phen­yl]methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 13 July 2011; accepted 19 July 2011; online 23 July 2011)

In the title compound, C28H22Br2O4, the two 4-bromo­methyl­benzoyl groups at the 1- and 8-positions of the naphthalene ring system are aligned almost anti­parallel, the benzene rings forming a dihedral angle of 2.94 (16)°. The dihedral angles between the benzene rings and the naphthalene ring systems are 70.98 (13) and 72.89 (13)°. In the crystal, centrosymmetric­ally-related mol­ecules are linked into dimeric units by inter­molecular C—H⋯O inter­actions.

Related literature

For formation reactions of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene deriv­atives, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]). For the structures of closely related compounds, see: Muto et al. (2010[Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.]); Nakaema et al. (2007[Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.], 2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]); Watanabe, Nagasawa et al. (2010[Watanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o329.]); Watanabe, Nakaema et al. (2010[Watanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o403.]).

[Scheme 1]

Experimental

Crystal data
  • C28H22Br2O4

  • Mr = 582.28

  • Monoclinic, P 21 /n

  • a = 11.5948 (2) Å

  • b = 8.37239 (15) Å

  • c = 24.5352 (5) Å

  • β = 92.617 (1)°

  • V = 2379.29 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.60 mm−1

  • T = 193 K

  • 0.50 × 0.40 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.207, Tmax = 0.460

  • 41450 measured reflections

  • 4319 independent reflections

  • 3916 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.103

  • S = 1.14

  • 4319 reflections

  • 310 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O1i 0.95 2.55 3.417 (4) 152
C28—H28B⋯O3i 0.99 2.50 3.453 (4) 162
Symmetry code: (i) -x, -y+1, -z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on selective electrophilic aromatic aroylation of the naphthalene core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009). Recently, we reported the X-ray crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalene derivatives such as 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Nakaema et al., 2007), 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), bis(4-bromophenyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone (Watanabe, Nakaema et al., 2010), (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorophenyl)dimethanone [1,8-bis(4-fluorobenzoyl)-2,7-dimethoxynaphthalene] (Watanabe, Nagasawa et al., 2010), and 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2010). The aroyl groups in these compounds are attached to the naphthalene rings in an almost parallel fashion and oriented in opposite direction. As a part of our ongoing studies on the molecular structures of homologous aroylated 2,7-dimethoxynaphthalene molecules, the X-ray crystal structure of the title compound, bis(4-bromomethylbenzoylated) 2,7-dimethoxynaphthalene, is discussed in this article.

The molecular structure of the title compound is displayed in Fig 1. The two 4-bromomethylbenzoyl groups are twisted away from the attaching naphthalene ring and situated in anti orientation. The dihedral angle between the planes of the benzene rings is 2.94 (16)°. On the other hand, the dihedral angles of the benzene rings with the naphthalene ring system are 70.98 (13) and 72.89 (13)°, respectively. The torsion angles between the carbonyl groups and the naphthalene ring [C10—C1—C11—O1 = -68.9 (4)° and C10—C9—C18—O2 = -67.8 (4)°] are larger than those between the carbonyl groups and the benzene rings [O1—C11—C12—C13 = -177.3 (3)° and O2—C18—C19—C20 = -176.1 (3)°].

In the crystal packing, C—H···O hydrogen bonds between the oxygen atoms of the carbonyl groups and the hydrogen atoms of the benzene rings and between the oxygen atoms of the methoxy groups and the hydrogen atoms of the bromomethyl groups are also observed (Table 1), resulting in the formation of supramolecular dimeric units (Fig. 2) having crystallographic inversion centre.

Related literature top

For formation reactions of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009). For the structures of closely related compounds, see: Muto et al. (2010); Nakaema et al. (2007, 2008); Watanabe, Nagasawa et al. (2010); Watanabe, Nakaema et al. (2010).

Experimental top

To a 50 ml flask, 4-bromomethylbenzoic acid (22.0 mmol, 4.73 g) and phosphorus pentoxide–methanesulfonic acid (P2O5–MsOH, 40.0 ml) were placed and stirred at 333 K. To the mixture thus obtained, 2,7-dimethoxynaphthalene (10.0 mmol, 1.88 g) was added. After the reaction mixture was stirred at 333 K for 1 h, it was poured into ice-cold water (30 ml) and the mixture was extracted with CHCl3 (15 ml × 3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give the crude product (81% yield), which was purified by reprecipitation from CHCl3-hexane (1:1 v/v; 57% isolated yield). The isolated product was crystallized from acetone to give single-crystal.

Spectroscopic Data:

1H NMR δ (300 MHz, CDCl3); 3.69 (6H, s), 4.49 (4H, s), 7.20 (2H, d, J = 9.0 Hz), 7.33 (4H, d, J = 8.0 Hz), 7.63 (4H, d, J = 8.0 Hz), 7.96 (2H, d, J = 9.0 Hz) p.p.m..

13C NMR δ (100 MHz, CDCl3); 32.7, 56.5, 111.4, 121.4, 125.6, 128.7, 129.5, 129.8, 132.2, 138.6, 141.9, 156.5, 196.1 p.p.m..

IR (KBr); 1666 (C=O), 1606 (Ar), 1510 (Ar) cm-1. C28H22O4Br2; Calcd. C, 57.76; H, 3.81 found C, 57.81; H, 4.01. m.p. = 239.0–245.0 K

Refinement top

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uĩso(H) = 1.2 Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Partial crystal packing of the title compound, showing the intermolecular C—H···O interactions as dashed lines.
{8-[4-(Bromomethyl)benzoyl]-2,7-dimethoxynaphthalen-1-yl}[4- (bromomethyl)phenyl]methanone top
Crystal data top
C28H22Br2O4F(000) = 1168
Mr = 582.28Dx = 1.626 Mg m3
Monoclinic, P21/nMelting point = 239.0–245.0 K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54187 Å
a = 11.5948 (2) ÅCell parameters from 30055 reflections
b = 8.37239 (15) Åθ = 3.6–68.2°
c = 24.5352 (5) ŵ = 4.60 mm1
β = 92.617 (1)°T = 193 K
V = 2379.29 (8) Å3Block, yellow
Z = 40.50 × 0.40 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4319 independent reflections
Radiation source: rotating anode3916 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 10.000 pixels mm-1θmax = 68.2°, θmin = 3.6°
ω scansh = 1313
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1010
Tmin = 0.207, Tmax = 0.460l = 2929
41450 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0277P)2 + 4.5808P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
4319 reflectionsΔρmax = 0.85 e Å3
310 parametersΔρmin = 0.59 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00183 (10)
Crystal data top
C28H22Br2O4V = 2379.29 (8) Å3
Mr = 582.28Z = 4
Monoclinic, P21/nCu Kα radiation
a = 11.5948 (2) ŵ = 4.60 mm1
b = 8.37239 (15) ÅT = 193 K
c = 24.5352 (5) Å0.50 × 0.40 × 0.20 mm
β = 92.617 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4319 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3916 reflections with I > 2σ(I)
Tmin = 0.207, Tmax = 0.460Rint = 0.079
41450 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.14Δρmax = 0.85 e Å3
4319 reflectionsΔρmin = 0.59 e Å3
310 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.15947 (4)0.20415 (5)0.241294 (16)0.04354 (16)
Br20.11445 (4)0.28738 (5)0.255555 (15)0.04200 (15)
O10.1773 (2)0.4762 (3)0.01077 (9)0.0310 (5)
O20.1901 (2)0.0544 (3)0.00410 (9)0.0317 (5)
O30.33170 (19)0.5296 (3)0.13097 (9)0.0331 (6)
O40.3673 (2)0.0170 (3)0.10273 (9)0.0352 (6)
C10.3426 (3)0.3654 (4)0.05473 (12)0.0229 (6)
C20.3998 (3)0.4487 (4)0.09594 (12)0.0268 (7)
C30.5212 (3)0.4562 (4)0.10035 (13)0.0300 (7)
H30.55920.51160.12980.036*
C40.5834 (3)0.3832 (4)0.06193 (13)0.0296 (7)
H40.66510.39320.06370.035*
C50.5291 (3)0.2925 (4)0.01916 (13)0.0262 (7)
C60.5961 (3)0.2128 (4)0.01911 (14)0.0301 (7)
H60.67790.22160.01630.036*
C70.5455 (3)0.1239 (4)0.05987 (14)0.0312 (7)
H70.59160.07190.08550.037*
C80.4242 (3)0.1090 (4)0.06393 (13)0.0277 (7)
C90.3552 (3)0.1836 (4)0.02723 (12)0.0234 (7)
C100.4066 (3)0.2799 (4)0.01571 (12)0.0230 (6)
C110.2132 (3)0.3889 (4)0.04739 (12)0.0234 (6)
C120.1329 (3)0.3064 (4)0.08379 (12)0.0230 (6)
C130.1743 (3)0.2117 (4)0.12720 (12)0.0256 (7)
H130.25510.19990.13420.031*
C140.0980 (3)0.1351 (4)0.15989 (13)0.0294 (7)
H140.12670.07300.18990.035*
C150.0205 (3)0.1477 (4)0.14942 (13)0.0280 (7)
C160.0608 (3)0.2401 (4)0.10524 (14)0.0310 (7)
H160.14160.24810.09720.037*
C170.0147 (3)0.3201 (4)0.07308 (13)0.0269 (7)
H170.01410.38440.04360.032*
C180.2281 (3)0.1422 (4)0.03013 (12)0.0244 (7)
C190.1506 (3)0.2140 (4)0.07415 (12)0.0247 (7)
C200.1954 (3)0.3069 (4)0.11521 (13)0.0264 (7)
H200.27640.32310.11610.032*
C210.1222 (3)0.3757 (4)0.15465 (13)0.0282 (7)
H210.15340.43720.18300.034*
C220.0038 (3)0.3556 (4)0.15305 (13)0.0269 (7)
C230.0412 (3)0.2637 (4)0.11166 (14)0.0303 (7)
H230.12230.24990.11030.036*
C240.0318 (3)0.1926 (4)0.07264 (13)0.0290 (7)
H240.00070.12900.04480.035*
C250.3876 (3)0.6214 (5)0.17364 (14)0.0388 (9)
H25A0.43110.54990.19860.047*
H25B0.32940.67900.19370.047*
H25C0.44040.69810.15790.047*
C260.4333 (3)0.0513 (5)0.14481 (14)0.0388 (9)
H26A0.46840.03430.16570.047*
H26B0.38250.11540.16920.047*
H26C0.49410.11950.12830.047*
C270.1034 (3)0.0618 (4)0.18381 (15)0.0362 (8)
H27A0.06480.03230.20090.043*
H27B0.16970.02350.16050.043*
C280.0739 (3)0.4356 (4)0.19505 (14)0.0346 (8)
H28A0.03480.53070.20950.041*
H28B0.14520.47170.17800.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0452 (3)0.0507 (3)0.0359 (2)0.00291 (18)0.01501 (18)0.00418 (17)
Br20.0488 (3)0.0514 (3)0.0252 (2)0.00179 (18)0.00500 (16)0.00459 (16)
O10.0332 (13)0.0350 (13)0.0247 (11)0.0049 (10)0.0006 (9)0.0078 (10)
O20.0350 (13)0.0305 (12)0.0299 (12)0.0011 (10)0.0063 (10)0.0043 (10)
O30.0292 (12)0.0422 (14)0.0282 (12)0.0060 (11)0.0036 (10)0.0113 (10)
O40.0355 (13)0.0374 (14)0.0330 (13)0.0077 (11)0.0051 (10)0.0102 (10)
C10.0228 (16)0.0245 (16)0.0212 (15)0.0007 (13)0.0016 (12)0.0044 (12)
C20.0308 (17)0.0280 (16)0.0217 (15)0.0033 (14)0.0027 (13)0.0043 (13)
C30.0293 (18)0.0342 (18)0.0260 (16)0.0056 (14)0.0037 (14)0.0040 (14)
C40.0224 (16)0.0318 (18)0.0342 (18)0.0024 (14)0.0021 (14)0.0111 (14)
C50.0260 (17)0.0268 (16)0.0260 (16)0.0040 (13)0.0017 (13)0.0100 (13)
C60.0246 (17)0.0317 (18)0.0344 (18)0.0068 (14)0.0048 (14)0.0100 (14)
C70.0321 (18)0.0313 (18)0.0310 (17)0.0094 (15)0.0091 (14)0.0083 (14)
C80.0334 (18)0.0258 (16)0.0242 (16)0.0053 (14)0.0021 (13)0.0057 (13)
C90.0255 (16)0.0217 (15)0.0231 (15)0.0039 (12)0.0025 (13)0.0052 (12)
C100.0236 (16)0.0227 (15)0.0225 (15)0.0009 (12)0.0000 (12)0.0073 (12)
C110.0271 (16)0.0233 (15)0.0197 (15)0.0028 (13)0.0014 (12)0.0040 (12)
C120.0258 (16)0.0225 (15)0.0208 (15)0.0015 (12)0.0028 (12)0.0040 (12)
C130.0227 (16)0.0304 (17)0.0237 (16)0.0000 (13)0.0009 (13)0.0007 (13)
C140.0346 (19)0.0290 (17)0.0245 (16)0.0020 (14)0.0003 (14)0.0006 (13)
C150.0312 (18)0.0248 (16)0.0287 (17)0.0027 (14)0.0078 (14)0.0078 (13)
C160.0235 (17)0.0353 (18)0.0343 (18)0.0014 (14)0.0023 (14)0.0061 (14)
C170.0247 (17)0.0308 (17)0.0252 (16)0.0026 (13)0.0002 (13)0.0016 (13)
C180.0292 (17)0.0212 (15)0.0230 (15)0.0005 (13)0.0031 (13)0.0034 (12)
C190.0292 (17)0.0242 (16)0.0208 (15)0.0007 (13)0.0007 (13)0.0050 (12)
C200.0246 (17)0.0265 (16)0.0282 (16)0.0004 (13)0.0027 (13)0.0023 (13)
C210.0351 (19)0.0256 (16)0.0241 (16)0.0001 (14)0.0018 (13)0.0017 (13)
C220.0304 (17)0.0236 (16)0.0264 (16)0.0021 (13)0.0012 (13)0.0077 (13)
C230.0236 (17)0.0351 (19)0.0322 (18)0.0005 (14)0.0021 (14)0.0067 (14)
C240.0294 (18)0.0326 (18)0.0252 (16)0.0026 (14)0.0040 (14)0.0028 (13)
C250.044 (2)0.047 (2)0.0257 (17)0.0160 (18)0.0029 (15)0.0096 (16)
C260.052 (2)0.0338 (19)0.0317 (19)0.0043 (17)0.0130 (16)0.0044 (15)
C270.038 (2)0.0310 (18)0.041 (2)0.0066 (15)0.0120 (16)0.0063 (15)
C280.0372 (19)0.0322 (18)0.0336 (18)0.0039 (15)0.0053 (15)0.0060 (15)
Geometric parameters (Å, º) top
Br1—C271.979 (3)C14—C151.390 (5)
Br2—C281.975 (3)C14—H140.9500
O1—C111.216 (4)C15—C161.395 (5)
O2—C181.214 (4)C15—C271.492 (5)
O3—C21.372 (4)C16—C171.379 (5)
O3—C251.430 (4)C16—H160.9500
O4—C81.370 (4)C17—H170.9500
O4—C261.432 (4)C18—C191.499 (4)
C1—C21.374 (4)C19—C201.392 (5)
C1—C101.430 (4)C19—C241.392 (5)
C1—C111.516 (4)C20—C211.383 (4)
C2—C31.409 (5)C20—H200.9500
C3—C41.357 (5)C21—C221.386 (5)
C3—H30.9500C21—H210.9500
C4—C51.419 (5)C22—C231.395 (5)
C4—H40.9500C22—C281.496 (4)
C5—C61.413 (5)C23—C241.383 (5)
C5—C101.423 (4)C23—H230.9500
C6—C71.358 (5)C24—H240.9500
C6—H60.9500C25—H25A0.9800
C7—C81.411 (5)C25—H25B0.9800
C7—H70.9500C25—H25C0.9800
C8—C91.380 (4)C26—H26A0.9800
C9—C101.434 (4)C26—H26B0.9800
C9—C181.513 (4)C26—H26C0.9800
C11—C121.489 (4)C27—H27A0.9900
C12—C171.388 (4)C27—H27B0.9900
C12—C131.396 (4)C28—H28A0.9900
C13—C141.379 (5)C28—H28B0.9900
C13—H130.9500
C2—O3—C25118.0 (3)C15—C16—H16119.5
C8—O4—C26118.0 (3)C16—C17—C12119.9 (3)
C2—C1—C10119.9 (3)C16—C17—H17120.0
C2—C1—C11117.6 (3)C12—C17—H17120.0
C10—C1—C11121.8 (3)O2—C18—C19121.1 (3)
O3—C2—C1116.1 (3)O2—C18—C9119.3 (3)
O3—C2—C3122.1 (3)C19—C18—C9119.5 (3)
C1—C2—C3121.8 (3)C20—C19—C24119.6 (3)
C4—C3—C2119.1 (3)C20—C19—C18121.0 (3)
C4—C3—H3120.4C24—C19—C18119.4 (3)
C2—C3—H3120.4C21—C20—C19120.1 (3)
C3—C4—C5121.6 (3)C21—C20—H20119.9
C3—C4—H4119.2C19—C20—H20119.9
C5—C4—H4119.2C20—C21—C22120.4 (3)
C6—C5—C4120.4 (3)C20—C21—H21119.8
C6—C5—C10120.2 (3)C22—C21—H21119.8
C4—C5—C10119.4 (3)C21—C22—C23119.5 (3)
C7—C6—C5121.1 (3)C21—C22—C28119.5 (3)
C7—C6—H6119.5C23—C22—C28121.0 (3)
C5—C6—H6119.5C24—C23—C22120.3 (3)
C6—C7—C8119.8 (3)C24—C23—H23119.9
C6—C7—H7120.1C22—C23—H23119.9
C8—C7—H7120.1C23—C24—C19120.1 (3)
O4—C8—C9115.7 (3)C23—C24—H24120.0
O4—C8—C7123.0 (3)C19—C24—H24120.0
C9—C8—C7121.3 (3)O3—C25—H25A109.5
C8—C9—C10120.0 (3)O3—C25—H25B109.5
C8—C9—C18117.2 (3)H25A—C25—H25B109.5
C10—C9—C18122.3 (3)O3—C25—H25C109.5
C5—C10—C1118.1 (3)H25A—C25—H25C109.5
C5—C10—C9117.7 (3)H25B—C25—H25C109.5
C1—C10—C9124.2 (3)O4—C26—H26A109.5
O1—C11—C12121.3 (3)O4—C26—H26B109.5
O1—C11—C1118.0 (3)H26A—C26—H26B109.5
C12—C11—C1120.7 (3)O4—C26—H26C109.5
C17—C12—C13119.6 (3)H26A—C26—H26C109.5
C17—C12—C11119.1 (3)H26B—C26—H26C109.5
C13—C12—C11121.3 (3)C15—C27—Br1110.7 (2)
C14—C13—C12120.0 (3)C15—C27—H27A109.5
C14—C13—H13120.0Br1—C27—H27A109.5
C12—C13—H13120.0C15—C27—H27B109.5
C13—C14—C15120.8 (3)Br1—C27—H27B109.5
C13—C14—H14119.6H27A—C27—H27B108.1
C15—C14—H14119.6C22—C28—Br2110.6 (2)
C14—C15—C16118.6 (3)C22—C28—H28A109.5
C14—C15—C27121.0 (3)Br2—C28—H28A109.5
C16—C15—C27120.3 (3)C22—C28—H28B109.5
C17—C16—C15121.0 (3)Br2—C28—H28B109.5
C17—C16—H16119.5H28A—C28—H28B108.1
C25—O3—C2—C1178.4 (3)C10—C1—C11—C12110.7 (3)
C25—O3—C2—C31.2 (5)O1—C11—C12—C174.9 (4)
C10—C1—C2—O3178.9 (3)C1—C11—C12—C17174.7 (3)
C11—C1—C2—O38.1 (4)O1—C11—C12—C13177.3 (3)
C10—C1—C2—C31.6 (5)C1—C11—C12—C133.1 (4)
C11—C1—C2—C3169.1 (3)C17—C12—C13—C141.4 (5)
O3—C2—C3—C4175.0 (3)C11—C12—C13—C14179.2 (3)
C1—C2—C3—C42.1 (5)C12—C13—C14—C151.6 (5)
C2—C3—C4—C53.5 (5)C13—C14—C15—C160.3 (5)
C3—C4—C5—C6177.6 (3)C13—C14—C15—C27178.4 (3)
C3—C4—C5—C101.2 (5)C14—C15—C16—C171.2 (5)
C4—C5—C6—C7179.2 (3)C27—C15—C16—C17180.0 (3)
C10—C5—C6—C70.4 (5)C15—C16—C17—C121.4 (5)
C5—C6—C7—C80.7 (5)C13—C12—C17—C160.1 (5)
C26—O4—C8—C9174.4 (3)C11—C12—C17—C16177.8 (3)
C26—O4—C8—C77.7 (4)C8—C9—C18—O2104.4 (3)
C6—C7—C8—O4177.7 (3)C10—C9—C18—O267.8 (4)
C6—C7—C8—C90.1 (5)C8—C9—C18—C1977.4 (4)
O4—C8—C9—C10178.7 (3)C10—C9—C18—C19110.3 (3)
C7—C8—C9—C100.7 (5)O2—C18—C19—C20176.1 (3)
O4—C8—C9—C186.3 (4)C9—C18—C19—C205.7 (4)
C7—C8—C9—C18171.7 (3)O2—C18—C19—C246.4 (5)
C6—C5—C10—C1178.7 (3)C9—C18—C19—C24171.7 (3)
C4—C5—C10—C12.4 (4)C24—C19—C20—C210.8 (5)
C6—C5—C10—C90.5 (4)C18—C19—C20—C21178.3 (3)
C4—C5—C10—C9178.4 (3)C19—C20—C21—C221.3 (5)
C2—C1—C10—C53.8 (4)C20—C21—C22—C230.8 (5)
C11—C1—C10—C5166.6 (3)C20—C21—C22—C28178.0 (3)
C2—C1—C10—C9177.0 (3)C21—C22—C23—C240.3 (5)
C11—C1—C10—C912.6 (5)C28—C22—C23—C24179.0 (3)
C8—C9—C10—C51.0 (4)C22—C23—C24—C190.8 (5)
C18—C9—C10—C5171.0 (3)C20—C19—C24—C230.2 (5)
C8—C9—C10—C1178.2 (3)C18—C19—C24—C23177.3 (3)
C18—C9—C10—C19.8 (5)C14—C15—C27—Br196.1 (3)
C2—C1—C11—O1101.7 (3)C16—C15—C27—Br185.1 (3)
C10—C1—C11—O168.9 (4)C21—C22—C28—Br295.9 (3)
C2—C1—C11—C1278.7 (4)C23—C22—C28—Br285.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O1i0.952.553.417 (4)152
C28—H28B···O3i0.992.503.453 (4)162
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC28H22Br2O4
Mr582.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)193
a, b, c (Å)11.5948 (2), 8.37239 (15), 24.5352 (5)
β (°) 92.617 (1)
V3)2379.29 (8)
Z4
Radiation typeCu Kα
µ (mm1)4.60
Crystal size (mm)0.50 × 0.40 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.207, 0.460
No. of measured, independent and
observed [I > 2σ(I)] reflections
41450, 4319, 3916
Rint0.079
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.103, 1.14
No. of reflections4319
No. of parameters310
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.59

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O1i0.952.553.417 (4)152
C28—H28B···O3i0.992.503.453 (4)162
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors would express their gratitude to Master Yuichi Kato and Mr Toyokazu Muto, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture & Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for their technical advice.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMuto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o329.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o403.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds