organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2075-o2076

4-Phenyl-1-(prop-2-yn-1-yl)-1H-1,5-benzodiazepin-2(3H)-one

aLaboratoire de Chimie Moléculaire, Département de Chimie, Faculté des Sciences - Semlalia, BP 2390, Université Cadi Ayyad, 40001, Marrakech, Morocco, bDepartment of Chemistry, University of Aveiro, CICECO, 3810-193, Aveiro, Portugal, and cDepartment of Chemistry, University of Aveiro, QOPNA, 3810-193, Aveiro, Portugal
*Correspondence e-mail: baouid@yahoo.fr, filipe.paz@ua.pt

(Received 30 June 2011; accepted 7 July 2011; online 23 July 2011)

4-Phenyl-1H-1,5-benzodiazepin-2(3H)-one reacts in the pres­ence of a concentrated aqueous solution of sodium hydroxide and a quaternary ammonium salt (as catalyst) in benzene (phase transfer catalysis) with propargyl bromide, affording the title benzodiazepine derivative, C18H14N2O. In the mol­ecule, the mean plane of the propargyl substituent is almost perpendicular with that of the amide group [dihedral angle = 87.81 (8)°]. In the crystal, the molecules are linked by C—H⋯O and C—H⋯N inter­actions.

Related literature

For general background to applications of benzodiazepines, see: Ahmed et al. (1983[Ahmed, F., Rittmeyer, G., Goetzke, E. & Koster, J. (1983). Brit. J. Clin. Pharmacol. 16, 419S-423S.]); Bird (1996[Bird, C. W. (1996). Comprehensive Heterocyclic Chemistry. Oxford: Pergamon.]); Di Braccio et al. (1990[Di Braccio, M., Roma, G., Grossi, G. C., Ghima, M. & Mereto, E. (1990). Eur. J. Med. Chem. 25, 681-687.], 2001[Di Braccio, M., Grossi, G., Roma, G., Vargiu, L., Mura, M. & Marongiu, M. E. (2001). Eur. J. Med. Chem. 36, 935-949.]); Goetzke et al. (1983[Goetzke, E., Findeisen, P., Welbers, I. B. & Koster, J. (1983). Brit. J. Clin. Pharmacol. 16, 397S-402S.]); Kavita et al. (1988[Kavita, D. T., Achaiah, G. & Reddy, V. M. (1988). J. Indian Chem. Soc. 65, 567-570.]); Sieghart & Schuster (1984[Sieghart, W. & Schuster, A. (1984). Biochem. Pharmacol. 33, 4033-4038.]); Wolff (1996[Wolff, M. E. (1996). Burger's Medicinal Chemistry and Drug Discovery. 5th ed. New York: John Wiley & Sons.]). For examples of benzodiazepines used as medicine, see: Wolff (1996[Wolff, M. E. (1996). Burger's Medicinal Chemistry and Drug Discovery. 5th ed. New York: John Wiley & Sons.]). For the pharmacological effects of benzodiazepines, see: Meldrum & Chapman (1986[Meldrum, B. S. & Chapman, A. G. (1986). Epilepsia, 27 (suppl. 1), S3-S13.]). For examples of synthetic pathways of new benzodiazepines, see: Aatif et al. (2000[Aatif, A., Baouid, A., Hasnaoui, A. & Pierrot, M. (2000). Acta Cryst. C56, e459-e460.]); Baouid et al. (2001[Baouid, A., Elhazazi, S., Hasnaoui, A., Compain, P., Lavergne, J. P. & Huet, F. (2001). New J. Chem. 25, 1479-1481.]); Boudina et al. (2007[Boudina, A., Baouid, A., Hasnaoui, A., Aatif, A., Eddike, D. & Tillard, M. (2007). Acta Cryst. E63, o1544-o1545.]); Nardi et al. (1973[Nardi, D., Tajana, A. & Rossi, S. (1973). J. Heterocycl. Chem. 10, 815-819.]). For previous work from our groups on organic crystals, see: Fernandes et al. (2011[Fernandes, J. A., Almeida Paz, F. A., Marques, J., Marques, M. P. M. & Braga, S. S. (2011). Acta Cryst. C67, o57-o59.]); Amarante, Figueiredo et al. (2009);[Amarante, T. R., Figueiredo, S., Lopes, A. D., Gonçalves, I. S. & Almeida Paz, F. A. (2009). Acta Cryst. E65, o2047.] Amarante, Gonçalves & Almeida Paz (2009);[Amarante, T. R., Gonçalves, I. S. & Almeida Paz, F. A. (2009). Acta Cryst. E65, o1962-o1963.] Paz & Klinowski (2003);[Paz, F. A. A. & Klinowski, J. (2003). CrystEngComm 5, 238-244.] Paz et al. (2002)[Paz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002). New J. Chem. 26, 381-383.].

[Scheme 1]

Experimental

Crystal data
  • C18H14N2O

  • Mr = 274.31

  • Monoclinic, P 21 /n

  • a = 8.2574 (14) Å

  • b = 18.961 (3) Å

  • c = 9.0914 (15) Å

  • β = 102.962 (4)°

  • V = 1387.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 K

  • 0.12 × 0.08 × 0.04 mm

Data collection
  • Bruker X8 Kappa CCD APEX II diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.990, Tmax = 0.997

  • 11049 measured reflections

  • 5228 independent reflections

  • 3621 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.143

  • S = 1.05

  • 5228 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1i 0.99 2.14 3.1074 (15) 166
C3—H3⋯N2ii 0.95 2.58 3.4269 (18) 149
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS, Delft, The Netherlands.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). SAINT-Plus. Bruker AXS, Inc. Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzodiazepine derivatives are an important class of heterocyclic compounds in the field of drugs, pharmaceuticals and synthetic organic chemistry (Bird, 1996; Wolff, 1996), as they show antiviral (Di Braccio et al., 2001), analgesic (Di Braccio et al., 1990), and antipsychotic (Kavita et al., 1988) activities. These compounds are used worldwide as anticonvulsant agents (Sieghart & Schuster, 1984) or as sedative or hypnotics (Goetzke et al., 1983; Ahmed et al., 1983). Examples of well known diazepines are Alprazolam, Diazepam and Flunitrazepam (Wolff, 1996). Their pharmacological effects come from the activation of the benzodiazepine receptor which interacts with the GABA recognition site (Meldrum & Chapman, 1986). Research in this area is highly active being directed towards the synthesis of compounds with enhanced pharmacological activity. Following the research efforts from some of us concerning novel synthetic pathways of new benzodiazepines (Aatif et al., 2000; Baouid et al., 2001; Boudina et al., 2007), and our interest on the structural features of organic crystals (Fernandes et al., 2011; Amarante, Figueiredo et al., 2009; Amarante, Gonçalves & Almeida Paz , 2009; Paz & Klinowski, 2003; Paz et al., 2002), here we wish to report the synthesis via phase transfer catalysis and the crystallographic studies of the title compound (I).

The asymmetric unit is composed of a whole molecular moiety of I (Fig. 1). All atoms are distributed over four medium planes (see Table 1 for details), which converge in the diazepine ring. The plane of the substituent aromatic ring is extended to the imine group from the diazepine moiety (plane A) and subtends an angle of 71.78 (4)° with the amide plane (C). The plane of the benzo ring (B) subtends, on the other hand, two almost similar angles with the previously described planes [41.76 (4)° with plane A and 40.75 (4)° with plane C]. The plane of the propargyl substituent (D) is almost perpendicular with that of the amide group [87.81 (8)°].

The crystal packing (Fig. 2) features weak supramolecular interactions (see Table 2 for details), namely the C—H and CH2 groups of the propargyl moiety interact with N2 from the imine and O1 from the amide of neighbouring molecules, respectively.

Related literature top

For general background to applications of benzodiazepines, see: Ahmed et al. (1983); Bird (1996); Di Braccio et al. (1990, 2001); Goetzke et al. (1983); Kavita et al. (1988); Sieghart & Schuster (1984); Wolff (1996). For examples of commercially known benzodiazepines, see: Wolff (1996). For the pharmacological effects of benzodiazepines, see: Meldrum & Chapman (1986). For examples of synthetic pathways of new benzodiazepines, see: Aatif et al. (2000); Baouid et al. (2001); Boudina et al. (2007); Nardi et al. (1973). For previous work from our groups on organic crystals, see: Fernandes et al. (2011); Amarante, Figueiredo et al. (2009); Amarante, Gonçalves et al., (2009); Paz & Klinowski (2003); Paz et al. (2002).

Experimental top

Melting points were taken in an open capillary tube on a Buchi 510 apparatus and are uncorrected. The FT—IR spectrum was obtained from KBr pellets using a Bruker Tensor 27 spectrophotometer. NMR Spectra were recorded with the following instruments: 1H, Bruker AC-300; 13C, Bruker AC-75. TMS was used as an internal reference. Mass spectra were recorded using a Jeol JMS DX 300 instrument. Column chromatography was carried out using E-Merck silica gel 60F254. All reagents were purchased from commercial sources and were used without further purification.

The precursor, 4-phenyl-2,3-dihydro-1H-1,5-benzodiazepin-2-one (II), was prepared following literature procedures (Nardi et al., 1973) by refluxing o-phenylenediamine and ethyl benzoylacetate for 2 h in xylene.

A mixture of 1 g (4.6 mmol) of II, 0.43 g (2.3 mmol) of benzyltriethylammonium chloride (TBA-Cl) and 3 ml of a 50% sodium hydroxide aqueous solution in benzene (25 ml) was stirred at ambient temperature. After 15 min, propargyl bromide was added slowly. After 6 h of stirring at 298 K, the reaction mixture was diluted with water (30 ml). The organic layer was extracted with benzene (3 × 10 ml), dried over anhydrous sodium sulfate and evaporated under vacuum. The title compound was isolated by column chromatography on silica gel using hexane/ethyl acetate as eluent. The solid product was recrystallized in dichloromethane to give yellow crystals of I. Yield: 96%. Melting point: 438–440 K.

FT–IR (KBr): 3259(m), 3060(w), 2984(m), 1659(vs), 1602(s), 1586(w), 1570(m), 1496(w), 1479(s), 1452(s), 1431(m), 1379(s), 1362(w), 1321(w), 1307(m), 1293(w), 1279(m), 1262(m), 1211(m), 1162(w), 1014(m), 958(m), 774(s), 688(m), 662(w), 639(w), 598(m), 484(w), 426(w) cm-1. 1H NMR (300 MHz, CDCl3): 7.25-8.14 (9H, Ar-H), 4.19 and 4.27 (AB system, d, J= 17.7 Hz, 2H, N-CH2-C), 3.04 and 4.76 (AB system, d, J=12 Hz, 2H, CH2-CO-N), 2.32 (t, J= 2.25 Hz, 1H, HCC) ppm.13C NMR (75 MHz, CDCl3): 165 (1C, CO), 160.0 (1C, Ph-C=N), 140.9, 136.9, 133.3, 130.5, 128.1, 127.1, 126.7, 125.7, 125.1, 120.9 (12C, Ar-C), 78.5 (1C, HC C), 71.9 (1C, HCC), 39.1 (1C, CH2-CO-N), 36.9 (1C, N-CH2-C) ppm. MS (EI, m/z): 275 [M+H]+.

Refinement top

Hydrogen atoms bound to carbon were placed at their idealized positions and were included in the final structural model in riding-motion approximation with C—H = 0.95 Å (aromatic and acetylenic), and C—H = 0.99 Å (aliphatic —CH2—). The isotropic thermal displacement parameters for these atoms were fixed at 1.2×Ueq of the respective parent carbon atom.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound showing all non-hydrogen atoms represented as thermal ellipsoids drawn at the 50% probability level and hydrogen atoms as small spheres with arbitrary radii.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed in perspective along the [100] direction of the unit cell. C—H···(N,O) weak hydrogen bonds are represented as dashed green lines. H-atoms not involved in hydrogen bonding interactions have been omitted for clarity.
4-Phenyl-1-(prop-2-yn-1-yl)-1H-1,5-benzodiazepin-2(3H)-one top
Crystal data top
C18H14N2OF(000) = 576
Mr = 274.31Dx = 1.314 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2335 reflections
a = 8.2574 (14) Åθ = 2.5–32.7°
b = 18.961 (3) ŵ = 0.08 mm1
c = 9.0914 (15) ÅT = 150 K
β = 102.962 (4)°Block, yellow
V = 1387.1 (4) Å30.12 × 0.08 × 0.04 mm
Z = 4
Data collection top
Bruker X8 Kappa CCD APEX II
diffractometer
5228 independent reflections
Radiation source: fine-focus sealed tube3621 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω / ϕ scansθmax = 33.1°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1211
Tmin = 0.990, Tmax = 0.997k = 2429
11049 measured reflectionsl = 1013
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0689P)2 + 0.095P]
where P = (Fo2 + 2Fc2)/3
5228 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C18H14N2OV = 1387.1 (4) Å3
Mr = 274.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.2574 (14) ŵ = 0.08 mm1
b = 18.961 (3) ÅT = 150 K
c = 9.0914 (15) Å0.12 × 0.08 × 0.04 mm
β = 102.962 (4)°
Data collection top
Bruker X8 Kappa CCD APEX II
diffractometer
5228 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
3621 reflections with I > 2σ(I)
Tmin = 0.990, Tmax = 0.997Rint = 0.034
11049 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.05Δρmax = 0.45 e Å3
5228 reflectionsΔρmin = 0.25 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.81747 (12)0.20787 (5)0.66080 (10)0.01806 (19)
N20.80660 (13)0.05512 (5)0.73647 (10)0.0212 (2)
O10.73372 (11)0.20477 (5)0.40627 (9)0.0263 (2)
C10.92473 (14)0.26835 (6)0.64614 (12)0.0203 (2)
H1A1.02130.26870.73330.024*
H1B0.96750.26240.55350.024*
C20.83874 (16)0.33625 (6)0.63915 (12)0.0247 (2)
C30.7724 (2)0.39109 (7)0.63764 (16)0.0338 (3)
H30.71870.43550.63640.041*
C40.72159 (14)0.18209 (6)0.52947 (11)0.0191 (2)
C50.60888 (14)0.12224 (6)0.54917 (13)0.0218 (2)
H5A0.52940.11180.45270.026*
H5B0.54530.13430.62600.026*
C60.72038 (14)0.05952 (6)0.59981 (12)0.0197 (2)
C70.73684 (14)0.00310 (6)0.49079 (12)0.0203 (2)
C80.84549 (16)0.05308 (6)0.53927 (14)0.0250 (2)
H80.90680.05470.64100.030*
C90.86457 (17)0.10638 (7)0.44028 (15)0.0289 (3)
H90.93750.14460.47510.035*
C100.77807 (19)0.10440 (7)0.29068 (15)0.0318 (3)
H100.79160.14100.22310.038*
C110.67212 (19)0.04871 (7)0.24087 (14)0.0318 (3)
H110.61350.04680.13830.038*
C120.65061 (17)0.00474 (7)0.34008 (13)0.0263 (3)
H120.57670.04260.30480.032*
C130.80668 (15)0.11000 (6)0.83976 (12)0.0206 (2)
C140.81461 (17)0.09009 (6)0.99013 (13)0.0265 (3)
H140.81390.04141.01430.032*
C150.82341 (17)0.13908 (7)1.10369 (13)0.0285 (3)
H150.82610.12411.20390.034*
C160.82834 (16)0.21074 (7)1.07035 (13)0.0259 (2)
H160.83530.24491.14800.031*
C170.82299 (15)0.23177 (6)0.92394 (12)0.0221 (2)
H170.82670.28060.90200.026*
C180.81219 (14)0.18262 (6)0.80699 (11)0.0187 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0243 (5)0.0140 (4)0.0163 (4)0.0031 (4)0.0055 (3)0.0011 (3)
N20.0281 (5)0.0145 (4)0.0223 (4)0.0000 (4)0.0083 (4)0.0004 (3)
O10.0319 (5)0.0288 (5)0.0172 (3)0.0007 (4)0.0036 (3)0.0012 (3)
C10.0248 (5)0.0163 (5)0.0207 (4)0.0036 (4)0.0071 (4)0.0004 (4)
C20.0341 (6)0.0196 (5)0.0213 (5)0.0056 (5)0.0083 (4)0.0002 (4)
C30.0461 (8)0.0222 (6)0.0355 (6)0.0045 (6)0.0145 (6)0.0060 (5)
C40.0209 (5)0.0165 (5)0.0192 (4)0.0034 (4)0.0033 (4)0.0012 (4)
C50.0213 (5)0.0176 (5)0.0258 (5)0.0010 (4)0.0038 (4)0.0033 (4)
C60.0227 (5)0.0138 (5)0.0241 (5)0.0023 (4)0.0082 (4)0.0015 (4)
C70.0241 (5)0.0146 (5)0.0242 (5)0.0042 (4)0.0092 (4)0.0029 (4)
C80.0265 (6)0.0189 (5)0.0310 (5)0.0004 (4)0.0094 (4)0.0032 (5)
C90.0323 (6)0.0204 (6)0.0379 (6)0.0021 (5)0.0162 (5)0.0042 (5)
C100.0422 (8)0.0240 (6)0.0355 (6)0.0056 (6)0.0224 (6)0.0095 (5)
C110.0438 (8)0.0296 (7)0.0243 (5)0.0063 (6)0.0126 (5)0.0053 (5)
C120.0350 (7)0.0198 (5)0.0252 (5)0.0019 (5)0.0088 (5)0.0005 (4)
C130.0263 (5)0.0158 (5)0.0208 (4)0.0005 (4)0.0074 (4)0.0009 (4)
C140.0387 (7)0.0197 (5)0.0229 (5)0.0008 (5)0.0105 (5)0.0036 (4)
C150.0397 (7)0.0290 (6)0.0190 (5)0.0015 (5)0.0110 (4)0.0023 (5)
C160.0346 (6)0.0254 (6)0.0194 (4)0.0000 (5)0.0099 (4)0.0038 (4)
C170.0299 (6)0.0170 (5)0.0204 (4)0.0007 (4)0.0078 (4)0.0025 (4)
C180.0224 (5)0.0174 (5)0.0169 (4)0.0002 (4)0.0060 (4)0.0001 (4)
Geometric parameters (Å, º) top
N1—C41.3665 (13)C8—H80.9500
N1—C181.4226 (13)C9—C101.388 (2)
N1—C11.4731 (14)C9—H90.9500
N2—C61.2886 (14)C10—C111.381 (2)
N2—C131.4017 (14)C10—H100.9500
O1—C41.2246 (13)C11—C121.3942 (17)
C1—C21.4648 (17)C11—H110.9500
C1—H1A0.9900C12—H120.9500
C1—H1B0.9900C13—C141.4056 (16)
C2—C31.1739 (19)C13—C181.4115 (16)
C3—H30.9500C14—C151.3785 (17)
C4—C51.5037 (16)C14—H140.9500
C5—C61.5112 (16)C15—C161.3947 (18)
C5—H5A0.9900C15—H150.9500
C5—H5B0.9900C16—C171.3807 (16)
C6—C71.4851 (15)C16—H160.9500
C7—C121.3956 (16)C17—C181.4015 (15)
C7—C81.3988 (17)C17—H170.9500
C8—C91.3855 (17)
C4—N1—C18124.24 (10)C8—C9—C10120.56 (12)
C4—N1—C1116.21 (9)C8—C9—H9119.7
C18—N1—C1119.45 (9)C10—C9—H9119.7
C6—N2—C13120.99 (10)C11—C10—C9119.40 (12)
C2—C1—N1113.12 (10)C11—C10—H10120.3
C2—C1—H1A109.0C9—C10—H10120.3
N1—C1—H1A109.0C10—C11—C12120.45 (12)
C2—C1—H1B109.0C10—C11—H11119.8
N1—C1—H1B109.0C12—C11—H11119.8
H1A—C1—H1B107.8C11—C12—C7120.53 (12)
C3—C2—C1178.08 (13)C11—C12—H12119.7
C2—C3—H3180.0C7—C12—H12119.7
O1—C4—N1121.55 (11)N2—C13—C14116.43 (10)
O1—C4—C5123.62 (10)N2—C13—C18125.31 (10)
N1—C4—C5114.75 (9)C14—C13—C18118.07 (10)
C4—C5—C6106.21 (9)C15—C14—C13122.04 (11)
C4—C5—H5A110.5C15—C14—H14119.0
C6—C5—H5A110.5C13—C14—H14119.0
C4—C5—H5B110.5C14—C15—C16119.54 (11)
C6—C5—H5B110.5C14—C15—H15120.2
H5A—C5—H5B108.7C16—C15—H15120.2
N2—C6—C7118.90 (10)C17—C16—C15119.64 (11)
N2—C6—C5120.78 (10)C17—C16—H16120.2
C7—C6—C5120.28 (9)C15—C16—H16120.2
C12—C7—C8118.44 (11)C16—C17—C18121.48 (11)
C12—C7—C6122.43 (11)C16—C17—H17119.3
C8—C7—C6119.11 (10)C18—C17—H17119.3
C9—C8—C7120.60 (12)C17—C18—C13119.22 (10)
C9—C8—H8119.7C17—C18—N1118.34 (10)
C7—C8—H8119.7C13—C18—N1122.33 (10)
C4—N1—C1—C284.64 (12)C10—C11—C12—C70.6 (2)
C18—N1—C1—C291.95 (12)C8—C7—C12—C110.32 (18)
C18—N1—C4—O1178.39 (11)C6—C7—C12—C11178.80 (11)
C1—N1—C4—O15.21 (16)C6—N2—C13—C14144.00 (12)
C18—N1—C4—C51.33 (15)C6—N2—C13—C1841.08 (17)
C1—N1—C4—C5177.73 (9)N2—C13—C14—C15176.89 (12)
O1—C4—C5—C6106.80 (12)C18—C13—C14—C151.6 (2)
N1—C4—C5—C670.19 (12)C13—C14—C15—C161.4 (2)
C13—N2—C6—C7174.26 (10)C14—C15—C16—C170.5 (2)
C13—N2—C6—C53.54 (17)C15—C16—C17—C180.18 (19)
C4—C5—C6—N275.83 (13)C16—C17—C18—C130.01 (18)
C4—C5—C6—C7101.94 (11)C16—C17—C18—N1176.21 (11)
N2—C6—C7—C12178.58 (11)N2—C13—C18—C17175.69 (11)
C5—C6—C7—C120.77 (17)C14—C13—C18—C170.85 (17)
N2—C6—C7—C80.12 (16)N2—C13—C18—N10.36 (18)
C5—C6—C7—C8177.70 (11)C14—C13—C18—N1175.20 (11)
C12—C7—C8—C91.09 (18)C4—N1—C18—C17140.25 (11)
C6—C7—C8—C9179.61 (11)C1—N1—C18—C1736.05 (15)
C7—C8—C9—C100.98 (19)C4—N1—C18—C1343.68 (17)
C8—C9—C10—C110.1 (2)C1—N1—C18—C13140.03 (11)
C9—C10—C11—C120.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.992.143.1074 (15)166
C3—H3···N2ii0.952.583.4269 (18)149
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H14N2O
Mr274.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)8.2574 (14), 18.961 (3), 9.0914 (15)
β (°) 102.962 (4)
V3)1387.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.12 × 0.08 × 0.04
Data collection
DiffractometerBruker X8 Kappa CCD APEX II
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.990, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
11049, 5228, 3621
Rint0.034
(sin θ/λ)max1)0.769
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.143, 1.05
No. of reflections5228
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.25

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.992.143.1074 (15)166
C3—H3···N2ii0.952.583.4269 (18)149
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z+3/2.
Medium planes existent in the molecular unit of the title compound top
PlaneAtomsLargest deviation/Å
AC5 to C12 plus N2-0.019 (1)
BC13 to C18 plus N1, N2-0.039 (1)
CC1 to C5 plus O1, N1, C18-0.026 (1)
DC1 to C3 plus N1-0.014 (1)
 

Acknowledgements

We are grateful to the Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support, for the post-doctoral research grant No. SFRH/BPD/63736/2009 (to JAF) and for specific funding toward the purchase of the single-crystal diffractometer.

References

First citationAatif, A., Baouid, A., Hasnaoui, A. & Pierrot, M. (2000). Acta Cryst. C56, e459–e460.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAhmed, F., Rittmeyer, G., Goetzke, E. & Koster, J. (1983). Brit. J. Clin. Pharmacol. 16, 419S–423S.  Google Scholar
First citationAmarante, T. R., Figueiredo, S., Lopes, A. D., Gonçalves, I. S. & Almeida Paz, F. A. (2009). Acta Cryst. E65, o2047.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAmarante, T. R., Gonçalves, I. S. & Almeida Paz, F. A. (2009). Acta Cryst. E65, o1962–o1963.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaouid, A., Elhazazi, S., Hasnaoui, A., Compain, P., Lavergne, J. P. & Huet, F. (2001). New J. Chem. 25, 1479–1481.  CAS Google Scholar
First citationBird, C. W. (1996). Comprehensive Heterocyclic Chemistry. Oxford: Pergamon.  Google Scholar
First citationBoudina, A., Baouid, A., Hasnaoui, A., Aatif, A., Eddike, D. & Tillard, M. (2007). Acta Cryst. E63, o1544–o1545.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). SAINT-Plus. Bruker AXS, Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS, Delft, The Netherlands.  Google Scholar
First citationDi Braccio, M., Grossi, G., Roma, G., Vargiu, L., Mura, M. & Marongiu, M. E. (2001). Eur. J. Med. Chem. 36, 935–949.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDi Braccio, M., Roma, G., Grossi, G. C., Ghima, M. & Mereto, E. (1990). Eur. J. Med. Chem. 25, 681–687.  CrossRef CAS Web of Science Google Scholar
First citationFernandes, J. A., Almeida Paz, F. A., Marques, J., Marques, M. P. M. & Braga, S. S. (2011). Acta Cryst. C67, o57–o59.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoetzke, E., Findeisen, P., Welbers, I. B. & Koster, J. (1983). Brit. J. Clin. Pharmacol. 16, 397S–402S.  CrossRef Google Scholar
First citationKavita, D. T., Achaiah, G. & Reddy, V. M. (1988). J. Indian Chem. Soc. 65, 567–570.  Google Scholar
First citationMeldrum, B. S. & Chapman, A. G. (1986). Epilepsia, 27 (suppl. 1), S3–S13.  Google Scholar
First citationNardi, D., Tajana, A. & Rossi, S. (1973). J. Heterocycl. Chem. 10, 815–819.  CrossRef CAS Google Scholar
First citationPaz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002). New J. Chem. 26, 381–383.  Google Scholar
First citationPaz, F. A. A. & Klinowski, J. (2003). CrystEngComm 5, 238–244.  CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSieghart, W. & Schuster, A. (1984). Biochem. Pharmacol. 33, 4033–4038.  CrossRef CAS PubMed Google Scholar
First citationWolff, M. E. (1996). Burger's Medicinal Chemistry and Drug Discovery. 5th ed. New York: John Wiley & Sons.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2075-o2076
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds