organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(2-chloro­benz­yl)-N′′-(2,2,2-tri­chloro­acet­yl)phospho­ric tri­amide

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and bDepartment of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

(Received 24 June 2011; accepted 11 July 2011; online 16 July 2011)

The P atom in the title compound, C16H15Cl5N3O2P, exhibits a tetra­hedral coordination geometry and the phosphoryl and carbonyl groups are anti with respect to one another. The dihedral angle between the benzene rings is 44.90 (15)°. One of the 2-chloro­benzyl­amido fragments is disordered over two sets of sites with occupancies of 0.8823 (17) and 0.1177 (17). In the crystal, adjacent mol­ecules are linked via N—H⋯O(P) and N—H⋯O(C) hydrogen bonds into an extended chain running parallel to the a axis.

Related literature

For details of compounds having a C(O)NHP(O) skeleton, see: Toghraee et al. (2011[Toghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680-1690.]). For bond lengths in related structures, see: Pourayoubi et al. (2011[Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265-o272.]); Rudd et al. (1996[Rudd, M. D., Lindeman, S. V. & Husebye, S. (1996). Acta Chem. Scand. 50, 759-774.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15Cl5N3O2P

  • Mr = 489.53

  • Triclinic, [P \overline 1]

  • a = 9.9789 (2) Å

  • b = 10.6058 (3) Å

  • c = 10.8386 (3) Å

  • α = 75.8920 (13)°

  • β = 72.2250 (15)°

  • γ = 69.6050 (15)°

  • V = 1011.66 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 173 K

  • 0.18 × 0.14 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer with APEXII CCD detector

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.867, Tmax = 0.909

  • 8947 measured reflections

  • 4638 independent reflections

  • 4083 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.129

  • S = 1.05

  • 4638 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 1.42 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.88 1.94 2.804 (3) 168
N2—H2⋯O1ii 0.88 2.38 3.106 (3) 141
N2′—H2′⋯O1 0.88 2.42 3.025 (3) 126
N3—H3⋯O1ii 0.88 2.34 3.129 (3) 149
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+2, -y, -z+2.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft. The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The structure determination of the title compound, P(O)[NHC(O)CCl3][NHCH2C6H4(2-Cl)]2 (Fig. 1), was performed as a part of a project in our laboratory on the synthesis of new phosphoramidate compounds having a C(O)NHP(O) skeleton (Toghraee et al., 2011). Single crystals of the title compound were obtained from a solution of CH3OH after slow evaporation at room temperature.

The PO (1.472 (2) Å) and CO (1.212 (3) Å) bond lengths are standard for this category of compounds (Pourayoubi et al., 2011). The P atom has a distorted tetrahedral configuration (Fig. 1) as has been noted for other phosphoric triamides and their chalco-derivatives (Rudd et al., 1996). The bond angles at the P atom vary in the range 103.26 (13)- 116.10 (12)°. The P—N2 and P—N3 bonds (with lengths of 1.621 (2) Å and 1.622 (2) Å) are shorter than the P—N1 bond (1.715 (2) Å). As can be expected the C1—N1 bond distance (1.339 (3) Å) is shorter than the other C—N bond distances. The N—H unit of C(O)NHP(O) moiety and the phosphoryl group have a syn orientation with respect to each other. One of the 2-chlorobenzylamido fragments is disordered over two sites with occupancies of 0.8823 (17) and 0.1177 (17).

In the crystal, each molecule is hydrogen-bonded to two adjacent molecules through NC(O)NHP(O)—H···O(P) and N—H···O(C) hydrogen bonds forming linear chains parallel to [100] (Table 1).

Related literature top

For details of compounds having a C(O)NHP(O) skeleton, see: Toghraee et al. (2011). For bond lengths in related structures, see: Pourayoubi et al. (2011); Rudd et al. (1996).

Experimental top

The reaction of phosphorus pentachloride (35.6 mmol) and 2,2,2-trichloroacetamide (35.6 mmol) in dry CCl4 (25 ml) at 353 K (3 h) and then treatment with formic acid 85% (35.6 mmol) at 271 K leads to the formation of CCl3C(O)NHP(O)Cl2 as a white solid.

To a solution of CCl3C(O)NHP(O)Cl2 (2.5 mmol) in dry CHCl3 (30 ml), a solution of 2-chlorobenzylamine (10 mmol) in dry CHCl3 (10 ml) was added dropwise at 271 K. After 4 h stirring, the solvent was evaporated at room temperature. The solid was washed with distilled water and recrystallized from CH3OH.

Refinement top

The H-atoms were included at geometrically idealized positions with distances N—H = 0.88 Å and C—H = 0.95 and 0.99 Å for aryl and methylene type H-atoms, respectively. The chlorobenzyl group attached to N2 was disordered with its atoms located over two sites with site occupancy factors 0.8823 (17) and 0.1177 (17). The H-atoms were assigned Uiso = 1.2 times Ueq of the parent atoms (C/N). The highest electron density peak in the final difference map was located close to a Cl atom and was essentially meaningless.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids shown at the 50% probability level. The minor disorder component is not shown.
N,N'-Bis(2-chlorobenzyl)-N''-(2,2,2- trichloroacetyl)phosphoric triamide top
Crystal data top
C16H15Cl5N3O2PZ = 2
Mr = 489.53F(000) = 496
Triclinic, P1Dx = 1.607 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9789 (2) ÅCell parameters from 4567 reflections
b = 10.6058 (3) Åθ = 1.0–27.5°
c = 10.8386 (3) ŵ = 0.81 mm1
α = 75.8920 (13)°T = 173 K
β = 72.2250 (15)°Prism, colorless
γ = 69.6050 (15)°0.18 × 0.14 × 0.12 mm
V = 1011.66 (4) Å3
Data collection top
Nonius KappaCCD
diffractometer with APEXII CCD detector
4638 independent reflections
Radiation source: fine-focus sealed tube4083 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω and ϕ scansθmax = 27.6°, θmin = 2.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1212
Tmin = 0.867, Tmax = 0.909k = 1313
8947 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.043P)2 + 2.0234P]
where P = (Fo2 + 2Fc2)/3
4638 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 1.42 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
C16H15Cl5N3O2Pγ = 69.6050 (15)°
Mr = 489.53V = 1011.66 (4) Å3
Triclinic, P1Z = 2
a = 9.9789 (2) ÅMo Kα radiation
b = 10.6058 (3) ŵ = 0.81 mm1
c = 10.8386 (3) ÅT = 173 K
α = 75.8920 (13)°0.18 × 0.14 × 0.12 mm
β = 72.2250 (15)°
Data collection top
Nonius KappaCCD
diffractometer with APEXII CCD detector
4638 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
4083 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.909Rint = 0.020
8947 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.05Δρmax = 1.42 e Å3
4638 reflectionsΔρmin = 0.68 e Å3
245 parameters
Special details top

Experimental. IR (KBr, cm-1): 3371, 3061, 2875, 1692, 1448, 1257, 1224, 1076, 1043, 885, 837, 751, 675.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.58102 (9)0.04802 (11)1.36183 (8)0.0547 (3)
Cl20.87488 (8)0.22348 (7)1.35952 (8)0.03998 (19)
Cl30.68228 (12)0.30242 (9)1.26210 (11)0.0590 (3)
P10.72798 (7)0.04068 (7)0.90391 (6)0.02507 (16)
O10.9079 (2)0.0722 (2)1.1030 (2)0.0386 (5)
O20.60042 (19)0.0572 (2)0.85370 (18)0.0317 (4)
N10.6903 (2)0.0446 (2)1.0605 (2)0.0262 (4)
H10.60440.06051.09250.031*
C10.7866 (3)0.0882 (3)1.1360 (3)0.0259 (5)
C20.7338 (3)0.1636 (3)1.2751 (3)0.0301 (5)
N20.8865 (2)0.0463 (3)0.8250 (2)0.0352 (6)
H20.96300.01510.80310.042*0.8823 (17)
C30.9024 (3)0.1740 (3)0.7909 (3)0.0335 (7)0.8823 (17)
H3A0.80740.17130.77790.040*0.8823 (17)
H3B0.92470.24700.86490.040*0.8823 (17)
C41.0236 (2)0.2094 (2)0.66667 (18)0.0269 (7)0.8823 (17)
C51.0496 (2)0.3322 (2)0.6261 (2)0.0362 (7)0.8823 (17)
C61.1578 (3)0.3675 (2)0.5135 (2)0.0476 (10)0.8823 (17)
H61.17550.45150.48580.057*0.8823 (17)
C71.2401 (3)0.2800 (3)0.4415 (2)0.0501 (11)0.8823 (17)
H71.31410.30410.36450.060*0.8823 (17)
C81.2141 (2)0.1572 (2)0.4820 (2)0.0467 (9)0.8823 (17)
H81.27040.09730.43280.056*0.8823 (17)
C91.1059 (2)0.12185 (18)0.5946 (2)0.0342 (7)0.8823 (17)
H91.08820.03790.62230.041*0.8823 (17)
Cl40.94994 (12)0.44175 (10)0.71412 (13)0.0605 (3)0.8823 (17)
H2'0.91620.10960.88860.042*0.1177 (17)
C3'0.993 (3)0.079 (2)0.730 (2)0.0335 (7)0.1177 (17)
H3'11.08010.09970.76450.040*0.1177 (17)
H3'20.98920.00790.66860.040*0.1177 (17)
C4'1.036 (2)0.1806 (18)0.6432 (18)0.0269 (7)0.1177 (17)
C5'1.148 (2)0.1813 (19)0.529 (2)0.0362 (7)0.1177 (17)
C6'1.199 (2)0.289 (2)0.4586 (18)0.0476 (10)0.1177 (17)
H6'1.27530.28920.38080.057*0.1177 (17)
C7'1.137 (2)0.395 (2)0.501 (2)0.0501 (11)0.1177 (17)
H7'1.17110.46870.45290.060*0.1177 (17)
C8'1.024 (2)0.3946 (17)0.6152 (19)0.0467 (9)0.1177 (17)
H8'0.98190.46750.64450.056*0.1177 (17)
C9'0.9738 (19)0.287 (2)0.6861 (15)0.0342 (7)0.1177 (17)
H9'0.89700.28670.76380.041*0.1177 (17)
Cl4'1.2278 (9)0.0556 (8)0.4817 (10)0.0605 (3)0.1177 (17)
N30.7555 (2)0.1823 (2)0.9050 (2)0.0309 (5)
H30.84650.18490.88890.037*
C100.6334 (3)0.3062 (3)0.9322 (3)0.0356 (6)
H10A0.54780.30270.90650.043*
H10B0.66320.38600.87730.043*
C110.5868 (3)0.3256 (3)1.0740 (3)0.0322 (6)
C120.6657 (4)0.3724 (3)1.1291 (3)0.0409 (7)
C130.6224 (5)0.3866 (4)1.2614 (4)0.0529 (9)
H130.67800.41881.29710.064*
C140.4988 (5)0.3535 (4)1.3393 (4)0.0584 (10)
H140.46890.36241.42960.070*
C150.4189 (4)0.3081 (4)1.2880 (4)0.0559 (9)
H150.33310.28561.34240.067*
C160.4620 (4)0.2945 (3)1.1571 (3)0.0437 (7)
H160.40470.26291.12280.052*
Cl50.82320 (12)0.41376 (12)1.03083 (12)0.0672 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0395 (4)0.0749 (6)0.0293 (4)0.0045 (4)0.0024 (3)0.0105 (4)
Cl20.0424 (4)0.0350 (4)0.0463 (4)0.0098 (3)0.0260 (3)0.0039 (3)
Cl30.0763 (6)0.0416 (5)0.0793 (7)0.0360 (4)0.0472 (5)0.0180 (4)
P10.0178 (3)0.0380 (4)0.0204 (3)0.0100 (3)0.0013 (2)0.0080 (3)
O10.0246 (10)0.0590 (14)0.0358 (11)0.0193 (9)0.0083 (8)0.0023 (10)
O20.0199 (9)0.0517 (12)0.0251 (9)0.0139 (8)0.0036 (7)0.0063 (8)
N10.0195 (10)0.0363 (12)0.0235 (10)0.0118 (9)0.0025 (8)0.0042 (9)
C10.0224 (12)0.0282 (13)0.0269 (13)0.0077 (10)0.0050 (10)0.0049 (10)
C20.0302 (13)0.0271 (13)0.0333 (14)0.0094 (10)0.0119 (11)0.0013 (10)
N20.0201 (10)0.0533 (15)0.0354 (13)0.0106 (10)0.0012 (9)0.0232 (11)
C30.0285 (15)0.0314 (16)0.0339 (16)0.0083 (12)0.0032 (12)0.0078 (13)
C40.0245 (13)0.0277 (16)0.0247 (15)0.0021 (12)0.0062 (11)0.0053 (12)
C50.0303 (16)0.0358 (17)0.0444 (19)0.0038 (13)0.0142 (14)0.0117 (14)
C60.039 (2)0.052 (2)0.050 (2)0.0103 (17)0.0210 (17)0.0285 (19)
C70.040 (2)0.068 (3)0.0244 (17)0.0100 (19)0.0069 (15)0.0146 (17)
C80.0312 (17)0.061 (2)0.0269 (17)0.0004 (16)0.0008 (14)0.0019 (16)
C90.0285 (15)0.0358 (17)0.0307 (16)0.0046 (13)0.0026 (12)0.0050 (13)
Cl40.0475 (5)0.0380 (5)0.0988 (9)0.0148 (4)0.0086 (5)0.0240 (5)
N2'0.0201 (10)0.0533 (15)0.0354 (13)0.0106 (10)0.0012 (9)0.0232 (11)
C3'0.0285 (15)0.0314 (16)0.0339 (16)0.0083 (12)0.0032 (12)0.0078 (13)
C4'0.0245 (13)0.0277 (16)0.0247 (15)0.0021 (12)0.0062 (11)0.0053 (12)
C5'0.0303 (16)0.0358 (17)0.0444 (19)0.0038 (13)0.0142 (14)0.0117 (14)
C6'0.039 (2)0.052 (2)0.050 (2)0.0103 (17)0.0210 (17)0.0285 (19)
C7'0.040 (2)0.068 (3)0.0244 (17)0.0100 (19)0.0069 (15)0.0146 (17)
C8'0.0312 (17)0.061 (2)0.0269 (17)0.0004 (16)0.0008 (14)0.0019 (16)
C9'0.0285 (15)0.0358 (17)0.0307 (16)0.0046 (13)0.0026 (12)0.0050 (13)
Cl4'0.0475 (5)0.0380 (5)0.0988 (9)0.0148 (4)0.0086 (5)0.0240 (5)
N30.0251 (11)0.0398 (13)0.0293 (12)0.0138 (10)0.0051 (9)0.0035 (10)
C100.0399 (15)0.0336 (15)0.0342 (15)0.0088 (12)0.0169 (12)0.0002 (11)
C110.0369 (14)0.0232 (13)0.0353 (15)0.0020 (11)0.0174 (12)0.0017 (11)
C120.0452 (17)0.0320 (15)0.0484 (18)0.0072 (13)0.0219 (14)0.0041 (13)
C130.073 (3)0.0379 (18)0.054 (2)0.0001 (16)0.038 (2)0.0127 (15)
C140.063 (2)0.050 (2)0.0396 (19)0.0104 (18)0.0097 (17)0.0114 (16)
C150.048 (2)0.053 (2)0.048 (2)0.0016 (16)0.0025 (16)0.0043 (17)
C160.0402 (17)0.0381 (17)0.0478 (19)0.0070 (13)0.0101 (14)0.0053 (14)
Cl50.0632 (6)0.0785 (7)0.0774 (7)0.0424 (5)0.0238 (5)0.0030 (5)
Geometric parameters (Å, º) top
Cl1—C21.759 (3)C3'—H3'20.9900
Cl2—C21.761 (3)C4'—C5'1.3900
Cl3—C21.768 (3)C4'—C9'1.3900
P1—O21.4724 (18)C5'—C6'1.3900
P1—N21.621 (2)C5'—Cl4'1.682 (17)
P1—N31.622 (2)C6'—C7'1.3900
P1—N11.715 (2)C6'—H6'0.9500
O1—C11.212 (3)C7'—C8'1.3900
N1—C11.339 (3)C7'—H7'0.9500
N1—H10.8800C8'—C9'1.3900
C1—C21.553 (4)C8'—H8'0.9500
N2—C31.434 (4)C9'—H9'0.9500
N2—H20.8800N3—C101.467 (4)
C3—C41.534 (3)N3—H30.8800
C3—H3A0.9900C10—C111.507 (4)
C3—H3B0.9900C10—H10A0.9900
C4—C51.3900C10—H10B0.9900
C4—C91.3900C11—C121.388 (4)
C5—C61.3900C11—C161.389 (4)
C5—Cl41.713 (2)C12—C131.395 (5)
C6—C71.3900C12—Cl51.740 (4)
C6—H60.9500C13—C141.371 (6)
C7—C81.3900C13—H130.9500
C7—H70.9500C14—C151.359 (6)
C8—C91.3900C14—H140.9500
C8—H80.9500C15—C161.380 (5)
C9—H90.9500C15—H150.9500
C3'—C4'1.47 (3)C16—H160.9500
C3'—H3'10.9900
O2—P1—N2116.10 (12)H3'1—C3'—H3'2105.4
O2—P1—N3114.51 (12)C5'—C4'—C9'120.0
N2—P1—N3103.26 (13)C5'—C4'—C3'121.6 (16)
O2—P1—N1104.46 (11)C9'—C4'—C3'118.0 (16)
N2—P1—N1108.13 (13)C4'—C5'—C6'120.0
N3—P1—N1110.31 (11)C4'—C5'—Cl4'119.8 (12)
C1—N1—P1122.56 (18)C6'—C5'—Cl4'120.1 (12)
C1—N1—H1118.7C5'—C6'—C7'120.0
P1—N1—H1118.7C5'—C6'—H6'120.0
O1—C1—N1124.8 (2)C7'—C6'—H6'120.0
O1—C1—C2119.8 (2)C8'—C7'—C6'120.0
N1—C1—C2115.5 (2)C8'—C7'—H7'120.0
C1—C2—Cl1108.21 (18)C6'—C7'—H7'120.0
C1—C2—Cl2110.50 (18)C7'—C8'—C9'120.0
Cl1—C2—Cl2109.24 (16)C7'—C8'—H8'120.0
C1—C2—Cl3109.63 (19)C9'—C8'—H8'120.0
Cl1—C2—Cl3109.77 (15)C8'—C9'—C4'120.0
Cl2—C2—Cl3109.47 (15)C8'—C9'—H9'120.0
C3—N2—P1120.0 (2)C4'—C9'—H9'120.0
C3—N2—H2120.0C10—N3—P1122.06 (19)
P1—N2—H2120.0C10—N3—H3119.0
N2—C3—C4113.7 (2)P1—N3—H3119.0
N2—C3—H3A108.8N3—C10—C11113.5 (2)
C4—C3—H3A108.8N3—C10—H10A108.9
N2—C3—H3B108.8C11—C10—H10A108.9
C4—C3—H3B108.8N3—C10—H10B108.9
H3A—C3—H3B107.7C11—C10—H10B108.9
C5—C4—C9120.0H10A—C10—H10B107.7
C5—C4—C3118.28 (18)C12—C11—C16116.5 (3)
C9—C4—C3121.71 (18)C12—C11—C10122.8 (3)
C4—C5—C6120.0C16—C11—C10120.7 (3)
C4—C5—Cl4120.65 (14)C11—C12—C13121.7 (3)
C6—C5—Cl4119.35 (14)C11—C12—Cl5119.1 (3)
C7—C6—C5120.0C13—C12—Cl5119.1 (3)
C7—C6—H6120.0C14—C13—C12119.3 (3)
C5—C6—H6120.0C14—C13—H13120.3
C6—C7—C8120.0C12—C13—H13120.3
C6—C7—H7120.0C15—C14—C13120.3 (4)
C8—C7—H7120.0C15—C14—H14119.9
C9—C8—C7120.0C13—C14—H14119.9
C9—C8—H8120.0C14—C15—C16120.1 (4)
C7—C8—H8120.0C14—C15—H15119.9
C8—C9—C4120.0C16—C15—H15119.9
C8—C9—H9120.0C15—C16—C11121.9 (3)
C4—C9—H9120.0C15—C16—H16119.0
C4'—C3'—H3'1103.9C11—C16—H16119.0
C4'—C3'—H3'2103.9
O2—P1—N1—C1174.8 (2)C9'—C4'—C5'—C6'0.0
N2—P1—N1—C150.6 (2)C3'—C4'—C5'—C6'172 (2)
N3—P1—N1—C161.6 (2)C9'—C4'—C5'—Cl4'177.3 (15)
P1—N1—C1—O10.2 (4)C3'—C4'—C5'—Cl4'5 (2)
P1—N1—C1—C2179.98 (18)C4'—C5'—C6'—C7'0.0
O1—C1—C2—Cl1116.0 (3)Cl4'—C5'—C6'—C7'177.2 (16)
N1—C1—C2—Cl163.9 (3)C5'—C6'—C7'—C8'0.0
O1—C1—C2—Cl23.6 (3)C6'—C7'—C8'—C9'0.0
N1—C1—C2—Cl2176.56 (19)C7'—C8'—C9'—C4'0.0
O1—C1—C2—Cl3124.3 (2)C5'—C4'—C9'—C8'0.0
N1—C1—C2—Cl355.8 (3)C3'—C4'—C9'—C8'172 (2)
O2—P1—N2—C347.0 (3)O2—P1—N3—C1034.9 (2)
N3—P1—N2—C3173.2 (2)N2—P1—N3—C10162.0 (2)
N1—P1—N2—C369.9 (3)N1—P1—N3—C1082.6 (2)
P1—N2—C3—C4151.5 (2)P1—N3—C10—C1194.5 (3)
N2—C3—C4—C5179.0 (2)N3—C10—C11—C1277.3 (3)
N2—C3—C4—C91.5 (4)N3—C10—C11—C16101.5 (3)
C9—C4—C5—C60.0C16—C11—C12—C130.4 (4)
C3—C4—C5—C6179.5 (2)C10—C11—C12—C13178.5 (3)
C9—C4—C5—Cl4179.67 (18)C16—C11—C12—Cl5179.9 (2)
C3—C4—C5—Cl40.8 (2)C10—C11—C12—Cl51.2 (4)
C4—C5—C6—C70.0C11—C12—C13—C140.0 (5)
Cl4—C5—C6—C7179.67 (18)Cl5—C12—C13—C14179.7 (3)
C5—C6—C7—C80.0C12—C13—C14—C150.3 (5)
C6—C7—C8—C90.0C13—C14—C15—C160.2 (6)
C7—C8—C9—C40.0C14—C15—C16—C110.2 (5)
C5—C4—C9—C80.0C12—C11—C16—C150.5 (5)
C3—C4—C9—C8179.5 (3)C10—C11—C16—C15178.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.881.942.804 (3)168
N2—H2···O1ii0.882.383.106 (3)141
N2—H2···O10.882.423.025 (3)126
N3—H3···O1ii0.882.343.129 (3)149
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC16H15Cl5N3O2P
Mr489.53
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.9789 (2), 10.6058 (3), 10.8386 (3)
α, β, γ (°)75.8920 (13), 72.2250 (15), 69.6050 (15)
V3)1011.66 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.18 × 0.14 × 0.12
Data collection
DiffractometerNonius KappaCCD
diffractometer with APEXII CCD detector
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.867, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
8947, 4638, 4083
Rint0.020
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.129, 1.05
No. of reflections4638
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.42, 0.68

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.881.942.804 (3)168.2
N2—H2···O1ii0.882.383.106 (3)140.5
N2'—H2'···O10.882.423.025 (3)125.9
N3—H3···O1ii0.882.343.129 (3)149.1
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y, z+2.
 

Acknowledgements

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft. The Netherlands.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265–o272.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRudd, M. D., Lindeman, S. V. & Husebye, S. (1996). Acta Chem. Scand. 50, 759–774.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680–1690.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds