metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2,2′-[(2,2-Di­methylpropane-1,3-diyl­di­nitrilo)bis­(phenylmethyl­idyne)]di­phenolato}copper(II)

aChemistry Department, Payame Noor University, Tehran 19395-4697, Iran, bX-ray Crystallography Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, cDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, dCatalysis Division, Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran, and eDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: hkargar@pnu.ac.ir, dmntahir_uos@yahoo.com

(Received 14 July 2011; accepted 18 July 2011; online 23 July 2011)

The complete mol­ecule of the title complex, [Cu(C31H28N2O2)], is generated by the application of twofold symmetry; the Cu and CMe2 atoms lie on the axis. The geometry around the CuII atom is distorted square-planar. The dihedral angle between the two phenyl rings is 76.0 (3) °. The crystal packing is stabilized by inter­molecular C—H⋯π inter­actions.

Related literature

For background to tetra­dentate Schiff bases and their complexes, see, for example: Kargar et al. (2009[Kargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, o776-o777.], 2010[Kargar, H., Kia, R., Ullah Khan, I. & Sahraei, A. (2010). Acta Cryst. E66, o539.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C31H28N2O2)]

  • Mr = 524.09

  • Tetragonal, P 41 21 2

  • a = 9.7435 (14) Å

  • c = 25.717 (6) Å

  • V = 2441.5 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 291 K

  • 0.21 × 0.11 × 0.08 mm

Data collection
  • STOE IPDS 2T Image Plate diffractometer

  • Absorption correction: multi-scan [MULABS (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])] Tmin = 0.995, Tmax = 1.000

  • 5595 measured reflections

  • 2376 independent reflections

  • 1380 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.064

  • S = 0.84

  • 2376 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.47 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 918 Friedel pairs

  • Flack parameter: 0.00 (3)

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.891 (3)
Cu1—N1 1.966 (4)
O1—Cu1—N1 93.11 (16)
O1i—Cu1—O1 95.6 (2)
N1i—Cu1—N1 95.7 (2)
Symmetry code: (i) [-y, -x, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the Cu/O1/C1/C6/C7/N1, Cu/O1′/C1′/C6′/C7′/N1′ and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg1ii 0.93 2.85 3.415 (6) 120
C3—H3⋯Cg2iii 0.93 2.85 3.415 (6) 120
C12—H12ACg3iv 0.93 2.76 3.458 (6) 132
Symmetry codes: (ii) [-y-{\script{1\over 2}}, x+{\script{1\over 2}}, z+{\script{5\over 4}}]; (iii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z-{\script{3\over 4}}]; (iv) [-y+{\script{1\over 2}}, x-{\script{1\over 2}}, z+{\script{5\over 4}}].

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base ligands are one of the most prevalent systems in coordination chemistry. As part of a general study of potentially tetradentate Schiff bases and their complexes (Kargar et al., 2009; Kargar et al., 2010), we have determined the crystal structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises half of the Schiff base complex as the molecule has crystallographically imposed 2-fold symmetry . The geometry around the CuII atom is distorted square planar, Table 1. The dihedral angle between the two phenyl rings is 76.0 (3)°. The crystal packing is stabilized by the intermolecular C—H···π interactions, Table 2.

Related literature top

For background to tetradentate Schiff bases and their complexes, see, for example: Kargar et al. (2009, 2010).

Experimental top

The title compound was synthesized by adding an methanolic solution (25 ml) of bis(2-hydroxybenzophenone)-2,2'-dimethyl propanediimine (2 mmol) to a solution of CuCl2.4H2O (2 mmol in 25 ml ethanol). The mixture was refluxed with stirring for half an hour. The resultant green solution was filtered. Dark-green single crystals for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-AREA (Stoe & Cie, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering.
{2,2'-[(2,2-Dimethylpropane-1,3- diyldinitrilo)bis(phenylmethylidyne)]diphenolato}copper(II) top
Crystal data top
[Cu(C31H28N2O2)]Dx = 1.426 Mg m3
Mr = 524.09Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 374 reflections
Hall symbol: P 4abw 2nwθ = 2.2–24.9°
a = 9.7435 (14) ŵ = 0.93 mm1
c = 25.717 (6) ÅT = 291 K
V = 2441.5 (8) Å3Block, dark-green
Z = 40.21 × 0.11 × 0.08 mm
F(000) = 1092
Data collection top
STOE IPDS 2T Image Plate
diffractometer
2376 independent reflections
Radiation source: fine-focus sealed tube1380 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
Detector resolution: 0.15 mm pixels mm-1θmax = 26.0°, θmin = 2.2°
ω scansh = 103
Absorption correction: multi-scan
[MULABS (Blessing, 1995) in PLATON (Spek, 2009)]'
k = 1112
Tmin = 0.995, Tmax = 1.000l = 2731
5595 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0005P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.84(Δ/σ)max < 0.001
2376 reflectionsΔρmax = 0.83 e Å3
165 parametersΔρmin = 0.47 e Å3
0 restraintsAbsolute structure: Flack (1983), 918 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (3)
Crystal data top
[Cu(C31H28N2O2)]Z = 4
Mr = 524.09Mo Kα radiation
Tetragonal, P41212µ = 0.93 mm1
a = 9.7435 (14) ÅT = 291 K
c = 25.717 (6) Å0.21 × 0.11 × 0.08 mm
V = 2441.5 (8) Å3
Data collection top
STOE IPDS 2T Image Plate
diffractometer
2376 independent reflections
Absorption correction: multi-scan
[MULABS (Blessing, 1995) in PLATON (Spek, 2009)]'
1380 reflections with I > 2σ(I)
Tmin = 0.995, Tmax = 1.000Rint = 0.088
5595 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.064Δρmax = 0.83 e Å3
S = 0.84Δρmin = 0.47 e Å3
2376 reflectionsAbsolute structure: Flack (1983), 918 Friedel pairs
165 parametersAbsolute structure parameter: 0.00 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.17381 (7)0.17381 (7)0.75000.0303 (2)
O10.1851 (4)0.3469 (4)0.71702 (12)0.0358 (9)
N10.0615 (4)0.0946 (4)0.69403 (16)0.0277 (11)
C10.1327 (5)0.3836 (5)0.6724 (2)0.0241 (14)
C20.1492 (6)0.5209 (6)0.6563 (2)0.0368 (16)
H20.18660.58350.67970.044*
C30.1129 (5)0.5662 (6)0.6081 (3)0.0409 (17)
H30.12890.65700.59870.049*
C40.0523 (6)0.4770 (6)0.5734 (2)0.0442 (18)
H40.02870.50680.54020.053*
C50.0271 (6)0.3441 (7)0.5881 (2)0.0359 (16)
H50.01480.28520.56440.043*
C60.0622 (5)0.2935 (5)0.6374 (2)0.0253 (13)
C70.0273 (5)0.1505 (6)0.6502 (2)0.0255 (13)
C80.0569 (6)0.0710 (6)0.61152 (19)0.0285 (13)
C90.0001 (6)0.0316 (6)0.5810 (2)0.0365 (17)
H90.09390.04760.58280.044*
C100.0788 (7)0.1105 (7)0.5483 (2)0.0459 (19)
H100.03800.17930.52860.055*
C110.2187 (7)0.0879 (7)0.5445 (3)0.0479 (19)
H110.27310.14080.52260.058*
C120.2746 (6)0.0156 (7)0.5742 (2)0.048 (2)
H12A0.36840.03250.57200.058*
C130.1964 (5)0.0942 (5)0.6069 (2)0.0352 (16)
H130.23740.16390.62610.042*
C140.0324 (6)0.0503 (5)0.70648 (18)0.0356 (15)
H14A0.00160.09530.67540.043*
H14B0.11760.09480.71620.043*
C150.0712 (6)0.0712 (6)0.75000.046 (2)
C160.2175 (5)0.0535 (7)0.7303 (2)0.069 (2)
H16A0.28070.06800.75840.104*
H16B0.22890.03770.71690.104*
H16C0.23510.11900.70330.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0317 (3)0.0317 (3)0.0277 (5)0.0088 (6)0.0062 (4)0.0062 (4)
O10.044 (2)0.034 (2)0.029 (2)0.013 (3)0.012 (2)0.005 (2)
N10.030 (3)0.026 (3)0.027 (3)0.001 (2)0.001 (2)0.005 (2)
C10.016 (3)0.028 (3)0.028 (3)0.002 (3)0.000 (3)0.006 (3)
C20.027 (4)0.033 (4)0.050 (4)0.002 (3)0.000 (4)0.007 (3)
C30.030 (4)0.033 (4)0.060 (5)0.002 (3)0.003 (4)0.021 (4)
C40.043 (4)0.047 (4)0.042 (4)0.006 (4)0.005 (4)0.021 (4)
C50.033 (4)0.043 (4)0.032 (4)0.005 (4)0.005 (3)0.008 (4)
C60.021 (3)0.028 (4)0.027 (3)0.001 (3)0.002 (3)0.009 (3)
C70.020 (3)0.036 (4)0.021 (3)0.001 (3)0.006 (3)0.001 (3)
C80.034 (4)0.032 (4)0.019 (3)0.000 (3)0.007 (3)0.010 (3)
C90.032 (4)0.037 (4)0.041 (4)0.002 (3)0.000 (3)0.006 (3)
C100.061 (5)0.044 (5)0.032 (4)0.008 (4)0.002 (4)0.007 (3)
C110.050 (5)0.058 (5)0.035 (4)0.022 (4)0.010 (4)0.008 (4)
C120.024 (4)0.076 (5)0.044 (5)0.010 (4)0.014 (3)0.020 (4)
C130.024 (4)0.040 (4)0.042 (4)0.011 (3)0.000 (3)0.004 (3)
C140.044 (4)0.024 (3)0.038 (4)0.005 (3)0.019 (3)0.000 (3)
C150.048 (3)0.048 (3)0.040 (5)0.018 (5)0.023 (4)0.023 (4)
C160.048 (5)0.113 (6)0.047 (5)0.037 (4)0.020 (3)0.028 (4)
Geometric parameters (Å, º) top
Cu1—O1i1.891 (3)C8—C91.386 (7)
Cu1—O11.891 (3)C9—C101.373 (7)
Cu1—N1i1.966 (4)C9—H90.9300
Cu1—N11.966 (4)C10—C111.384 (7)
O1—C11.305 (5)C10—H100.9300
N1—C71.295 (6)C11—C121.377 (8)
N1—C141.475 (6)C11—H110.9300
C1—C21.410 (7)C12—C131.369 (7)
C1—C61.433 (7)C12—H12A0.9300
C2—C31.362 (7)C13—H130.9300
C2—H20.9300C14—C151.521 (6)
C3—C41.380 (8)C14—H14A0.9700
C3—H30.9300C14—H14B0.9700
C4—C51.371 (8)C15—C14i1.521 (6)
C4—H40.9300C15—C16i1.522 (6)
C5—C61.405 (6)C15—C161.522 (6)
C5—H50.9300C16—H16A0.9600
C6—C71.471 (7)C16—H16B0.9600
C7—C81.504 (7)C16—H16C0.9600
C8—C131.383 (7)
O1—Cu1—N193.11 (16)C10—C9—C8121.8 (6)
O1i—Cu1—O195.6 (2)C10—C9—H9119.1
O1i—Cu1—N1i93.11 (16)C8—C9—H9119.1
O1—Cu1—N1i147.96 (16)C9—C10—C11120.3 (7)
O1i—Cu1—N1147.96 (16)C9—C10—H10119.9
N1i—Cu1—N195.7 (2)C11—C10—H10119.9
C1—O1—Cu1128.0 (3)C12—C11—C10117.8 (6)
C7—N1—C14122.8 (4)C12—C11—H11121.1
C7—N1—Cu1127.9 (4)C10—C11—H11121.1
C14—N1—Cu1108.9 (3)C13—C12—C11122.0 (6)
O1—C1—C2118.3 (5)C13—C12—H12A119.0
O1—C1—C6124.9 (5)C11—C12—H12A119.0
C2—C1—C6116.8 (5)C12—C13—C8120.6 (6)
C3—C2—C1123.1 (6)C12—C13—H13119.7
C3—C2—H2118.5C8—C13—H13119.7
C1—C2—H2118.5N1—C14—C15114.6 (4)
C2—C3—C4119.8 (6)N1—C14—H14A108.6
C2—C3—H3120.1C15—C14—H14A108.6
C4—C3—H3120.1N1—C14—H14B108.6
C5—C4—C3119.6 (6)C15—C14—H14B108.6
C5—C4—H4120.2H14A—C14—H14B107.6
C3—C4—H4120.2C14—C15—C14i111.3 (7)
C4—C5—C6122.5 (6)C14—C15—C16i107.1 (3)
C4—C5—H5118.8C14i—C15—C16i111.2 (3)
C6—C5—H5118.8C14—C15—C16111.2 (3)
C5—C6—C1118.0 (5)C14i—C15—C16107.1 (3)
C5—C6—C7118.6 (5)C16i—C15—C16108.9 (7)
C1—C6—C7123.4 (5)C15—C16—H16A109.5
N1—C7—C6122.2 (5)C15—C16—H16B109.5
N1—C7—C8119.9 (5)H16A—C16—H16B109.5
C6—C7—C8117.8 (5)C15—C16—H16C109.5
C13—C8—C9117.4 (5)H16A—C16—H16C109.5
C13—C8—C7120.6 (5)H16B—C16—H16C109.5
C9—C8—C7121.9 (5)
O1i—Cu1—O1—C1148.3 (5)C14—N1—C7—C85.7 (8)
N1i—Cu1—O1—C1106.7 (5)Cu1—N1—C7—C8178.3 (3)
N1—Cu1—O1—C10.9 (5)C5—C6—C7—N1176.9 (5)
O1i—Cu1—N1—C7100.2 (5)C1—C6—C7—N11.7 (8)
O1—Cu1—N1—C75.5 (5)C5—C6—C7—C86.1 (7)
N1i—Cu1—N1—C7154.7 (5)C1—C6—C7—C8175.2 (4)
O1i—Cu1—N1—C1473.3 (5)N1—C7—C8—C13101.0 (6)
O1—Cu1—N1—C14178.9 (3)C6—C7—C8—C1376.0 (6)
N1i—Cu1—N1—C1431.9 (3)N1—C7—C8—C976.0 (7)
Cu1—O1—C1—C2177.3 (4)C6—C7—C8—C9107.0 (6)
Cu1—O1—C1—C64.5 (8)C13—C8—C9—C101.7 (8)
O1—C1—C2—C3172.2 (5)C7—C8—C9—C10175.5 (6)
C6—C1—C2—C36.2 (9)C8—C9—C10—C110.7 (10)
C1—C2—C3—C42.5 (9)C9—C10—C11—C120.3 (10)
C2—C3—C4—C51.1 (9)C10—C11—C12—C130.3 (10)
C3—C4—C5—C60.8 (9)C11—C12—C13—C80.7 (9)
C4—C5—C6—C13.0 (8)C9—C8—C13—C121.7 (8)
C4—C5—C6—C7178.2 (5)C7—C8—C13—C12175.5 (5)
O1—C1—C6—C5172.0 (5)C7—N1—C14—C15113.2 (5)
C2—C1—C6—C56.2 (7)Cu1—N1—C14—C1573.0 (5)
O1—C1—C6—C76.7 (8)N1—C14—C15—C14i39.7 (3)
C2—C1—C6—C7175.1 (5)N1—C14—C15—C16i161.4 (5)
C14—N1—C7—C6177.4 (4)N1—C14—C15—C1679.7 (7)
Cu1—N1—C7—C64.8 (8)
Symmetry code: (i) y, x, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the Cu/O1/C1/C6/C7/N1, Cu/O1'/C1'/C6'/C7'/N1' and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg1ii0.932.853.415 (6)120
C3—H3···Cg2iii0.932.853.415 (6)120
C12—H12A···Cg3iv0.932.763.458 (6)132
Symmetry codes: (ii) y1/2, x+1/2, z+5/4; (iii) x1/2, y+1/2, z3/4; (iv) y+1/2, x1/2, z+5/4.

Experimental details

Crystal data
Chemical formula[Cu(C31H28N2O2)]
Mr524.09
Crystal system, space groupTetragonal, P41212
Temperature (K)291
a, c (Å)9.7435 (14), 25.717 (6)
V3)2441.5 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.21 × 0.11 × 0.08
Data collection
DiffractometerSTOE IPDS 2T Image Plate
diffractometer
Absorption correctionMulti-scan
[MULABS (Blessing, 1995) in PLATON (Spek, 2009)]'
Tmin, Tmax0.995, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5595, 2376, 1380
Rint0.088
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.064, 0.84
No. of reflections2376
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.47
Absolute structureFlack (1983), 918 Friedel pairs
Absolute structure parameter0.00 (3)

Computer programs: X-AREA (Stoe & Cie, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Cu1—O1i1.891 (3)Cu1—N11.966 (4)
Cu1—N1i1.966 (4)O1—C11.305 (5)
O1—Cu1—N193.11 (16)N1i—Cu1—N195.7 (2)
O1i—Cu1—O195.6 (2)
Symmetry code: (i) y, x, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the Cu/O1/C1/C6/C7/N1, Cu/O1'/C1'/C6'/C7'/N1' and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg1ii0.932.853.415 (6)120
C3—H3···Cg2iii0.932.853.415 (6)120
C12—H12A···Cg3iv0.932.763.458 (6)132
Symmetry codes: (ii) y1/2, x+1/2, z+5/4; (iii) x1/2, y+1/2, z3/4; (iv) y+1/2, x1/2, z+5/4.
 

Acknowledgements

HK and FF thank PNU for financial support. RK thanks the Science and Research Branch, Islamic Azad University, Tehran for support. MNT thanks Sargodha University for the research facilities.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, o776–o777.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKargar, H., Kia, R., Ullah Khan, I. & Sahraei, A. (2010). Acta Cryst. E66, o539.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds