organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(4-chloro­phenyl­sulfon­yl)­adipamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 18 July 2011; accepted 25 July 2011; online 30 July 2011)

In the title compound, C18H18Cl2N2O6S2, the asymmetric unit contains half a mol­ecule with a center of symmetry at the mid-point of the central C—C bond. The dihedral angle between the benzene ring and the SO2—NH—C(O) segment in the two halves of the mol­ecule is 83.5 (2)°. In the crystal, N—H⋯O(S) inter­molecular hydrogen bonds link the mol­ecules into infinite chains running along the c axis. The O atom involved in the hydrogen bond has a longer S—O bond than the other O atom bonded to S [1.403 (4) versus 1.361 (4) Å].

Related literature

For hydrogen-bonding preferences of sulfonamides, see; Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]). For our studies on the effects of substituents on the structures of N-(ar­yl)-amides, see: Bhat & Gowda (2000[Bhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279-284.]); Gowda et al. (2000[Gowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779-790.], 2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o1975-o1976.]). For those on N-(aryl­sulfon­yl)-amides, see: Rodrigues et al. (2011a[Rodrigues, V. Z., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o837.],b[Rodrigues, V. Z., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o2101.]). For those on N-(ar­yl)-aryl­sulfonamides, see: Gowda et al. (2005[Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106-112.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18Cl2N2O6S2

  • Mr = 493.36

  • Triclinic, [P \overline 1]

  • a = 5.593 (1) Å

  • b = 8.827 (2) Å

  • c = 9.908 (2) Å

  • α = 89.28 (2)°

  • β = 87.75 (2)°

  • γ = 81.16 (1)°

  • V = 482.96 (17) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 293 K

  • 0.12 × 0.08 × 0.04 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.932, Tmax = 0.977

  • 2942 measured reflections

  • 1757 independent reflections

  • 775 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.104

  • S = 0.99

  • 1757 reflections

  • 139 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.85 (2) 2.03 (3) 2.839 (7) 160 (6)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amide moiety is an important constituent of many biologically significant compounds. As part of our studies on the effects of ring and side chain substitutions on the structures of N-(aryl)-amides (Bhat & Gowda, 2000; Gowda et al., 2000, 2007), N-(arylsulfonyl)-amides (Rodrigues et al., 2011a,b) and N-(aryl)-arylsulfonamides (Gowda et al., 2005), the crystal structure of N,N-bis(4-chlorophenylsulfonyl)- adipamide has been determined (I) (Fig. 1).

In the two C—SO2—NH—CO—CH2—CH2 central segments of the structure, the N—H, C=O and C—H bonds are anti to the adjacent bonds, similar to that observed in N,N- bis(2-chlorophenylsulfonyl)-adipamide (II) (Rodrigues et al., 2011a) and N,N-bis(4-chlorophenylsulfonyl)-suberamide (III) (Rodrigues et al., 2011b). The orientations of sulfonamide groups with respect to the attached phenyl rings are given by the torsion angles of C2—C1—S1—N1 = -117.1 (6)° and C6—C1—S1—N1 = 60.5 (6)°. The molecule is bent at the S atom with the C1—S1—N1—C7 torsion angle of 55.0 (6)°, compared to the value of -65.1 (6)° in (II).

The dihedral angle between the benzene ring and the SO2—NH—C(O) segment in the two halves of the molecule is 83.5 (2)°, compared to the values of 89.6 (2)° in (II) and 79.5 (2)° in (III).

N—H···O2(S) H-bond formation results in an S=O2 bond longer than the S=O1 bond [1.403 (4)Å versus 1.361 (4) Å]. A series of N—H···O(S) intermolecular hydrogen bonds (Table 1) link the molecules into infinite chains running along c-axis (Fig. 2). The hydrogen bonding preferences of sulfonamides is described elsewhere (Adsmond & Grant, 2001)

Related literature top

For hydrogen-bonding preferences of sulfonamides, see; Adsmond & Grant (2001). For our studies on the effects of substituents on the structures of N-(aryl)-amides, see: Bhat & Gowda (2000); Gowda et al. (2000, 2007). For those on N-(arylsulfonyl)-amides, see: Rodrigues et al. (2011a,b). For those on N-(aryl)-arylsulfonamides, see: Gowda et al. (2005).

Experimental top

N,N-Bis(4-chlorophenylsulfonyl)-adipamide was prepared by refluxing a mixture of adipic acid (0.01 mol) with 4-chlorobenzenesulfonamide (0.02 mol) and POCl3 for 1 hr on a water bath. The reaction mixture was allowed to cool and added ether to it. The solid product obtained was filtered, washed thoroughly with ether and hot ethanol. The compound was recrystallized to the constant melting point and was characterized by its infrared and NMR spectra.

Needle like colorless single crystals used in the X-ray diffraction studies were grown by a slow evaporation of a solution of the compound in ethanol at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to N—H = 0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93Å and the methylene C—H = 0.97 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

The distance C1—C6 in the benzene ring was restrained to 1.39 (1) Å.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N,N'-Bis(4-chlorophenylsulfonyl)adipamide top
Crystal data top
C18H18Cl2N2O6S2Z = 1
Mr = 493.36F(000) = 254
Triclinic, P1Dx = 1.696 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.593 (1) ÅCell parameters from 528 reflections
b = 8.827 (2) Åθ = 3.1–28.0°
c = 9.908 (2) ŵ = 0.60 mm1
α = 89.28 (2)°T = 293 K
β = 87.75 (2)°Needle, colourless
γ = 81.16 (1)°0.12 × 0.08 × 0.04 mm
V = 482.96 (17) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1757 independent reflections
Radiation source: fine-focus sealed tube775 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
Rotation method data acquisition using ω scansθmax = 25.4°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 66
Tmin = 0.932, Tmax = 0.977k = 1010
2942 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
1757 reflections(Δ/σ)max = 0.007
139 parametersΔρmax = 0.41 e Å3
2 restraintsΔρmin = 0.36 e Å3
Crystal data top
C18H18Cl2N2O6S2γ = 81.16 (1)°
Mr = 493.36V = 482.96 (17) Å3
Triclinic, P1Z = 1
a = 5.593 (1) ÅMo Kα radiation
b = 8.827 (2) ŵ = 0.60 mm1
c = 9.908 (2) ÅT = 293 K
α = 89.28 (2)°0.12 × 0.08 × 0.04 mm
β = 87.75 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1757 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
775 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.977Rint = 0.063
2942 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0812 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.41 e Å3
1757 reflectionsΔρmin = 0.36 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1041 (11)0.6193 (7)0.8224 (6)0.0293 (17)
C20.2221 (12)0.6416 (7)0.9348 (6)0.042 (2)
H20.38100.59320.94210.051*
C30.1175 (13)0.7325 (8)1.0388 (7)0.047 (2)
H30.20300.74481.11550.057*
C40.1031 (13)0.8010 (8)1.0280 (7)0.042 (2)
C50.2239 (12)0.7794 (8)0.9163 (7)0.045 (2)
H50.38220.82910.91000.054*
C60.1242 (11)0.6877 (7)0.8116 (7)0.0433 (19)
H60.21200.67380.73610.052*
C70.3253 (12)0.7659 (8)0.5567 (7)0.0357 (18)
C80.2725 (11)0.8657 (7)0.4335 (6)0.0394 (18)
H8A0.42340.88790.39210.047*
H8B0.19360.81110.36830.047*
C90.1140 (10)1.0122 (8)0.4692 (6)0.054 (2)
H9A0.19701.06890.53090.065*
H9B0.08461.07380.38810.065*
N10.2328 (10)0.6336 (6)0.5582 (5)0.0371 (15)
H1N0.149 (9)0.600 (6)0.499 (4)0.044*
O10.4677 (8)0.4551 (5)0.7221 (4)0.0501 (14)
O20.0961 (8)0.4035 (5)0.6456 (4)0.0508 (14)
O30.4340 (7)0.8007 (5)0.6492 (5)0.0491 (14)
Cl10.2314 (4)0.9221 (2)1.15456 (19)0.0695 (7)
S10.2378 (4)0.5111 (2)0.68742 (19)0.0419 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.032 (4)0.030 (4)0.026 (4)0.004 (4)0.006 (3)0.003 (3)
C20.035 (5)0.049 (5)0.039 (5)0.004 (4)0.001 (4)0.002 (4)
C30.047 (5)0.060 (6)0.031 (5)0.005 (5)0.011 (4)0.001 (4)
C40.049 (5)0.042 (5)0.031 (5)0.002 (4)0.004 (4)0.009 (4)
C50.026 (4)0.056 (5)0.049 (5)0.005 (4)0.000 (4)0.005 (4)
C60.032 (4)0.050 (5)0.048 (5)0.004 (4)0.012 (4)0.001 (4)
C70.024 (4)0.040 (5)0.041 (5)0.001 (4)0.004 (4)0.013 (4)
C80.035 (4)0.045 (5)0.036 (5)0.000 (4)0.000 (3)0.005 (4)
C90.042 (5)0.064 (6)0.053 (5)0.001 (5)0.001 (4)0.017 (4)
N10.041 (4)0.037 (4)0.035 (4)0.008 (3)0.010 (3)0.005 (3)
O10.036 (3)0.058 (3)0.050 (3)0.013 (3)0.006 (2)0.003 (3)
O20.067 (4)0.042 (3)0.047 (3)0.017 (3)0.018 (3)0.000 (3)
O30.031 (3)0.062 (4)0.055 (4)0.008 (3)0.012 (3)0.005 (3)
Cl10.0784 (16)0.0701 (16)0.0514 (14)0.0107 (12)0.0185 (12)0.0023 (12)
S10.0447 (13)0.0403 (13)0.0394 (12)0.0009 (11)0.0076 (10)0.0022 (11)
Geometric parameters (Å, º) top
C1—C61.333 (6)C7—N11.348 (7)
C1—C21.348 (8)C7—C81.508 (8)
C1—S11.731 (6)C8—C91.489 (7)
C2—C31.370 (7)C8—H8A0.9700
C2—H20.9300C8—H8B0.9700
C3—C41.295 (8)C9—C9i1.437 (10)
C3—H30.9300C9—H9A0.9700
C4—C51.350 (8)C9—H9B0.9700
C4—Cl11.719 (7)N1—S11.664 (6)
C5—C61.371 (7)N1—H1N0.85 (2)
C5—H50.9300O1—S11.361 (4)
C6—H60.9300O2—S11.403 (4)
C7—O31.188 (7)
C6—C1—C2119.0 (6)C9—C8—C7111.2 (5)
C6—C1—S1117.8 (5)C9—C8—H8A109.4
C2—C1—S1123.2 (5)C7—C8—H8A109.4
C1—C2—C3122.7 (7)C9—C8—H8B109.4
C1—C2—H2118.7C7—C8—H8B109.4
C3—C2—H2118.7H8A—C8—H8B108.0
C4—C3—C2118.6 (7)C9i—C9—C8112.4 (7)
C4—C3—H3120.7C9i—C9—H9A109.1
C2—C3—H3120.7C8—C9—H9A109.1
C3—C4—C5119.4 (7)C9i—C9—H9B109.1
C3—C4—Cl1119.0 (6)C8—C9—H9B109.1
C5—C4—Cl1121.6 (6)H9A—C9—H9B107.9
C4—C5—C6123.1 (7)C7—N1—S1125.5 (5)
C4—C5—H5118.4C7—N1—H1N128 (4)
C6—C5—H5118.4S1—N1—H1N106 (4)
C1—C6—C5117.2 (6)O1—S1—O2116.6 (3)
C1—C6—H6121.4O1—S1—N1112.0 (3)
C5—C6—H6121.4O2—S1—N1103.7 (3)
O3—C7—N1121.0 (7)O1—S1—C1106.7 (3)
O3—C7—C8123.7 (7)O2—S1—C1112.4 (3)
N1—C7—C8115.3 (6)N1—S1—C1105.0 (3)
C6—C1—C2—C30.3 (10)C7—C8—C9—C9i59.2 (9)
S1—C1—C2—C3177.3 (5)O3—C7—N1—S14.7 (9)
C1—C2—C3—C40.6 (11)C8—C7—N1—S1173.2 (4)
C2—C3—C4—C50.8 (11)C7—N1—S1—O160.3 (6)
C2—C3—C4—Cl1177.1 (5)C7—N1—S1—O2173.2 (5)
C3—C4—C5—C60.2 (11)C7—N1—S1—C155.0 (6)
Cl1—C4—C5—C6177.8 (5)C6—C1—S1—O1179.5 (5)
C2—C1—C6—C51.0 (10)C2—C1—S1—O11.8 (6)
S1—C1—C6—C5176.8 (4)C6—C1—S1—O251.6 (6)
C4—C5—C6—C10.8 (10)C2—C1—S1—O2130.8 (5)
O3—C7—C8—C963.7 (9)C6—C1—S1—N160.5 (6)
N1—C7—C8—C9114.2 (6)C2—C1—S1—N1117.1 (6)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2ii0.85 (2)2.03 (3)2.839 (7)160 (6)
Symmetry code: (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H18Cl2N2O6S2
Mr493.36
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.593 (1), 8.827 (2), 9.908 (2)
α, β, γ (°)89.28 (2), 87.75 (2), 81.16 (1)
V3)482.96 (17)
Z1
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.12 × 0.08 × 0.04
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.932, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
2942, 1757, 775
Rint0.063
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.104, 0.99
No. of reflections1757
No. of parameters139
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.36

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.85 (2)2.03 (3)2.839 (7)160 (6)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS research fellowship.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279–284.  CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o1975–o1976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.  CAS Google Scholar
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779–790.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRodrigues, V. Z., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o837.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRodrigues, V. Z., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o2101.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds