organic compounds
4-Phenyl-1-(prop-2-yn-1-yl)-1H-1,5-benzodiazepin-2(3H)-one
aLaboratoire de Chimie Moléculaire, Département de Chimie, Faculté des Sciences - Semlalia, BP 2390, Université Cadi Ayyad, 40001, Marrakech, Morocco, bDepartment of Chemistry, University of Aveiro, CICECO, 3810-193, Aveiro, Portugal, and cDepartment of Chemistry, University of Aveiro, QOPNA, 3810-193, Aveiro, Portugal
*Correspondence e-mail: baouid@yahoo.fr, filipe.paz@ua.pt
4-Phenyl-1H-1,5-benzodiazepin-2(3H)-one reacts in the presence of a concentrated aqueous solution of sodium hydroxide and a quaternary ammonium salt (as catalyst) in benzene (phase transfer catalysis) with propargyl bromide, affording the title benzodiazepine derivative, C18H14N2O. In the molecule, the mean plane of the propargyl substituent is almost perpendicular with that of the amide group [dihedral angle = 87.81 (8)°]. In the crystal, the molecules are linked by C—H⋯O and C—H⋯N interactions.
Related literature
For general background to applications of benzodiazepines, see: Ahmed et al. (1983); Bird (1996); Di Braccio et al. (1990, 2001); Goetzke et al. (1983); Kavita et al. (1988); Sieghart & Schuster (1984); Wolff (1996). For examples of benzodiazepines used as medicine, see: Wolff (1996). For the pharmacological effects of benzodiazepines, see: Meldrum & Chapman (1986). For examples of synthetic pathways of new benzodiazepines, see: Aatif et al. (2000); Baouid et al. (2001); Boudina et al. (2007); Nardi et al. (1973). For previous work from our groups on organic crystals, see: Fernandes et al. (2011); Amarante, Figueiredo et al. (2009); Amarante, Gonçalves & Almeida Paz (2009); Paz & Klinowski (2003); Paz et al. (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2006); cell SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811027371/tk2762sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811027371/tk2762Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811027371/tk2762Isup3.cml
Melting points were taken in an open capillary tube on a Buchi 510 apparatus and are uncorrected. The FT—IR spectrum was obtained from KBr pellets using a Bruker Tensor 27 spectrophotometer. NMR Spectra were recorded with the following instruments: 1H, Bruker AC-300; 13C, Bruker AC-75. TMS was used as an internal reference. Mass spectra were recorded using a Jeol JMS DX 300 instrument.
was carried out using E-Merck silica gel 60F254. All reagents were purchased from commercial sources and were used without further purification.The precursor, 4-phenyl-2,3-dihydro-1H-1,5-benzodiazepin-2-one (II), was prepared following literature procedures (Nardi et al., 1973) by refluxing o-phenylenediamine and ethyl benzoylacetate for 2 h in xylene.
A mixture of 1 g (4.6 mmol) of II, 0.43 g (2.3 mmol) of benzyltriethylammonium chloride (TBA-Cl) and 3 ml of a 50% sodium hydroxide aqueous solution in benzene (25 ml) was stirred at ambient temperature. After 15 min, propargyl bromide was added slowly. After 6 h of stirring at 298 K, the reaction mixture was diluted with water (30 ml). The organic layer was extracted with benzene (3 × 10 ml), dried over anhydrous sodium sulfate and evaporated under vacuum. The title compound was isolated by
on silica gel using hexane/ethyl acetate as The solid product was recrystallized in dichloromethane to give yellow crystals of I. Yield: 96%. Melting point: 438–440 K.FT–IR (KBr): 3259(m), 3060(w), 2984(m), 1659(vs), 1602(s), 1586(w), 1570(m), 1496(w), 1479(s), 1452(s), 1431(m), 1379(s), 1362(w), 1321(w), 1307(m), 1293(w), 1279(m), 1262(m), 1211(m), 1162(w), 1014(m), 958(m), 774(s), 688(m), 662(w), 639(w), 598(m), 484(w), 426(w) cm-1. 1H NMR (300 MHz, CDCl3): 7.25-8.14 (9H, Ar-H), 4.19 and 4.27 (AB system, d, J= 17.7 Hz, 2H, N-CH2-C), 3.04 and 4.76 (AB system, d, J=12 Hz, 2H, CH2-CO-N), 2.32 (t, J= 2.25 Hz, 1H, HC≡C) ppm.13C NMR (75 MHz, CDCl3): 165 (1C, CO), 160.0 (1C, Ph-C=N), 140.9, 136.9, 133.3, 130.5, 128.1, 127.1, 126.7, 125.7, 125.1, 120.9 (12C, Ar-C), 78.5 (1C, HC≡ C), 71.9 (1C, HC≡C), 39.1 (1C, CH2-CO-N), 36.9 (1C, N-CH2-C) ppm. MS (EI, m/z): 275 [M+H]+.
Hydrogen atoms bound to carbon were placed at their idealized positions and were included in the final structural model in riding-motion approximation with C—H = 0.95 Å (aromatic and acetylenic), and C—H = 0.99 Å (aliphatic —CH2—). The isotropic thermal displacement parameters for these atoms were fixed at 1.2×Ueq of the respective parent carbon atom.
Data collection: APEX2 (Bruker, 2006); cell
SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C18H14N2O | F(000) = 576 |
Mr = 274.31 | Dx = 1.314 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2335 reflections |
a = 8.2574 (14) Å | θ = 2.5–32.7° |
b = 18.961 (3) Å | µ = 0.08 mm−1 |
c = 9.0914 (15) Å | T = 150 K |
β = 102.962 (4)° | Block, yellow |
V = 1387.1 (4) Å3 | 0.12 × 0.08 × 0.04 mm |
Z = 4 |
Bruker X8 Kappa CCD APEX II diffractometer | 5228 independent reflections |
Radiation source: fine-focus sealed tube | 3621 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
ω / ϕ scans | θmax = 33.1°, θmin = 3.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | h = −12→11 |
Tmin = 0.990, Tmax = 0.997 | k = −24→29 |
11049 measured reflections | l = −10→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.143 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0689P)2 + 0.095P] where P = (Fo2 + 2Fc2)/3 |
5228 reflections | (Δ/σ)max < 0.001 |
190 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
C18H14N2O | V = 1387.1 (4) Å3 |
Mr = 274.31 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.2574 (14) Å | µ = 0.08 mm−1 |
b = 18.961 (3) Å | T = 150 K |
c = 9.0914 (15) Å | 0.12 × 0.08 × 0.04 mm |
β = 102.962 (4)° |
Bruker X8 Kappa CCD APEX II diffractometer | 5228 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | 3621 reflections with I > 2σ(I) |
Tmin = 0.990, Tmax = 0.997 | Rint = 0.034 |
11049 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.143 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.45 e Å−3 |
5228 reflections | Δρmin = −0.25 e Å−3 |
190 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.81747 (12) | 0.20787 (5) | 0.66080 (10) | 0.01806 (19) | |
N2 | 0.80660 (13) | 0.05512 (5) | 0.73647 (10) | 0.0212 (2) | |
O1 | 0.73372 (11) | 0.20477 (5) | 0.40627 (9) | 0.0263 (2) | |
C1 | 0.92473 (14) | 0.26835 (6) | 0.64614 (12) | 0.0203 (2) | |
H1A | 1.0213 | 0.2687 | 0.7333 | 0.024* | |
H1B | 0.9675 | 0.2624 | 0.5535 | 0.024* | |
C2 | 0.83874 (16) | 0.33625 (6) | 0.63915 (12) | 0.0247 (2) | |
C3 | 0.7724 (2) | 0.39109 (7) | 0.63764 (16) | 0.0338 (3) | |
H3 | 0.7187 | 0.4355 | 0.6364 | 0.041* | |
C4 | 0.72159 (14) | 0.18209 (6) | 0.52947 (11) | 0.0191 (2) | |
C5 | 0.60888 (14) | 0.12224 (6) | 0.54917 (13) | 0.0218 (2) | |
H5A | 0.5294 | 0.1118 | 0.4527 | 0.026* | |
H5B | 0.5453 | 0.1343 | 0.6260 | 0.026* | |
C6 | 0.72038 (14) | 0.05952 (6) | 0.59981 (12) | 0.0197 (2) | |
C7 | 0.73684 (14) | 0.00310 (6) | 0.49079 (12) | 0.0203 (2) | |
C8 | 0.84549 (16) | −0.05308 (6) | 0.53927 (14) | 0.0250 (2) | |
H8 | 0.9068 | −0.0547 | 0.6410 | 0.030* | |
C9 | 0.86457 (17) | −0.10638 (7) | 0.44028 (15) | 0.0289 (3) | |
H9 | 0.9375 | −0.1446 | 0.4751 | 0.035* | |
C10 | 0.77807 (19) | −0.10440 (7) | 0.29068 (15) | 0.0318 (3) | |
H10 | 0.7916 | −0.1410 | 0.2231 | 0.038* | |
C11 | 0.67212 (19) | −0.04871 (7) | 0.24087 (14) | 0.0318 (3) | |
H11 | 0.6135 | −0.0468 | 0.1383 | 0.038* | |
C12 | 0.65061 (17) | 0.00474 (7) | 0.34008 (13) | 0.0263 (3) | |
H12 | 0.5767 | 0.0426 | 0.3048 | 0.032* | |
C13 | 0.80668 (15) | 0.11000 (6) | 0.83976 (12) | 0.0206 (2) | |
C14 | 0.81461 (17) | 0.09009 (6) | 0.99013 (13) | 0.0265 (3) | |
H14 | 0.8139 | 0.0414 | 1.0143 | 0.032* | |
C15 | 0.82341 (17) | 0.13908 (7) | 1.10369 (13) | 0.0285 (3) | |
H15 | 0.8261 | 0.1241 | 1.2039 | 0.034* | |
C16 | 0.82834 (16) | 0.21074 (7) | 1.07035 (13) | 0.0259 (2) | |
H16 | 0.8353 | 0.2449 | 1.1480 | 0.031* | |
C17 | 0.82299 (15) | 0.23177 (6) | 0.92394 (12) | 0.0221 (2) | |
H17 | 0.8267 | 0.2806 | 0.9020 | 0.026* | |
C18 | 0.81219 (14) | 0.18262 (6) | 0.80699 (11) | 0.0187 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0243 (5) | 0.0140 (4) | 0.0163 (4) | −0.0031 (4) | 0.0055 (3) | −0.0011 (3) |
N2 | 0.0281 (5) | 0.0145 (4) | 0.0223 (4) | 0.0000 (4) | 0.0083 (4) | −0.0004 (3) |
O1 | 0.0319 (5) | 0.0288 (5) | 0.0172 (3) | −0.0007 (4) | 0.0036 (3) | 0.0012 (3) |
C1 | 0.0248 (5) | 0.0163 (5) | 0.0207 (4) | −0.0036 (4) | 0.0071 (4) | −0.0004 (4) |
C2 | 0.0341 (6) | 0.0196 (5) | 0.0213 (5) | −0.0056 (5) | 0.0083 (4) | 0.0002 (4) |
C3 | 0.0461 (8) | 0.0222 (6) | 0.0355 (6) | 0.0045 (6) | 0.0145 (6) | 0.0060 (5) |
C4 | 0.0209 (5) | 0.0165 (5) | 0.0192 (4) | 0.0034 (4) | 0.0033 (4) | −0.0012 (4) |
C5 | 0.0213 (5) | 0.0176 (5) | 0.0258 (5) | −0.0010 (4) | 0.0038 (4) | −0.0033 (4) |
C6 | 0.0227 (5) | 0.0138 (5) | 0.0241 (5) | −0.0023 (4) | 0.0082 (4) | −0.0015 (4) |
C7 | 0.0241 (5) | 0.0146 (5) | 0.0242 (5) | −0.0042 (4) | 0.0092 (4) | −0.0029 (4) |
C8 | 0.0265 (6) | 0.0189 (5) | 0.0310 (5) | 0.0004 (4) | 0.0094 (4) | −0.0032 (5) |
C9 | 0.0323 (6) | 0.0204 (6) | 0.0379 (6) | 0.0021 (5) | 0.0162 (5) | −0.0042 (5) |
C10 | 0.0422 (8) | 0.0240 (6) | 0.0355 (6) | −0.0056 (6) | 0.0224 (6) | −0.0095 (5) |
C11 | 0.0438 (8) | 0.0296 (7) | 0.0243 (5) | −0.0063 (6) | 0.0126 (5) | −0.0053 (5) |
C12 | 0.0350 (7) | 0.0198 (5) | 0.0252 (5) | −0.0019 (5) | 0.0088 (5) | −0.0005 (4) |
C13 | 0.0263 (5) | 0.0158 (5) | 0.0208 (4) | 0.0005 (4) | 0.0074 (4) | −0.0009 (4) |
C14 | 0.0387 (7) | 0.0197 (5) | 0.0229 (5) | 0.0008 (5) | 0.0105 (5) | 0.0036 (4) |
C15 | 0.0397 (7) | 0.0290 (6) | 0.0190 (5) | 0.0015 (5) | 0.0110 (4) | 0.0023 (5) |
C16 | 0.0346 (6) | 0.0254 (6) | 0.0194 (4) | 0.0000 (5) | 0.0099 (4) | −0.0038 (4) |
C17 | 0.0299 (6) | 0.0170 (5) | 0.0204 (4) | −0.0007 (4) | 0.0078 (4) | −0.0025 (4) |
C18 | 0.0224 (5) | 0.0174 (5) | 0.0169 (4) | −0.0002 (4) | 0.0060 (4) | 0.0001 (4) |
N1—C4 | 1.3665 (13) | C8—H8 | 0.9500 |
N1—C18 | 1.4226 (13) | C9—C10 | 1.388 (2) |
N1—C1 | 1.4731 (14) | C9—H9 | 0.9500 |
N2—C6 | 1.2886 (14) | C10—C11 | 1.381 (2) |
N2—C13 | 1.4017 (14) | C10—H10 | 0.9500 |
O1—C4 | 1.2246 (13) | C11—C12 | 1.3942 (17) |
C1—C2 | 1.4648 (17) | C11—H11 | 0.9500 |
C1—H1A | 0.9900 | C12—H12 | 0.9500 |
C1—H1B | 0.9900 | C13—C14 | 1.4056 (16) |
C2—C3 | 1.1739 (19) | C13—C18 | 1.4115 (16) |
C3—H3 | 0.9500 | C14—C15 | 1.3785 (17) |
C4—C5 | 1.5037 (16) | C14—H14 | 0.9500 |
C5—C6 | 1.5112 (16) | C15—C16 | 1.3947 (18) |
C5—H5A | 0.9900 | C15—H15 | 0.9500 |
C5—H5B | 0.9900 | C16—C17 | 1.3807 (16) |
C6—C7 | 1.4851 (15) | C16—H16 | 0.9500 |
C7—C12 | 1.3956 (16) | C17—C18 | 1.4015 (15) |
C7—C8 | 1.3988 (17) | C17—H17 | 0.9500 |
C8—C9 | 1.3855 (17) | ||
C4—N1—C18 | 124.24 (10) | C8—C9—C10 | 120.56 (12) |
C4—N1—C1 | 116.21 (9) | C8—C9—H9 | 119.7 |
C18—N1—C1 | 119.45 (9) | C10—C9—H9 | 119.7 |
C6—N2—C13 | 120.99 (10) | C11—C10—C9 | 119.40 (12) |
C2—C1—N1 | 113.12 (10) | C11—C10—H10 | 120.3 |
C2—C1—H1A | 109.0 | C9—C10—H10 | 120.3 |
N1—C1—H1A | 109.0 | C10—C11—C12 | 120.45 (12) |
C2—C1—H1B | 109.0 | C10—C11—H11 | 119.8 |
N1—C1—H1B | 109.0 | C12—C11—H11 | 119.8 |
H1A—C1—H1B | 107.8 | C11—C12—C7 | 120.53 (12) |
C3—C2—C1 | 178.08 (13) | C11—C12—H12 | 119.7 |
C2—C3—H3 | 180.0 | C7—C12—H12 | 119.7 |
O1—C4—N1 | 121.55 (11) | N2—C13—C14 | 116.43 (10) |
O1—C4—C5 | 123.62 (10) | N2—C13—C18 | 125.31 (10) |
N1—C4—C5 | 114.75 (9) | C14—C13—C18 | 118.07 (10) |
C4—C5—C6 | 106.21 (9) | C15—C14—C13 | 122.04 (11) |
C4—C5—H5A | 110.5 | C15—C14—H14 | 119.0 |
C6—C5—H5A | 110.5 | C13—C14—H14 | 119.0 |
C4—C5—H5B | 110.5 | C14—C15—C16 | 119.54 (11) |
C6—C5—H5B | 110.5 | C14—C15—H15 | 120.2 |
H5A—C5—H5B | 108.7 | C16—C15—H15 | 120.2 |
N2—C6—C7 | 118.90 (10) | C17—C16—C15 | 119.64 (11) |
N2—C6—C5 | 120.78 (10) | C17—C16—H16 | 120.2 |
C7—C6—C5 | 120.28 (9) | C15—C16—H16 | 120.2 |
C12—C7—C8 | 118.44 (11) | C16—C17—C18 | 121.48 (11) |
C12—C7—C6 | 122.43 (11) | C16—C17—H17 | 119.3 |
C8—C7—C6 | 119.11 (10) | C18—C17—H17 | 119.3 |
C9—C8—C7 | 120.60 (12) | C17—C18—C13 | 119.22 (10) |
C9—C8—H8 | 119.7 | C17—C18—N1 | 118.34 (10) |
C7—C8—H8 | 119.7 | C13—C18—N1 | 122.33 (10) |
C4—N1—C1—C2 | 84.64 (12) | C10—C11—C12—C7 | 0.6 (2) |
C18—N1—C1—C2 | −91.95 (12) | C8—C7—C12—C11 | 0.32 (18) |
C18—N1—C4—O1 | −178.39 (11) | C6—C7—C12—C11 | 178.80 (11) |
C1—N1—C4—O1 | 5.21 (16) | C6—N2—C13—C14 | 144.00 (12) |
C18—N1—C4—C5 | −1.33 (15) | C6—N2—C13—C18 | −41.08 (17) |
C1—N1—C4—C5 | −177.73 (9) | N2—C13—C14—C15 | 176.89 (12) |
O1—C4—C5—C6 | 106.80 (12) | C18—C13—C14—C15 | 1.6 (2) |
N1—C4—C5—C6 | −70.19 (12) | C13—C14—C15—C16 | −1.4 (2) |
C13—N2—C6—C7 | 174.26 (10) | C14—C15—C16—C17 | 0.5 (2) |
C13—N2—C6—C5 | −3.54 (17) | C15—C16—C17—C18 | 0.18 (19) |
C4—C5—C6—N2 | 75.83 (13) | C16—C17—C18—C13 | −0.01 (18) |
C4—C5—C6—C7 | −101.94 (11) | C16—C17—C18—N1 | −176.21 (11) |
N2—C6—C7—C12 | −178.58 (11) | N2—C13—C18—C17 | −175.69 (11) |
C5—C6—C7—C12 | −0.77 (17) | C14—C13—C18—C17 | −0.85 (17) |
N2—C6—C7—C8 | −0.12 (16) | N2—C13—C18—N1 | 0.36 (18) |
C5—C6—C7—C8 | 177.70 (11) | C14—C13—C18—N1 | 175.20 (11) |
C12—C7—C8—C9 | −1.09 (18) | C4—N1—C18—C17 | −140.25 (11) |
C6—C7—C8—C9 | −179.61 (11) | C1—N1—C18—C17 | 36.05 (15) |
C7—C8—C9—C10 | 0.98 (19) | C4—N1—C18—C13 | 43.68 (17) |
C8—C9—C10—C11 | −0.1 (2) | C1—N1—C18—C13 | −140.03 (11) |
C9—C10—C11—C12 | −0.7 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···O1i | 0.99 | 2.14 | 3.1074 (15) | 166 |
C3—H3···N2ii | 0.95 | 2.58 | 3.4269 (18) | 149 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+3/2, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C18H14N2O |
Mr | 274.31 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 150 |
a, b, c (Å) | 8.2574 (14), 18.961 (3), 9.0914 (15) |
β (°) | 102.962 (4) |
V (Å3) | 1387.1 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.12 × 0.08 × 0.04 |
Data collection | |
Diffractometer | Bruker X8 Kappa CCD APEX II diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1997) |
Tmin, Tmax | 0.990, 0.997 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11049, 5228, 3621 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.769 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.143, 1.05 |
No. of reflections | 5228 |
No. of parameters | 190 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.45, −0.25 |
Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···O1i | 0.99 | 2.14 | 3.1074 (15) | 166 |
C3—H3···N2ii | 0.95 | 2.58 | 3.4269 (18) | 149 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+3/2, y+1/2, −z+3/2. |
Plane | Atoms | Largest deviation/Å |
A | C5 to C12 plus N2 | -0.019 (1) |
B | C13 to C18 plus N1, N2 | -0.039 (1) |
C | C1 to C5 plus O1, N1, C18 | -0.026 (1) |
D | C1 to C3 plus N1 | -0.014 (1) |
Acknowledgements
We are grateful to the Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support, for the post-doctoral research grant No. SFRH/BPD/63736/2009 (to JAF) and for specific funding toward the purchase of the single-crystal diffractometer.
References
Aatif, A., Baouid, A., Hasnaoui, A. & Pierrot, M. (2000). Acta Cryst. C56, e459–e460. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ahmed, F., Rittmeyer, G., Goetzke, E. & Koster, J. (1983). Brit. J. Clin. Pharmacol. 16, 419S–423S. Google Scholar
Amarante, T. R., Figueiredo, S., Lopes, A. D., Gonçalves, I. S. & Almeida Paz, F. A. (2009). Acta Cryst. E65, o2047. Web of Science CSD CrossRef IUCr Journals Google Scholar
Amarante, T. R., Gonçalves, I. S. & Almeida Paz, F. A. (2009). Acta Cryst. E65, o1962–o1963. Web of Science CSD CrossRef IUCr Journals Google Scholar
Baouid, A., Elhazazi, S., Hasnaoui, A., Compain, P., Lavergne, J. P. & Huet, F. (2001). New J. Chem. 25, 1479–1481. CAS Google Scholar
Bird, C. W. (1996). Comprehensive Heterocyclic Chemistry. Oxford: Pergamon. Google Scholar
Boudina, A., Baouid, A., Hasnaoui, A., Aatif, A., Eddike, D. & Tillard, M. (2007). Acta Cryst. E63, o1544–o1545. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2005). SAINT-Plus. Bruker AXS, Inc. Madison, Wisconsin, USA. Google Scholar
Bruker (2006). APEX2. Bruker AXS, Delft, The Netherlands. Google Scholar
Di Braccio, M., Grossi, G., Roma, G., Vargiu, L., Mura, M. & Marongiu, M. E. (2001). Eur. J. Med. Chem. 36, 935–949. Web of Science CrossRef PubMed CAS Google Scholar
Di Braccio, M., Roma, G., Grossi, G. C., Ghima, M. & Mereto, E. (1990). Eur. J. Med. Chem. 25, 681–687. CrossRef CAS Web of Science Google Scholar
Fernandes, J. A., Almeida Paz, F. A., Marques, J., Marques, M. P. M. & Braga, S. S. (2011). Acta Cryst. C67, o57–o59. Web of Science CSD CrossRef IUCr Journals Google Scholar
Goetzke, E., Findeisen, P., Welbers, I. B. & Koster, J. (1983). Brit. J. Clin. Pharmacol. 16, 397S–402S. CrossRef Google Scholar
Kavita, D. T., Achaiah, G. & Reddy, V. M. (1988). J. Indian Chem. Soc. 65, 567–570. Google Scholar
Meldrum, B. S. & Chapman, A. G. (1986). Epilepsia, 27 (suppl. 1), S3–S13. Google Scholar
Nardi, D., Tajana, A. & Rossi, S. (1973). J. Heterocycl. Chem. 10, 815–819. CrossRef CAS Google Scholar
Paz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002). New J. Chem. 26, 381–383. Google Scholar
Paz, F. A. A. & Klinowski, J. (2003). CrystEngComm 5, 238–244. CAS Google Scholar
Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sieghart, W. & Schuster, A. (1984). Biochem. Pharmacol. 33, 4033–4038. CrossRef CAS PubMed Google Scholar
Wolff, M. E. (1996). Burger's Medicinal Chemistry and Drug Discovery. 5th ed. New York: John Wiley & Sons. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Benzodiazepine derivatives are an important class of heterocyclic compounds in the field of drugs, pharmaceuticals and synthetic organic chemistry (Bird, 1996; Wolff, 1996), as they show antiviral (Di Braccio et al., 2001), analgesic (Di Braccio et al., 1990), and antipsychotic (Kavita et al., 1988) activities. These compounds are used worldwide as anticonvulsant agents (Sieghart & Schuster, 1984) or as sedative or hypnotics (Goetzke et al., 1983; Ahmed et al., 1983). Examples of well known diazepines are Alprazolam, Diazepam and Flunitrazepam (Wolff, 1996). Their pharmacological effects come from the activation of the benzodiazepine receptor which interacts with the GABA recognition site (Meldrum & Chapman, 1986). Research in this area is highly active being directed towards the synthesis of compounds with enhanced pharmacological activity. Following the research efforts from some of us concerning novel synthetic pathways of new benzodiazepines (Aatif et al., 2000; Baouid et al., 2001; Boudina et al., 2007), and our interest on the structural features of organic crystals (Fernandes et al., 2011; Amarante, Figueiredo et al., 2009; Amarante, Gonçalves & Almeida Paz , 2009; Paz & Klinowski, 2003; Paz et al., 2002), here we wish to report the synthesis via phase transfer catalysis and the crystallographic studies of the title compound (I).
The asymmetric unit is composed of a whole molecular moiety of I (Fig. 1). All atoms are distributed over four medium planes (see Table 1 for details), which converge in the diazepine ring. The plane of the substituent aromatic ring is extended to the imine group from the diazepine moiety (plane A) and subtends an angle of 71.78 (4)° with the amide plane (C). The plane of the benzo ring (B) subtends, on the other hand, two almost similar angles with the previously described planes [41.76 (4)° with plane A and 40.75 (4)° with plane C]. The plane of the propargyl substituent (D) is almost perpendicular with that of the amide group [87.81 (8)°].
The crystal packing (Fig. 2) features weak supramolecular interactions (see Table 2 for details), namely the C—H and CH2 groups of the propargyl moiety interact with N2 from the imine and O1 from the amide of neighbouring molecules, respectively.